
Document Number: 252046-056

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

October 2017

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2017, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

-045 • Removed Documentation Changes 1-12
• Add Documentation Changes 1-22

January 2015

-046 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-25

April 2015

-047 • Removed Documentation Changes 1-25
• Add Documentation Changes 1-19

June 2015

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

§

-048 • Removed Documentation Changes 1-19
• Add Documentation Changes 1-33

September 2015

-049 • Removed Documentation Changes 1-33
• Add Documentation Changes 1-33

December 2015

-050 • Removed Documentation Changes 1-33
• Add Documentation Changes 1-9

April 2016

-051 • Removed Documentation Changes 1-9
• Add Documentation Changes 1-20

June 2016

-052 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-22

September 2016

-053 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-26

December 2016

-054 • Removed Documentation Changes 1-26
• Add Documentation Changes 1-20

March 2017

-055 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-28

July 2017

-056 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-18

October 2017

Revision Description Date

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-L 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, M-U 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference, V-Z 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D: Instruction Set
Reference 334569

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System
Programming Guide, Part 4 332831

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model Specific
Registers 335592

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 10, Volume 1

2 Updates to Chapter 11, Volume 1

3 Updates to Chapter 14, Volume 1

4 Updates to Chapter 2, Volume 2A

5 Updates to Chapter 3, Volume 2A

6 Updates to Chapter 4, Volume 2B

7 Updates to Chapter 5, Volume 2C

8 Addition of Chapter 7, Volume 2D

9 Updates to Chapter 2, Volume 3A

10 Updates to Chapter 3, Volume 3A

11 Updates to Chapter 10, Volume 3A

12 Updates to Chapter 15, Volume 3B

13 Updates to Chapter 19, Volume 3B

14 Updates to Chapter 22, Volume 3B

15 Updates to Chapter 27, Volume 3C

16 Updates to Chapter 34, Volume 3C

17 Updates to Chapter 41, Volume 3D

18 Updates to Chapter 2, Volume 4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

Changes to the Intel® 64 and IA-32 Architectures Software Developer’s Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

1. Updates to Chapter 10, Volume 1

Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture.

--
Change to this chapter: Corrected Flush to Zero flag name in various places.

Vol. 1 10-1

CHAPTER 10
PROGRAMMING WITH INTEL®

STREAMING SIMD EXTENSIONS (INTEL® SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in the Pentium III processor
family. These extensions enhance the performance of IA-32 processors for advanced 2-D and 3-D graphics, motion
video, image processing, speech recognition, audio synthesis, telephony, and video conferencing.

This chapter describes SSE. Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),”
provides information to assist in writing application programs that use SSE2 extensions. Chapter 12, “Programming
with Intel® SSE3, SSSE3, Intel® SSE4 and Intel® AESNI,” provides this information for SSE3 extensions.

10.1 OVERVIEW OF SSE EXTENSIONS
Intel MMX technology introduced single-instruction multiple-data (SIMD) capability into the IA-32 architecture,
with the 64-bit MMX registers, 64-bit packed integer data types, and instructions that allowed SIMD operations to
be performed on packed integers. SSE extensions expand the SIMD execution model by adding facilities for
handling packed and scalar single-precision floating-point values contained in 128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, SSE extensions are present.

SSE extensions add the following features to the IA-32 architecture, while maintaining backward compatibility with
all existing IA-32 processors, applications and operating systems.
• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; sixteen XMM registers are available in

64-bit mode.
• The 32-bit MXCSR register, which provides control and status bits for operations performed on XMM registers.
• The 128-bit packed single-precision floating-point data type (four IEEE single-precision floating-point values

packed into a double quadword).
• Instructions that perform SIMD operations on single-precision floating-point values and that extend SIMD

operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that operate on data located in MMX
registers

— 64-bit SIMD integer instructions that support additional operations on packed integer operands located in
MMX registers

• Instructions that save and restore the state of the MXCSR register.
• Instructions that support explicit prefetching of data, control of the cacheability of data, and control the

ordering of store operations.
• Extensions to the CPUID instruction.

These features extend the IA-32 architecture’s SIMD programming model in four important ways:
• The ability to perform SIMD operations on four packed single-precision floating-point values enhances the

performance of IA-32 processors for advanced media and communications applications that use computation-
intensive algorithms to perform repetitive operations on large arrays of simple, native data elements.

• The ability to perform SIMD single-precision floating-point operations in XMM registers and SIMD integer
operations in MMX registers provides greater flexibility and throughput for executing applications that operate
on large arrays of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM registers without polluting the
caches and the ability to prefetch data to selected cache levels before it is actually used. Applications that
require regular access to large amounts of data benefit from these prefetching and streaming store capabilities.

• The SFENCE (store fence) instruction provides greater control over the ordering of store operations when using
weakly-ordered memory types.

10-2 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

SSE extensions are fully compatible with all software written for IA-32 processors. All existing software continues
to run correctly, without modification, on processors that incorporate SSE extensions. Enhancements to CPUID
permit detection of SSE extensions. SSE extensions are accessible from all IA-32 execution modes: protected
mode, real address mode, and virtual-8086 mode.

The following sections of this chapter describe the programming environment for SSE extensions, including: XMM
registers, the packed single-precision floating-point data type, and SSE instructions. For additional information,
see:
• Section 11.6, “Writing Applications with SSE/SSE2 Extensions”.
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that can be generated with

SSE/SSE2/SSE3 instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide a detailed

description of these instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating
these extensions into an operating-system environment.

10.2 SSE PROGRAMMING ENVIRONMENT
Figure 10-1 shows the execution environment for the SSE extensions. All SSE instructions operate on the XMM
registers, MMX registers, and/or memory as follows:
• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2, “XMM Registers”) are used to

operate on packed or scalar single-precision floating-point data. Scalar operations are operations performed on
individual (unpacked) single-precision floating-point values stored in the low doubleword of an XMM register.
XMM registers are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3, “MXCSR Control and Status
Register”) provides status and control bits used in SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed
integer data. They are also used to hold operands for some operations performed between the MMX and XMM
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the
existing IA-32 addressing modes to address operands in memory. (MMX and XMM registers cannot be used to

Figure 10-1. SSE Execution Environment

0

232 -1

Eight 32-Bit

32 BitsEFLAGS Register

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Eight 128-Bit
XMM Registers

32 BitsMXCSR Register

Registers

Vol. 1 10-3

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

address memory). The general-purpose registers are also used to hold operands for some SSE instructions and
are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result of some compare operations.

10.2.1 SSE in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE extensions function like they do in protected mode. In 64-bit mode, eight additional
XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. Memory operands are
specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 64-
bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers
Eight 128-bit XMM data registers were introduced into the IA-32 architecture with SSE extensions (see
Figure 10-2). These registers can be accessed directly using the names XMM0 to XMM7; and they can be accessed
independently from the x87 FPU and MMX registers and the general-purpose registers (that is, they are not aliased
to any other of the processor’s registers).

SSE instructions use the XMM registers only to operate on packed single-precision floating-point operands. SSE2
extensions expand the functions of the XMM registers to operand on packed or scalar double-precision floating-
point operands and packed integer operands (see Section 11.2, “SSE2 Programming Environment,” and Section
12.1, “Programming Environment and Data types”).

XMM registers can only be used to perform calculations on data; they cannot be used to address memory.
Addressing memory is accomplished by using the general-purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in 32-bit, 64-bit, and 128-bit incre-
ments. When storing the entire contents of an XMM register in memory (128-bit store), the data is stored in 16
consecutive bytes, with the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register
The 32-bit MXCSR register (see Figure 10-3) contains control and status information for SSE, SSE2, and SSE3
SIMD floating-point operations. This register contains:
• flag and mask bits for SIMD floating-point exceptions
• rounding control field for SIMD floating-point operations

Figure 10-2. XMM Registers

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMM0

127 0

10-4 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• flush-to-zero flag that provides a means of controlling underflow conditions on SIMD floating-point operations
• denormals-are-zeros flag that controls how SIMD floating-point instructions handle denormal source operands

The contents of this register can be loaded from memory with the LDMXCSR and FXRSTOR instructions and stored
in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-up or reset of the processor;
attempting to write a non-zero value to these bits, using either the FXRSTOR or LDMXCSR instructions, will result
in a general-protection exception (#GP) being generated.

10.2.3.1 SIMD Floating-Point Mask and Flag Bits
Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point exception has been detected. They
are “sticky” flags. That is, after a flag is set, it remains set until explicitly cleared. To clear these flags, use the
LDMXCSR or the FXRSTOR instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. An exception type is masked
if the corresponding mask bit is set, and it is unmasked if the bit is clear. These mask bits are set upon a power-up
or reset. This causes all SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag bit, a SIMD floating-point
exception will not be generated as a result of this change. The unmasked exception will be generated only upon the
execution of the next SSE/SSE2/SSE3 instruction that detects the unmasked exception condition.

For more information about the use of the SIMD floating-point exception mask and flag bits, see Section 11.5,
“SSE, SSE2, and SSE3 Exceptions,” and Section 12.8, “SSE3/SSSE3 And SSE4 Exceptions.”

10.2.3.2 SIMD Floating-Point Rounding Control Field
Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the results of SIMD floating-point
instructions are rounded. See Section 4.8.4, “Rounding,” for a description of the function and encoding of the
rounding control bits.

10.2.3.3 Flush-To-Zero
Bit 15 (FTZ) of the MXCSR register enables the flush-to-zero mode, which controls the masked response to a SIMD
floating-point underflow condition. When the underflow exception is masked and the flush-to-zero mode is
enabled, the processor performs the following operations when it detects a floating-point underflow condition.

Figure 10-3. MXCSR Control/Status Register

31 16

Overflow Mask
Divide-by-Zero Mask
Denormal Operation Mask
Invalid Operation Mask
Denormals Are Zeros*
Precision Flag
Underflow Flag

Underflow Mask

Flush to Zero
Rounding Control

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

Precision Mask

Overflow Flag
Divide-by-Zero Flag
Denormal Flag
Invalid Operation Flag

F
T R

C
P
M

Z
E

O
E

U
E

P
E

I
M

D
M

Z
M

O
M

U
MReserved

D
E E

ID
A
Z

* The denormals-are-zeros flag was introduced in the Pentium 4 and Intel Xeon processor.

Z

Vol. 1 10-5

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• Returns a zero result with the sign of the true result.
• Sets the precision and underflow exception flags.

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-mandated masked response to under-
flow is to deliver the denormalized result (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”).
The flush-to-zero mode is provided primarily for performance reasons. At the cost of a slight precision loss, faster
execution can be achieved for applications where underflows are common and rounding the underflow result to
zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling the flush-to-zero mode.

10.2.3.4 Denormals-Are-Zeros
Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which controls the processor’s response
to a SIMD floating-point denormal operand condition. When the denormals-are-zeros flag is set, the processor
converts all denormal source operands to a zero with the sign of the original operand before performing any
computations on them. The processor does not set the denormal-operand exception flag (DE), regardless of the
setting of the denormal-operand exception mask bit (DM); and it does not generate a denormal-operand exception
if the exception is unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see Section 4.8.3.2, “Normalized and
Denormalized Finite Numbers”). The denormals-are-zeros mode is provided to improve processor performance for
applications such as streaming media processing, where rounding a denormal operand to zero does not appre-
ciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, disabling the denormals-are-
zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon processor with the SSE2 exten-
sions; however, it is fully compatible with the SSE SIMD floating-point instructions (that is, the denormals-are-
zeros flag affects the operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors and in
some models of the Pentium 4 processor, this flag (bit 6) is reserved. See Section 11.6.3, “Checking for the DAZ
Flag in the MXCSR Register,” for instructions for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the DAZ flag will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for instructions for
preventing such general-protection exceptions by using the MXCSR_MASK value returned by the FXSAVE instruc-
tion.

10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU
The state (XMM registers and MXCSR register) introduced into the IA-32 execution environment with the SSE
extensions is shared with SSE2 and SSE3 extensions. SSE/SSE2/SSE3 instructions are fully compatible; they can
be executed together in the same instruction stream with no need to save state when switching between instruc-
tion sets.

XMM registers are independent of the x87 FPU and MMX registers, so SSE/SSE2/SSE3 operations performed on the
XMM registers can be performed in parallel with operations on the x87 FPU and MMX registers (see Section 11.6.7,
“Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states along with the x87 FPU and
MMX state.

10.3 SSE DATA TYPES
SSE extensions introduced one data type, the 128-bit packed single-precision floating-point data type, to the IA-
32 architecture (see Figure 10-4). This data type consists of four IEEE 32-bit single-precision floating-point values

10-6 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

packed into a double quadword. (See Figure 4-3 for the layout of a single-precision floating-point value; refer to
Section 4.2.2, “Floating-Point Data Types,” for a detailed description of the single-precision floating-point format.)

This 128-bit packed single-precision floating-point data type is operated on in the XMM registers or in memory.
Conversion instructions are provided to convert two packed single-precision floating-point values into two packed
doubleword integers or a scalar single-precision floating-point value into a doubleword integer (see Figure 11-8).

SSE extensions provide conversion instructions between XMM registers and MMX registers, and between XMM
registers and general-purpose bit registers. See Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following
cases:
• The MOVUPS instruction supports unaligned accesses.
• Scalar instructions that use a 4-byte memory operand that is not subject to alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 SSE INSTRUCTION SET
SSE instructions are divided into four functional groups
• Packed and scalar single-precision floating-point instructions
• 64-bit SIMD integer instructions
• State management instructions
• Cacheability control, prefetch, and memory ordering instructions

The following sections give an overview of each of the instructions in these groups.

10.4.1 SSE Packed and Scalar Floating-Point Instructions
The packed and scalar single-precision floating-point instructions are divided into the following subgroups:
• Data movement instructions
• Arithmetic instructions
• Logical instructions
• Comparison instructions
• Shuffle instructions
• Conversion instructions

The packed single-precision floating-point instructions perform SIMD operations on packed single-precision
floating-point operands (see Figure 10-5). Each source operand contains four single-precision floating-point
values, and the destination operand contains the results of the operation (OP) performed in parallel on the corre-
sponding values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

Figure 10-4. 128-Bit Packed Single-Precision Floating-Point Data Type

0127

Contains 4 Single-Precision
Floating-Point Values

64 63 31329596

Vol. 1 10-7

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The scalar single-precision floating-point instructions operate on the low (least significant) doublewords of the two
source operands (X0 and Y0); see Figure 10-6. The three most significant doublewords (X1, X2, and X3) of the first
source operand are passed through to the destination. The scalar operations are similar to the floating-point oper-
ations performed in the x87 FPU data registers with the precision control field in the x87 FPU control word set for
single precision (24-bit significand), except that x87 stack operations use a 15-bit exponent range for the result,
while SSE operations use an 8-bit exponent range.

10.4.1.1 SSE Data Movement Instructions
SSE data movement instructions move single-precision floating-point data between XMM registers and between an
XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction transfers a double quadword
operand containing four packed single-precision floating-point values from memory to an XMM register and vice
versa, or between XMM registers. The memory address must be aligned to a 16-byte boundary; otherwise, a
general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction performs the same operations as
the MOVAPS instruction, except that 16-byte alignment of a memory address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-bit single-precision floating-
point operand from memory to the low doubleword of an XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves two packed single-precision
floating-point values from memory to the low quadword of an XMM register and vice versa. The high quadword of
the register is left unchanged.

Figure 10-5. Packed Single-Precision Floating-Point Operation

Figure 10-6. Scalar Single-Precision Floating-Point Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

OPOPOPOP

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 X2 X1 X0 OP Y0

OP

10-8 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The MOVHPS (move high packed single-precision floating-point) instruction moves two packed single-precision
floating-point values from memory to the high quadword of an XMM register and vice versa. The low quadword of
the register is left unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction moves two packed single-preci-
sion floating-point values from the low quadword of the source XMM register into the high quadword of the desti-
nation XMM register. The low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction moves two packed single-preci-
sion floating-point values from the high quadword of the source XMM register into the low quadword of the desti-
nation XMM register. The high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction transfers the most significant bit of
each of the four packed single-precision floating-point numbers in an XMM register to a general-purpose register.
This 4-bit value can then be used as a condition to perform branching.

10.4.1.2 SSE Arithmetic Instructions
SSE arithmetic instructions perform addition, subtraction, multiply, divide, reciprocal, square root, reciprocal of
square root, and maximum/minimum operations on packed and scalar single-precision floating-point values.

The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract packed single-precision
floating-point values) instructions add and subtract, respectively, two packed single-precision floating-point oper-
ands.

The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract scalar single-precision floating-
point values) instructions add and subtract, respectively, the low single-precision floating-point values of two oper-
ands and store the result in the low doubleword of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multiplies two packed single-preci-
sion floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multiplies the low single-precision
floating-point values of two operands and stores the result in the low doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides two packed single-precision
floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides the low single-precision floating-
point values of two operands and stores the result in the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values) instruction computes the approx-
imate reciprocals of values in a packed single-precision floating-point operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values) instruction computes the approxi-
mate reciprocal of the low single-precision floating-point value in the source operand and stores the result in the
low doubleword of the destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values) instruction computes the
square roots of the values in a packed single-precision floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values) instruction computes the square
root of the low single-precision floating-point value in the source operand and stores the result in the low double-
word of the destination operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision floating-point values) instruction
computes the approximate reciprocals of the square roots of the values in a packed single-precision floating-point
operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point value) instruction computes the
approximate reciprocal of the square root of the low single-precision floating-point value in the source operand and
stores the result in the low doubleword of the destination operand.

The MAXPS (return maximum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically greater
value from each comparison to the destination operand.

Vol. 1 10-9

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The MAXSS (return maximum of scalar single-precision floating-point values) instruction compares the low values
from two packed single-precision floating-point operands and returns the numerically greater value from the
comparison to the low doubleword of the destination operand.

The MINPS (return minimum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically lesser value
from each comparison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruction compares the low values
from two packed single-precision floating-point operands and returns the numerically lesser value from the
comparison to the low doubleword of the destination operand.

10.4.2 SSE Logical Instructions
SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed single-precision floating-point
values.

The ANDPS (bitwise logical AND of packed single-precision floating-point values) instruction returns the logical
AND of two packed single-precision floating-point operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point values) instruction returns the
logical AND NOT of two packed single-precision floating-point operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values) instruction returns the logical OR of
two packed single-precision floating-point operands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values) instruction returns the logical
XOR of two packed single-precision floating-point operands.

10.4.2.1 SSE Comparison Instructions
The compare instructions compare packed and scalar single-precision floating-point values and return the results
of the comparison either to the destination operand or to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction compares the corresponding values
from two packed single-precision floating-point operands, using an immediate operand as a predicate, and returns
a 32-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the immediate
operand allows the selection of any of 8 compare conditions: equal, less than, less than equal, unordered, not
equal, not less than, not less than or equal, or ordered.

The CMPSS (compare scalar single-precision, floating-point values) instruction compares the low values from two
packed single-precision floating-point operands, using an immediate operand as a predicate, and returns a 32-bit
mask result of all 1s or all 0s for the comparison to the low doubleword of the destination operand. The immediate
operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS) and UCOMISS (unordered
compare scalar single-precision floating-point values and set EFLAGS) instructions compare the low values of two
packed single-precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISS instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN;
the UCOMISS instruction only signals an invalid-operation exception when a source operand is an SNaN.

10.4.2.2 SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave the contents of two packed single-precision floating-point
values and store the results in the destination operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places any two of the four packed
single-precision floating-point values from the destination operand into the two low-order doublewords of the
destination operand, and places any two of the four packed single-precision floating-point values from the source
operand in the two high-order doublewords of the destination operand (see Figure 10-7). By using the same
register for the source and destination operands, the SHUFPS instruction can shuffle four single-precision floating-
point values into any order.

10-10 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The UNPCKHPS (unpack and interleave high packed single-precision floating-point values) instruction performs an
interleaved unpack of the high-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single-precision floating-point values) instruction performs an
interleaved unpack of the low-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-9).

Figure 10-7. SHUFPS Instruction, Packed Shuffle Operation

Figure 10-8. UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9. UNPCKLPS Instruction, Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 X3 Y2 X2

DEST

SRC

DEST

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST

Vol. 1 10-11

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

10.4.3 SSE Conversion Instructions
SSE conversion instructions (see Figure 11-8) support packed and scalar conversions between single-precision
floating-point and doubleword integer formats.

The CVTPI2PS (convert packed doubleword integers to packed single-precision floating-point values) instruction
converts two packed signed doubleword integers into two packed single-precision floating-point values. When the
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register.

The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point value) instruction converts a
signed doubleword integer into a single-precision floating-point value. When the conversion is inexact, the result is
rounded according to the rounding mode selected in the MXCSR register.

The CVTPS2PI (convert packed single-precision floating-point values to packed doubleword integers) instruction
converts two packed single-precision floating-point values into two packed signed doubleword integers. When the
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. The
CVTTPS2PI (convert with truncation packed single-precision floating-point values to packed doubleword integers)
instruction is similar to the CVTPS2PI instruction, except that truncation is used to round a source value to an
integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword integer) instruction converts a
single-precision floating-point value into a signed doubleword integer. When the conversion is inexact, the result is
rounded according to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with truncation
scalar single-precision floating-point value to doubleword integer) instruction is similar to the CVTSS2SI instruc-
tion, except that truncation is used to round the source value to an integer value (see Section 4.8.4.2, “Truncation
with SSE and SSE2 Conversion Instructions”).

10.4.4 SSE 64-Bit SIMD Integer Instructions
SSE extensions add the following 64-bit packed integer instructions to the IA-32 architecture. These instructions
operate on data in MMX registers and 64-bit memory locations.

NOTE
When SSE2 extensions are present in an IA-32 processor, these instructions are extended to
operate on 128-bit operands in XMM registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW (compute average of packed
unsigned word integers) instructions compute a SIMD average of two packed unsigned byte or word integer oper-
ands, respectively. For each corresponding pair of data elements in the packed source operands, the elements are
added together, a 1 is added to the temporary sum, and that result is shifted right one bit position.

The PEXTRW (extract word) instruction copies a selected word from an MMX register into a general-purpose
register.

The PINSRW (insert word) instruction copies a word from a general-purpose register or from memory into a
selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the corresponding unsigned byte
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the corresponding unsigned byte
integers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the corresponding signed word
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the corresponding signed word inte-
gers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed byte integers in an MMX
register and stores the result in the low byte of a general-purpose register. The mask contains the most significant
bit of each byte in the MMX register. (When operating on 128-bit operands, a 16-bit mask is created.)

10-12 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

The PMULHUW (multiply packed unsigned word integers and store high result) instruction performs a SIMD
unsigned multiply of the words in the two source operands and returns the high word of each result to an MMX
register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD absolute differences of the
corresponding unsigned byte integers in two source operands, sums the differences, and stores the sum in the low
word of the destination operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the source operand according to the
order specified by an 8-bit immediate operand and returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions
The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save the state of the MXCSR
register, respectively. The LDMXCSR instruction loads the MXCSR register from memory, while the STMXCSR
instruction stores the contents of the register to memory.

10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions
SSE extensions introduce several new instructions to give programs more control over the caching of data. They
also introduces the PREFETCHh instructions, which provide the ability to prefetch data to a specified cache level,
and the SFENCE instruction, which enforces program ordering on stores. These instructions are described in the
following sections.

10.4.6.1 Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be stored to memory using a non-
temporal hint. The non-temporal hint directs the processor to store the data to memory without writing the data
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for information
about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data from an MMX
register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-temporal hint) instruction stores
packed floating-point data from an XMM register to memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte integers from an MMX register
to memory, using a byte mask to selectively write the individual bytes. This instruction also uses a non-temporal
hint.

10.4.6.2 Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced
once and not reused in the immediate future). For example, program code is generally temporal, whereas, multi-
media data, such as the display list in a 3-D graphics application, is often non-temporal. To make efficient use of
the processor’s caches, it is generally desirable to cache temporal data and not cache non-temporal data. Over-
loading the processor’s caches with non-temporal data is sometimes referred to as “polluting the caches.” The SSE
and SSE2 cacheability control instructions enable a program to write non-temporal data to memory in a manner
that minimizes pollution of caches.

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being
accessed as the write combining (WC) type. If a program specifies a non-temporal store with one of these instruc-
tions and the memory type of the destination region is write back (WB), write through (WT), or write combining
(WC), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data in the caches is evicted.1

1. Some older CPU implementations (e.g., Pentium M) allowed addresses being written with a non-temporal store instruction to be
updated in-place if the memory type was not WC and line was already in the cache.

Vol. 1 10-13

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• The non-temporal data is written to memory with WC semantics.

See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written to
memory in program order, and the store will not write allocate (that is, the processor will not fetch the corre-
sponding cache line into the cache hierarchy, prior to performing the store). Also, different processor implementa-
tions may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the memory address speci-
fied for the non-temporal store is in uncacheable memory. Uncacheable as referred to here means that the region
being written to has been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to other processors and other system
agents (such as graphics cards). Appropriate use of synchronization and fencing must be performed for producer-
consumer usage models. Fencing ensures that all system agents have global visibility of the stored data; for
instance, failure to fence may result in a written cache line staying within a processor and not being visible to other
agents.

The memory type visible on the bus in the presence of memory type aliasing is implementation specific. As one
possible example, the memory type written to the bus may reflect the memory type for the first store to this line,
as seen in program order; other alternatives are possible. This behavior should be considered reserved, and
dependence on the behavior of any particular implementation risks future incompatibility.

NOTE
Some older CPU implementations (e.g., Pentium M) may implement non-temporal stores by
updating in place data that already reside in the cache hierarchy. For such processors, the
destination region should also be mapped as WC. If mapped as WB or WT, there is the potential for
speculative processor reads to bring the data into the caches; in this case, non-temporal stores
would then update in place, and data would not be flushed from the processor by a subsequent
fencing operation.

10.4.6.3 PREFETCHh Instructions
The PREFETCHh instructions permit programs to load data into the processor at a suggested cache level, so that
the data is closer to the processor’s load and store unit when it is needed. These instructions fetch 32 aligned bytes
(or more, depending on the implementation) containing the addressed byte to a location in the cache hierarchy
specified by the temporal locality hint (see Table 10-1). In this table, the first-level cache is closest to the processor
and second-level cache is farther away from the processor than the first-level cache. The hints specify a prefetch
of either temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”).
Subsequent accesses to temporal data are treated like normal accesses, while those to non-temporal data will
continue to minimize cache pollution. If the data is already present at a level of the cache hierarchy that is closer
to the processor, the PREFETCHh instruction will not result in any data movement. The PREFETCHh instructions do
not affect functional behavior of the program.

See Section 11.6.13, “Cacheability Hint Instructions,” for additional information about the PREFETCHh instructions.

Table 10-1. PREFETCHh Instructions Caching Hints

PREFETCHh Instruction
Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

10-14 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

10.4.6.4 SFENCE Instruction
The SFENCE (Store Fence) instruction controls write ordering by creating a fence for memory store operations. This
instruction guarantees that the result of every store instruction that precedes the store fence in program order is
globally visible before any store instruction that follows the fence. The SFENCE instruction provides an efficient way
of ensuring ordering between procedures that produce weakly-ordered data and procedures that consume that
data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in the Pentium II processor
family (prior to the introduction of the SSE extensions). The original versions of these instructions performed a fast
save and restore, respectively, of the x87 execution environment (x87 state). (By saving the state of the x87 FPU
data registers, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of the MMX registers.)

The SSE extensions expanded the scope of these instructions to save and restore the states of the XMM registers
and the MXCSR register (SSE state), along with x87 state.

The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE and FRSTOR instructions;
however, the operation of the FXSAVE and FXRSTOR instructions are not identical to the operation of
FSAVE/FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part of the SSE instruction group. They
have a separate CPUID feature bit to indicate whether they are present (if
CPUID.01H:EDX.FXSR[bit 24] = 1).

The CPUID feature bit for SSE extensions does not indicate the presence of FXSAVE and FXRSTOR.

The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE
area. Section 10.5.1 provides details of the FXSAVE area and its format. Section 10.5.2 describes operation of
FXSAVE, and Section 10.5.3 describes the operation of FXRSTOR.

10.5.1 FXSAVE Area
The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE
area. Each of the instructions takes a memory operand that specifies the 16-byte aligned base address of the
FXSAVE area on which it operates.

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, minimizing cache pollution

• Pentium III processor—1st-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

Table 10-1. PREFETCHh Instructions Caching Hints (Contd.)

PREFETCHh Instruction
Mnemonic Actions

Vol. 1 10-15

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

Every FXSAVE area comprises the 512 bytes starting at the area’s base address. Table 10-2 illustrates the format
of the first 416 bytes of the legacy region of an FXSAVE area.

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises
bytes 31:24 and bytes 415:160. FXSAVE and FXRSTOR do not use bytes 511:416; bytes 463:416 are reserved.

Section 10.5.2 and Section 10.5.3 provide details of how FXSAVE and FXRSTOR use an FXSAVE area.

10.5.1.1 x87 State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the x87 state is listed below,
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 1:0, 3:2, and 7:6 are used for x87 FPU Control Word (FCW), x87 FPU Status Word (FSW), and x87 FPU

Opcode (FOP), respectively.

Table 10-2. Format of an FXSAVE Area
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU
IP bits 63:32 FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

FPU DP
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

10-16 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, FXSAVE saves a 0 into bit j of byte 4 if x87 FPU data register STj has a empty tag;
otherwise, FXSAVE saves a 1 into bit j of byte 4.

— For each j, 0 ≤ j ≤ 7, FXRSTOR establishes the tag value for x87 FPU data register STj as follows. If bit j of
byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the
x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FPU CS). Otherwise, the processor deprecates the FPU CS value: FXSAVE saves it as 0000H.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector
(FPU DS). Otherwise, the processor deprecates the FPU DS value: FXSAVE saves it as 0000H.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 10.5.1.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 registers is allocated a 128-bit

region, with the low 80 bits used for the register and the upper 48 bits unused.

10.5.1.2 SSE State
Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the SSE state is listed below,
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 23:0 are used for x87 state (see Section 10.5.1.1).
• Bytes 27:24 are used for the MXCSR register. FXRSTOR generates a general-protection fault (#GP) in response

to an attempt to set any of the reserved bits in the MXCSR register.
• Bytes 31:28 are used for the MXCSR_MASK value. FXRSTOR ignores this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7.
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. Executions

of FXSAVE outside 64-bit mode do not write to these bytes; executions of FXRSTOR outside 64-bit mode do not
read these bytes and do not update XMM8–XMM15.

If CR4.OSFXSR = 0, FXSAVE and FXRSTOR may or may not operate on SSE state; this behavior is implementation
dependent. Moreover, SSE instructions cannot be used unless CR4.OSFXSR = 1.

10.5.2 Operation of FXSAVE
The FXSAVE instruction takes a single memory operand, which is an FXSAVE area. The instruction stores x87 state
and SSE state to the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific
operation and operation determined by instruction prefixes.

Vol. 1 10-17

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

10.5.3 Operation of FXRSTOR
The FXRSTOR instruction takes a single memory operand, which is an FXSAVE area. If the value at bytes 27:24 of
the FXSAVE area is not a legal value for the MXCSR register (e.g., the value sets reserved bits). Otherwise, the
instruction loads x87 state and SSE state rom the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for
details regarding mode-specific operation and operation determined by instruction prefixes.

10.6 HANDLING SSE INSTRUCTION EXCEPTIONS
See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the general and SIMD floating-
point exceptions that can be generated with the SSE instructions and for guidelines for handling these exceptions
when they occur.

10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS
See Section 11.6, “Writing Applications with SSE/SSE2 Extensions,” for additional information about writing appli-
cations and operating-system code using the SSE extensions.

10-18 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

2. Updates to Chapter 11, Volume 1
Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Minor updates to clarify MFENCE/SFENCE/LFENCE operation.

Vol. 1 11-1

CHAPTER 11
PROGRAMMING WITH INTEL®

STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture in the Pentium 4 and Intel
Xeon processors. These extensions enhance the performance of IA-32 processors for advanced 3-D graphics, video
decoding/encoding, speech recognition, E-commerce, Internet, scientific, and engineering applications.

This chapter describes the SSE2 extensions and provides information to assist in writing application programs that
use these and the SSE extensions.

11.1 OVERVIEW OF SSE2 EXTENSIONS
SSE2 extensions use the single instruction multiple data (SIMD) execution model that is used with MMX technology
and SSE extensions. They extend this model with support for packed double-precision floating-point values and for
128-bit packed integers.

If CPUID.01H:EDX.SSE2[bit 26] = 1, SSE2 extensions are present.

SSE2 extensions add the following features to the IA-32 architecture, while maintaining backward compatibility
with all existing IA-32 processors, applications and operating systems.
• Six data types:

— 128-bit packed double-precision floating-point (two IEEE Standard 754 double-precision floating-point
values packed into a double quadword)

— 128-bit packed byte integers
— 128-bit packed word integers
— 128-bit packed doubleword integers
— 128-bit packed quadword integers

• Instructions to support the additional data types and extend existing SIMD integer operations:
— Packed and scalar double-precision floating-point instructions
— Additional 64-bit and 128-bit SIMD integer instructions
— 128-bit versions of SIMD integer instructions introduced with the MMX technology and the SSE extensions
— Additional cacheability-control and instruction-ordering instructions

• Modifications to existing IA-32 instructions to support SSE2 features:
— Extensions and modifications to the CPUID instruction
— Modifications to the RDPMC instruction

These new features extend the IA-32 architecture’s SIMD programming model in three important ways:
• They provide the ability to perform SIMD operations on pairs of packed double-precision floating-point values.

This permits higher precision computations to be carried out in XMM registers, which enhances processor
performance in scientific and engineering applications and in applications that use advanced 3-D geometry
techniques (such as ray tracing). Additional flexibility is provided with instructions that operate on single
(scalar) double-precision floating-point values located in the low quadword of an XMM register.

• They provide the ability to operate on 128-bit packed integers (bytes, words, doublewords, and quadwords) in
XMM registers. This provides greater flexibility and greater throughput when performing SIMD operations on
packed integers. The capability is particularly useful for applications such as RSA authentication and RC5
encryption. Using the full set of SIMD registers, data types, and instructions provided with the MMX technology
and SSE/SSE2 extensions, programmers can develop algorithms that finely mix packed single- and double-
precision floating-point data and 64- and 128-bit packed integer data.

• SSE2 extensions enhance the support introduced with SSE extensions for controlling the cacheability of SIMD
data. SSE2 cache control instructions provide the ability to stream data in and out of the XMM registers without
polluting the caches and the ability to prefetch data before it is actually used.

11-2 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

SSE2 extensions are fully compatible with all software written for IA-32 processors. All existing software continues
to run correctly, without modification, on processors that incorporate SSE2 extensions, as well as in the presence
of applications that incorporate these extensions. Enhancements to the CPUID instruction permit detection of the
SSE2 extensions. Also, because the SSE2 extensions use the same registers as the SSE extensions, no new oper-
ating-system support is required for saving and restoring program state during a context switch beyond that
provided for the SSE extensions.

SSE2 extensions are accessible from all IA-32 execution modes: protected mode, real address mode, virtual 8086
mode.

The following sections in this chapter describe the programming environment for SSE2 extensions including: the
128-bit XMM floating-point register set, data types, and SSE2 instructions. It also describes exceptions that can be
generated with the SSE and SSE2 instructions and gives guidelines for writing applications with SSE and SSE2
extensions.

For additional information about SSE2 extensions, see:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide a detailed

description of individual SSE3 instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating
the SSE and SSE2 extensions into an operating-system environment.

11.2 SSE2 PROGRAMMING ENVIRONMENT
Figure 11-1 shows the programming environment for SSE2 extensions. No new registers or other instruction
execution state are defined with SSE2 extensions. SSE2 instructions use the XMM registers, the MMX registers,
and/or IA-32 general-purpose registers, as follows:
• XMM registers — These eight registers (see Figure 10-2) are used to operate on packed or scalar double-

precision floating-point data. Scalar operations are operations performed on individual (unpacked) double-
precision floating-point values stored in the low quadword of an XMM register. XMM registers are also used to
perform operations on 128-bit packed integer data. They are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3) provides status and control bits used in floating-point
operations. The denormals-are-zeros and flush-to-zero flags in this register provide a higher performance
alternative for the handling of denormal source operands and denormal (underflow) results. For more

Figure 11-1. Steaming SIMD Extensions 2 Execution Environment

0

232 -1

Eight 32-Bit

32 BitsEFLAGS Register

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Eight 128-Bit
XMM Registers

32 BitsMXCSR Register

Registers

Vol. 1 11-3

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

information on the functions of these flags see Section 10.2.3.4, “Denormals-Are-Zeros,” and Section 10.2.3.3,
“Flush-To-Zero.”

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed
integer data. They are also used to hold operands for some operations performed between MMX and XMM
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the
existing IA-32 addressing modes to address operands in memory. MMX and XMM registers cannot be used to
address memory. The general-purpose registers are also used to hold operands for some SSE2 instructions.
These registers are referenced by the names EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record the results of some compare
operations.

11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE2 extensions function like they do in protected mode. In 64-bit mode, eight additional
XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes.

Memory operands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE2 instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 64-
bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

11.2.2 Compatibility of SSE2 Extensions with SSE, MMX
Technology and x87 FPU Programming Environment

SSE2 extensions do not introduce any new state to the IA-32 execution environment beyond that of SSE. SSE2
extensions represent an enhancement of SSE extensions; they are fully compatible and share the same state infor-
mation. SSE and SSE2 instructions can be executed together in the same instruction stream without the need to
save state when switching between instruction sets.

XMM registers are independent of the x87 FPU and MMX registers; so SSE and SSE2 operations performed on XMM
registers can be performed in parallel with x87 FPU or MMX technology operations (see Section 11.6.7, “Interaction
of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 states along with the x87 FPU and MMX
states.

11.2.3 Denormals-Are-Zeros Flag
The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the IA-32 architecture with the
SSE2 extensions. See Section 10.2.3.4, “Denormals-Are-Zeros,” for a description of this flag.

11.3 SSE2 DATA TYPES
SSE2 extensions introduced one 128-bit packed floating-point data type and four 128-bit SIMD integer data types
to the IA-32 architecture (see Figure 11-2).
• Packed double-precision floating-point — This 128-bit data type consists of two IEEE 64-bit double-

precision floating-point values packed into a double quadword. (See Figure 4-3 for the layout of a 64-bit
double-precision floating-point value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed
description of double-precision floating-point values.)

• 128-bit packed integers — The four 128-bit packed integer data types can contain 16 byte integers, 8 word
integers, 4 doubleword integers, or 2 quadword integers. (Refer to Section 4.6.2, “128-Bit Packed SIMD Data
Types,” for a detailed description of the 128-bit packed integers.)

11-4 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

All of these data types are operated on in XMM registers or memory. Instructions are provided to convert between
these 128-bit data types and the 64-bit and 32-bit data types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following
cases:
• a MOVUPD instruction which supports unaligned accesses
• scalar instructions that use an 8-byte memory operand that is not subject to alignment requirements

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quadword) data types in memory.

11.4 SSE2 INSTRUCTIONS
The SSE2 instructions are divided into four functional groups:
• Packed and scalar double-precision floating-point instructions
• 64-bit and 128-bit SIMD integer instructions
• 128-bit extensions of SIMD integer instructions introduced with the MMX technology and the SSE extensions
• Cacheability-control and instruction-ordering instructions

The following sections provide more information about each group.

11.4.1 Packed and Scalar Double-Precision Floating-Point Instructions
The packed and scalar double-precision floating-point instructions are divided into the following sub-groups:
• Data movement instructions
• Arithmetic instructions
• Comparison instructions
• Conversion instructions
• Logical instructions
• Shuffle instructions

The packed double-precision floating-point instructions perform SIMD operations similarly to the packed single-
precision floating-point instructions (see Figure 11-3). Each source operand contains two double-precision floating-

Figure 11-2. Data Types Introduced with the SSE2 Extensions

128-Bit Packed Word Integers

128-Bit Packed Byte Integers

128-Bit Packed Doubleword
Integers

0127

0127

0127

0127

0127

128-Bit Packed Quadword
Integers

128-Bit Packed Double-
Precision Floating-Point

64 63

Vol. 1 11-5

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

point values, and the destination operand contains the results of the operation (OP) performed in parallel on the
corresponding values (X0 and Y0, and X1 and Y1) in each operand.

The scalar double-precision floating-point instructions operate on the low (least significant) quadwords of two
source operands (X0 and Y0), as shown in Figure 11-4. The high quadword (X1) of the first source operand is
passed through to the destination. The scalar operations are similar to the floating-point operations performed in
x87 FPU data registers with the precision control field in the x87 FPU control word set for double precision (53-bit
significand), except that x87 stack operations use a 15-bit exponent range for the result while SSE2 operations use
an 11-bit exponent range.

See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for more information about
obtaining compatible results when performing both scalar double-precision floating-point operations in XMM regis-
ters and in x87 FPU data registers.

11.4.1.1 Data Movement Instructions
Data movement instructions move double-precision floating-point data between XMM registers and between XMM
registers and memory.

The MOVAPD (move aligned packed double-precision floating-point) instruction transfers a 128-bit packed double-
precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers. The
memory address must be aligned to a 16-byte boundary; if not, a general-protection exception (GP#) is gener-
ated.

Figure 11-3. Packed Double-Precision Floating-Point Operations

Figure 11-4. Scalar Double-Precision Floating-Point Operations

X1 X0

 X1 OP Y1 X0 OP Y0

OP

Y1 Y0

OP

X1 X0

 X1 X0 OP Y0

OP

Y1 Y0

11-6 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The MOVUPD (move unaligned packed double-precision floating-point) instruction transfers a 128-bit packed
double-precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers.
Alignment of the memory address is not required.

The MOVSD (move scalar double-precision floating-point) instruction transfers a 64-bit double-precision floating-
point operand from memory to the low quadword of an XMM register or vice versa, or between XMM registers.
Alignment of the memory address is not required, unless alignment checking is enabled.

The MOVHPD (move high packed double-precision floating-point) instruction transfers a 64-bit double-precision
floating-point operand from memory to the high quadword of an XMM register or vice versa. The low quadword of
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is
enabled.

The MOVLPD (move low packed double-precision floating-point) instruction transfers a 64-bit double-precision
floating-point operand from memory to the low quadword of an XMM register or vice versa. The high quadword of
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is
enabled.

The MOVMSKPD (move packed double-precision floating-point mask) instruction extracts the sign bit of each of the
two packed double-precision floating-point numbers in an XMM register and saves them in a general-purpose
register. This 2-bit value can then be used as a condition to perform branching.

11.4.1.2 SSE2 Arithmetic Instructions
SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum
operations on packed and scalar double-precision floating-point values.

The ADDPD (add packed double-precision floating-point values) and SUBPD (subtract packed double-precision
floating-point values) instructions add and subtract, respectively, two packed double-precision floating-point oper-
ands.

The ADDSD (add scalar double-precision floating-point values) and SUBSD (subtract scalar double-precision
floating-point values) instructions add and subtract, respectively, the low double-precision floating-point values of
two operands and stores the result in the low quadword of the destination operand.

The MULPD (multiply packed double-precision floating-point values) instruction multiplies two packed double-
precision floating-point operands.

The MULSD (multiply scalar double-precision floating-point values) instruction multiplies the low double-precision
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The DIVPD (divide packed double-precision floating-point values) instruction divides two packed double-precision
floating-point operands.

The DIVSD (divide scalar double-precision floating-point values) instruction divides the low double-precision
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The SQRTPD (compute square roots of packed double-precision floating-point values) instruction computes the
square roots of the values in a packed double-precision floating-point operand.

The SQRTSD (compute square root of scalar double-precision floating-point values) instruction computes the
square root of the low double-precision floating-point value in the source operand and stores the result in the low
quadword of the destination operand.

The MAXPD (return maximum of packed double-precision floating-point values) instruction compares the corre-
sponding values in two packed double-precision floating-point operands and returns the numerically greater value
from each comparison to the destination operand.

The MAXSD (return maximum of scalar double-precision floating-point values) instruction compares the low
double-precision floating-point values from two packed double-precision floating-point operands and returns the
numerically higher value from the comparison to the low quadword of the destination operand.

The MINPD (return minimum of packed double-precision floating-point values) instruction compares the corre-
sponding values from two packed double-precision floating-point operands and returns the numerically lesser value
from each comparison to the destination operand.

Vol. 1 11-7

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The MINSD (return minimum of scalar double-precision floating-point values) instruction compares the low values
from two packed double-precision floating-point operands and returns the numerically lesser value from the
comparison to the low quadword of the destination operand.

11.4.1.3 SSE2 Logical Instructions
SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.

The ANDPD (bitwise logical AND of packed double-precision floating-point values) instruction returns the logical
AND of two packed double-precision floating-point operands.

The ANDNPD (bitwise logical AND NOT of packed double-precision floating-point values) instruction returns the
logical AND NOT of two packed double-precision floating-point operands.

The ORPD (bitwise logical OR of packed double-precision floating-point values) instruction returns the logical OR of
two packed double-precision floating-point operands.

The XORPD (bitwise logical XOR of packed double-precision floating-point values) instruction returns the logical
XOR of two packed double-precision floating-point operands.

11.4.1.4 SSE2 Comparison Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the
results of the comparison either to the destination operand or to the EFLAGS register.

The CMPPD (compare packed double-precision floating-point values) instruction compares the corresponding
values from two packed double-precision floating-point operands, using an immediate operand as a predicate, and
returns a 64-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the
immediate operand allows the selection of any of eight compare conditions: equal, less than, less than equal, unor-
dered, not equal, not less than, not less than or equal, or ordered.

The CMPSD (compare scalar double-precision floating-point values) instruction compares the low values from two
packed double-precision floating-point operands, using an immediate operand as a predicate, and returns a 64-bit
mask result of all 1s or all 0s for the comparison to the low quadword of the destination operand. The immediate
operand selects the compare condition as with the CMPPD instruction.

The COMISD (compare scalar double-precision floating-point values and set EFLAGS) and UCOMISD (unordered
compare scalar double-precision floating-point values and set EFLAGS) instructions compare the low values of two
packed double-precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISD instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN;
the UCOMISD instruction only signals an invalid-operation exception when a source operand is an SNaN.

11.4.1.5 SSE2 Shuffle and Unpack Instructions
SSE2 shuffle instructions shuffle the contents of two packed double-precision floating-point values and store the
results in the destination operand.

The SHUFPD (shuffle packed double-precision floating-point values) instruction places either of the two packed
double-precision floating-point values from the destination operand in the low quadword of the destination
operand, and places either of the two packed double-precision floating-point values from source operand in the
high quadword of the destination operand (see Figure 11-5). By using the same register for the source and desti-
nation operands, the SHUFPD instruction can swap two packed double-precision floating-point values.

11-8 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The UNPCKHPD (unpack and interleave high packed double-precision floating-point values) instruction performs an
interleaved unpack of the high values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double-precision floating-point values) instruction performs an
interleaved unpack of the low values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-7).

Figure 11-5. SHUFPD Instruction, Packed Shuffle Operation

Figure 11-6. UNPCKHPD Instruction, High Unpack and Interleave Operation

Figure 11-7. UNPCKLPD Instruction, Low Unpack and Interleave Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

DEST

SRC

DEST

X1 X0

Y1 Y0

Y1 X1

DEST

SRC

DEST

X1 X0

Y1 Y0

Y0 X0

DEST

SRC

DEST

Vol. 1 11-9

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.4.1.6 SSE2 Conversion Instructions
SSE2 conversion instructions (see Figure 11-8) support packed and scalar conversions between:
• Double-precision and single-precision floating-point formats
• Double-precision floating-point and doubleword integer formats
• Single-precision floating-point and doubleword integer formats

Conversion between double-precision and single-precision floating-points values — The following
instructions convert operands between double-precision and single-precision floating-point formats. The operands
being operated on are contained in XMM registers or memory (at most, one operand can reside in memory; the
destination is always an MMX register).

The CVTPS2PD (convert packed single-precision floating-point values to packed double-precision floating-point
values) instruction converts two packed single-
precision floating-point values to two double-precision floating-point values.

The CVTPD2PS (convert packed double-precision floating-point values to packed single-precision floating-point
values) instruction converts two packed double-
precision floating-point values to two single-precision floating-point values. When a conversion is inexact, the
result is rounded according to the rounding mode selected in the MXCSR register.

The CVTSS2SD (convert scalar single-precision floating-point value to scalar double-precision floating-point value)
instruction converts a single-precision floating-point value to a double-precision floating-point value.

The CVTSD2SS (convert scalar double-precision floating-point value to scalar single-precision floating-point value)
instruction converts a double-precision floating-point value to a single-precision floating-point value. When the
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register.

Conversion between double-precision floating-point values and doubleword integers — The following
instructions convert operands between double-precision floating-point and doubleword integer formats. Operands

Figure 11-8. SSE and SSE2 Conversion Instructions

CVTPS2P
I

CVTTPS2DQ

CVTDQ2PS

CVTPI2P
S

C
VT

PD
2P

S C
VTPS2PD

CVTPD2D
QCVTDQ2P

D

CVTTPD2PI

CVTPI2PD

CVTSS2S
I

CVTSI2S
S

CVTSI2SD
CVTTSD2SI

C
VT

SD
2S

S C
VTSS2SD

CVTPS2DQ

4 Doubleword
Integer

Floating-Point

Doubleword
Integer

2 Doubleword
Integer

Single-Precision
Floating Point

CVTSD2SI

CVTPD2PI CVTTPD2D
Q

CVTTPS2P
ICVTTSS2S

I

2 Doubleword
Integer (r32/mem) (MMX/mem)

(XMM/mem)

Double-Precision

 (XMM/mem)

(XMM/mem)

(XMM/mem)

11-10 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

are housed in XMM registers, MMX registers, general registers or memory (at most one operand can reside in
memory; the destination is always an XMM, MMX, or general register).

The CVTPD2PI (convert packed double-precision floating-point values to packed doubleword integers) instruction
converts two packed double-precision floating-point numbers to two packed signed doubleword integers, with the
result stored in an MMX register. When rounding to an integer value, the source value is rounded according to the
rounding mode in the MXCSR register. The CVTTPD2PI (convert with truncation packed double-precision floating-
point values to packed doubleword integers) instruction is similar to the CVTPD2PI instruction except that trunca-
tion is used to round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2
Conversion Instructions”).

The CVTPI2PD (convert packed doubleword integers to packed double-precision floating-point values) instruction
converts two packed signed doubleword integers to two double-precision floating-point values.

The CVTPD2DQ (convert packed double-precision floating-point values to packed doubleword integers) instruction
converts two packed double-precision floating-point numbers to two packed signed doubleword integers, with the
result stored in the low quadword of an XMM register. When rounding an integer value, the source value is rounded
according to the rounding mode selected in the MXCSR register. The CVTTPD2DQ (convert with truncation packed
double-precision floating-point values to packed doubleword integers) instruction is similar to the CVTPD2DQ
instruction except that truncation is used to round a source value to an integer value (see Section 4.8.4.2, “Trun-
cation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PD (convert packed doubleword integers to packed double-precision floating-point values) instruction
converts two packed signed doubleword integers located in the low-order doublewords of an XMM register to two
double-precision floating-point values.

The CVTSD2SI (convert scalar double-precision floating-point value to doubleword integer) instruction converts a
double-precision floating-point value to a doubleword integer, and stores the result in a general-purpose register.
When rounding an integer value, the source value is rounded according to the rounding mode selected in the
MXCSR register. The CVTTSD2SI (convert with truncation scalar double-precision floating-point value to double-
word integer) instruction is similar to the CVTSD2SI instruction except that truncation is used to round the source
value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSI2SD (convert doubleword integer to scalar double-precision floating-point value) instruction converts a
signed doubleword integer in a general-purpose register to a double-precision floating-point number, and stores
the result in an XMM register.

Conversion between single-precision floating-point and doubleword integer formats — These instruc-
tions convert between packed single-precision floating-point and packed doubleword integer formats. Operands
are housed in XMM registers, MMX registers, general registers, or memory (the latter for at most one source
operand). The destination is always an XMM, MMX, or general register. These SSE2 instructions supplement
conversion instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSI2SS, CVTSS2SI, and CVTTSS2SI) introduced
with SSE extensions.

The CVTPS2DQ (convert packed single-precision floating-point values to packed doubleword integers) instruction
converts four packed single-precision floating-point values to four packed signed doubleword integers, with the
source and destination operands in XMM registers or memory (the latter for at most one source operand). When
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is
returned. The CVTTPS2DQ (convert with truncation packed single-precision floating-point values to packed double-
word integers) instruction is similar to the CVTPS2DQ instruction except that truncation is used to round a source
value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PS (convert packed doubleword integers to packed single-precision floating-point values) instruction
converts four packed signed doubleword integers to four packed single-precision floating-point numbers, with the
source and destination operands in XMM registers or memory (the latter for at most one source operand). When
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is
returned.

11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions
SSE2 extensions add several 128-bit packed integer instructions to the IA-32 architecture. Where appropriate, a
64-bit version of each of these instructions is also provided. The 128-bit versions of instructions operate on data in
XMM registers; 64-bit versions operate on data in MMX registers. The instructions follow.

Vol. 1 11-11

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The MOVDQA (move aligned double quadword) instruction transfers a double quadword operand from memory to
an XMM register or vice versa; or between XMM registers. The memory address must be aligned to a 16-byte
boundary; otherwise, a general-protection exception (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same operations as the MOVDQA
instruction, except that 16-byte alignment of a memory address is not required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer operands or two single quad-
word integer operands, and stores the results in an XMM or MMX register, respectively. This instruction can operate
on either unsigned or signed (two’s complement notation) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword integer operands or two single
quadword integer operands, and stores the results in an XMM or MMX register, respectively. Like the PADDQ
instruction, PSUBQ can operate on either unsigned or signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs an unsigned multiply of
unsigned doubleword integers and returns a quadword result. Both 64-bit and 128-bit versions of this instruction
are available. The 64-bit version operates on two doubleword integers stored in the low doubleword of each source
operand, and the quadword result is returned to an MMX register. The 128-bit version performs a packed multiply
of two pairs of doubleword integers. Here, the doublewords are packed in the first and third doublewords of the
source operands, and the quadword results are stored in the low and high quadwords of an XMM register.

The PSHUFLW (shuffle packed low words) instruction shuffles the word integers packed into the low quadword of
the source operand and stores the shuffled result in the low quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers packed into the high quadword of
the source operand and stores the shuffled result in the high quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFD (shuffle packed doubleword integers) instruction shuffles the doubleword integers packed into the
source operand and stores the shuffled result in the destination operand. An 8-bit immediate operand specifies the
shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the source operand to the left by
the amount of bytes specified by an immediate operand. The empty low-order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of the source operand to the right
by the amount of bytes specified by an immediate operand. The empty high-order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quadword of the source operand and
the high quadword of the destination operand and writes them to the destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quadwords of the source operand and
the low quadwords of the destination operand and writes them to the destination register.

Two additional SSE instructions enable data movement from the MMX registers to the XMM registers.

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction moves the quadword integer from
an MMX source register to an XMM destination register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction moves the low quadword integer
from an XMM source register to an MMX destination register.

11.4.3 128-Bit SIMD Integer Instruction Extensions
All of 64-bit SIMD integer instructions introduced with MMX technology and SSE extensions (with the exception of
the PSHUFW instruction) have been extended by SSE2 extensions to operate on 128-bit packed integer operands
located in XMM registers. The 128-bit versions of these instructions follow the same SIMD conventions regarding
packed operands as the 64-bit versions. For example, where the 64-bit version of the PADDB instruction operates
on 8 packed bytes, the 128-bit version operates on 16 packed bytes.

11-12 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.4.4 Cacheability Control and Memory Ordering Instructions
SSE2 extensions that give programs more control over the caching, loading, and storing of data. are described
below.

11.4.4.1 FLUSH Cache Line
The CLFLUSH (flush cache line) instruction writes and invalidates the cache line associated with a specified linear
address. The invalidation is for all levels of the processor’s cache hierarchy, and it is broadcast throughout the
cache coherency domain.

NOTE
CLFLUSH was introduced with the SSE2 extensions. However, the instruction can be implemented
in IA-32 processors that do not implement the SSE2 extensions. Detect CLFLUSH using the feature
bit (if CPUID.01H:EDX.CLFSH[bit 19] = 1).

11.4.4.2 Cacheability Control Instructions
The following four instructions enable data from XMM and general-purpose registers to be stored to memory using
a non-temporal hint. The non-temporal hint directs the processor to store data to memory without writing the data
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for more information
about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores packed integer data from an
XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-temporal hint) instruction stores
packed double-precision floating-point data from an XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer data from a general-purpose
register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores selected byte integers from an
XMM register to memory, using a byte mask to selectively write the individual bytes. The memory location does not
need to be aligned on a natural boundary. This instruction also uses a non-temporal hint.

11.4.4.3 Memory Ordering Instructions
SSE2 extensions introduce two new fence instructions (LFENCE and MFENCE) as companions to the SFENCE
instruction introduced with SSE extensions.

The LFENCE instruction establishes a memory fence for loads. It guarantees ordering between two loads and
prevents speculative loads from passing the load fence (that is, no speculative loads are allowed until all loads
specified before the load fence have been carried out).

The MFENCE instruction establishes a memory fence for both loads and stores. The processor ensures that no load
or store after MFENCE will execute until all loads and stores before MFENCE are globally visible.1 Note that the
sequences LFENCE;SFENCE and SFENCE;LFENCE are not equivalent to MFENCE because neither ensures that older
stores are globally observed prior to younger loads.

11.4.4.4 Pause
The PAUSE instruction is provided to improve the performance of “spin-wait loops” executed on a Pentium 4 or Intel
Xeon processor. On a Pentium 4 processor, it also provides the added benefit of reducing processor power
consumption while executing a spin-wait loop. It is recommended that a PAUSE instruction always be included in
the code sequence for a spin-wait loop.

1. A load is considered to become globally visible when the value to be loaded is determined

Vol. 1 11-13

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.4.5 Branch Hints
SSE2 extensions designate two instruction prefixes (2EH and 3EH) to provide branch hints to the processor (see
“Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A). These prefixes can only be used with the Jcc instruction and only at the machine code level (that is, there are
no mnemonics for the branch hints).

11.5 SSE, SSE2, AND SSE3 EXCEPTIONS
SSE/SSE2/SSE3 extensions generate two general types of exceptions:
• Non-numeric exceptions
• SIMD floating-point exceptions1

SSE/SSE2/SSE3 instructions can generate the same type of memory-access and non-numeric exceptions as other
IA-32 architecture instructions. Existing exception handlers can generally handle these exceptions without any
code modification. See “Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE, SSE2
and SSE3 Instructions” in Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, for a list of the non-numeric exceptions that can be generated by SSE/SSE2/SSE3 instructions and for
guidelines for handling these exceptions.

SSE/SSE2/SSE3 instructions do not generate numeric exceptions on packed integer operations; however, they can
generate numeric (SIMD floating-point) exceptions on packed single-precision and double-precision floating-point
operations. These SIMD floating-point exceptions are defined in the IEEE Standard 754 for Binary Floating-Point
Arithmetic and are the same exceptions that are generated for x87 FPU instructions. See Section 11.5.1, “SIMD
Floating-Point Exceptions,” for a description of these exceptions.

11.5.1 SIMD Floating-Point Exceptions
SIMD floating-point exceptions are those exceptions that can be generated by SSE/SSE2/SSE3 instructions that
operate on packed or scalar floating-point operands.

Six classes of SIMD floating-point exceptions can be generated:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

All of these exceptions (except the denormal operand exception) are defined in IEEE Standard 754, and they are
the same exceptions that are generated with the x87 floating-point instructions. Section 4.9, “Overview of
Floating-Point Exceptions,” gives a detailed description of these exceptions and of how and when they are gener-
ated. The following sections discuss the implementation of these exceptions in SSE/SSE2/SSE3 extensions.

All SIMD floating-point exceptions are precise and occur as soon as the instruction completes execution.

Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE, and PE) and mask bit (IM, DM,
ZM, OM, UM, and PM) in the MXCSR register (see Figure 10-3). The mask bits can be set with the LDMXCSR or
FXRSTOR instruction; the mask and flag bits can be read with the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control over generation of SIMD
floating-point exceptions by allowing the operating system to indicate whether or not it supports software excep-
tion handlers for SIMD floating-point exceptions. If an unmasked SIMD floating-point exception is generated and
the OSXMMEXCEPT flag is set, the processor invokes a software exception handler by generating a SIMD floating-

1. The FISTTP instruction in SSE3 does not generate SIMD floating-point exceptions, but it can generate x87 FPU floating-point excep-
tions.

11-14 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

point exception (#XM). If the OSXMMEXCEPT bit is clear, the processor generates an invalid-opcode exception
(#UD) on the first SSE or SSE2 instruction that detects a SIMD floating-point exception condition. See Section
11.6.2, “Checking for SSE/SSE2 Support.”

11.5.2 SIMD Floating-Point Exception Conditions
The following sections describe the conditions that cause a SIMD floating-point exception to be generated and the
masked response of the processor when these conditions are detected.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when
more than one floating-point exception condition is detected for an instruction.

11.5.2.1 Invalid Operation Exception (#I)
The floating-point invalid-operation exception (#I) occurs in response to an invalid arithmetic operand. The flag
(IE) and mask (IM) bits for the invalid operation exception are bits 0 and 7, respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN floating-point indefinite, integer
indefinite, one of the source operands to the destination operand, or it sets the EFLAGS, depending on the operation
being performed. When a value is returned to the destination operand, it overwrites the destination register specified
by the instruction. Table 11-1 lists the invalid-arithmetic operations that the processor detects for instructions and
the masked responses to these operations.

If the invalid operation exception is not masked, a software exception handler is invoked and the operands remain
unchanged. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software.”

Table 11-1. Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD,
MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD,
ADDSUBPD, ADDSUBPD, HADDPD, HADDPS, HSUBPD or HSUBPS
instruction with an SNaN operand

Return the SNaN converted to a QNaN; Refer to Table 4-7 for
more details

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with SNaN operands Return the SNaN converted to a QNaN

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with negative operands
(except zero)

Return the QNaN floating-point Indefinite

MAXPS, MAXSS, MAXPD, MAXSD, MINPS, MINSS, MINPD, or
MINSD instruction with QNaN or SNaN operands

Return the source 2 operand value

CMPPS, CMPSS, CMPPD or CMPSD instruction with QNaN or SNaN
operands

Return a mask of all 0s (except for the predicates “not-equal,”
“unordered,” “not-less-than,” or “not-less-than-or-equal,” which
returns a mask of all 1s)

CVTPD2PS, CVTSD2SS, CVTPS2PD, CVTSS2SD with SNaN
operands

Return the SNaN converted to a QNaN

COMISS or COMISD with QNaN or SNaN operand(s) Set EFLAGS values to “not comparable”

Addition of opposite signed infinities or subtraction of like-signed
infinities

Return the QNaN floating-point Indefinite

Multiplication of infinity by zero Return the QNaN floating-point Indefinite

Divide of (0/0) or (∞ / ∞) Return the QNaN floating-point Indefinite

Conversion to integer when the value in the source register is a
NaN, ∞, or exceeds the representable range for CVTPS2PI,
CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTPD2PI, CVTSD2SI,
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI, CVTTPD2DQ, CVTPS2DQ,
or CVTTPS2DQ

Return the integer Indefinite

Vol. 1 11-15

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

Normally, when one or more of the source operands are QNaNs (and neither is an SNaN or in an unsupported
format), an invalid-operation exception is not generated. The following instructions are exceptions to this rule: the
COMISS and COMISD instructions; and the CMPPS, CMPSS, CMPPD, and CMPSD instructions (when the predicate
is less than, less-than or equal, not less-than, or not less-than or equal). With these instructions, a QNaN source
operand will generate an invalid-operation exception.

The invalid-operation exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.

11.5.2.2 Denormal-Operand Exception (#D)
The processor signals the denormal-operand exception if an arithmetic instruction attempts to operate on a
denormal operand. The flag (DE) and mask (DM) bits for the denormal-operand exception are bits 1 and 8, respec-
tively, in the MXCSR register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ, CVTSI2SD, CVTSD2SI, CVTTSD2SI,
CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ
conversion instructions do not signal denormal exceptions. The RCPSS, RCPPS, RSQRTSS, and RSQRTPS instruc-
tions do not signal any kind of floating-point exception.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional option for handling denormal-
operand exceptions. When this flag is set, denormal source operands are automatically converted to zeros with the
sign of the source operand (see Section 10.2.3.4, “Denormals-Are-Zeros”). The denormal operand exception is not
affected by the flush-to-zero mode.

See Section 4.9.1.2, “Denormal Operand Exception (#D),” for more information about the denormal exception.
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked
exceptions.

11.5.2.3 Divide-By-Zero Exception (#Z)
The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or DIVSD instruction attempts to
divide a finite non-zero operand by 0. The flag (ZE) and mask (ZM) bits for the divide-by-zero exception are bits 2
and 9, respectively, in the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about the divide-by-zero exception.
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked
exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode at a single-instruction boundary.

While DAZ does not affect the rules for signaling IEEE exceptions, operations on denormal inputs might have
different results when DAZ=1. As a consequence, DAZ can have an effect on the floating-point exceptions -
including the divide-by-zero exception - when observed for a given operation involving denormal inputs.

11.5.2.4 Numeric Overflow Exception (#O)
The processor reports a numeric overflow exception whenever the rounded result of an arithmetic instruction
exceeds the largest allowable finite value that fits in the destination operand. This exception can be generated with
the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS,
DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS
instructions. The flag (OE) and mask (OM) bits for the numeric overflow exception are bits 3 and 10, respectively,
in the MXCSR register.

See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for more information about the numeric-overflow excep-
tion. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling
unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.

11-16 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.5.2.5 Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the magnitude of the rounded result of an arith-
metic instruction, with unbounded exponent, is less than the smallest possible normalized, finite value that will fit
in the destination operand and the numeric-underflow exception is not masked. If the numeric underflow exception
is masked, both underflow and the inexact-result condition must be detected before numeric underflow is reported.
This exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD,
MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS,
HADDPD, HADDPS, HSUBPD, and HSUBPS instructions. The flag (UE) and mask (UM) bits for the numeric under-
flow exception are bits 4 and 11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for handling numeric underflow
exceptions. When this flag is set and the numeric underflow exception is masked, tiny results are returned as a zero
with the sign of the true result (see Section 10.2.3.3, “Flush-To-Zero”).

Underflow will occur when a tiny non-zero result is detected (the result has to be also inexact if underflow excep-
tions are masked), as described in the IEEE Standard 754-2008. While DAZ does not affect the rules for signaling
IEEE exceptions, operations on denormal inputs might have different results when DAZ=1. As a consequence, DAZ
can have an effect on the floating-point exceptions - including the underflow exception - when observed for a given
operation involving denormal inputs.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information about the numeric underflow
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling
unmasked exceptions.

11.5.2.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (normally acceptable) accuracy has been lost. The
exception is supported for applications that need to perform exact arithmetic only. Because the rounded result is
generally satisfactory for most applications, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12, respectively, in the MXCSR
register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more information about the inexact-result
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling
unmasked exceptions.

In flush-to-zero mode, the inexact result exception is reported.

11.5.3 Generating SIMD Floating-Point Exceptions
When the processor executes a packed or scalar floating-point instruction, it looks for and reports on SIMD
floating-point exception conditions using two sequential steps:

1. Looks for, reports on, and handles pre-computation exception conditions (invalid-operand, divide-by-zero, and
denormal operand)

2. Looks for, reports on, and handles post-computation exception conditions (numeric overflow, numeric
underflow, and inexact result)

If both pre- and post-computational exceptions are unmasked, it is possible for the processor to generate a SIMD
floating-point exception (#XM) twice during the execution of an SSE, SSE2 or SSE3 instruction: once when it
detects and handles a pre-computational exception and when it detects a post-computational exception.

11.5.3.1 Handling Masked Exceptions
If all exceptions are masked, the processor handles the exceptions it detects by placing the masked result (or
results for packed operands) in a destination operand and continuing program execution. The masked result may
be a rounded normalized value, signed infinity, a denormal finite number, zero, a QNaN floating-point indefinite, or

Vol. 1 11-17

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

a QNaN depending on the exception condition detected. In most cases, the corresponding exception flag bit in
MXCSR is also set. The one situation where an exception flag is not set is when an underflow condition is detected
and it is not accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked result for each of the sub-
operand computations and sets a separate set of internal exception flags for each computation. It then performs a
logical-OR on the internal exception flag settings and sets the exception flags in the MXCSR register according to
the results of OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction. In the example, all SIMD floating-point excep-
tions are masked. Assume that a denormal exception condition is detected prior to the multiplication of sub-oper-
ands X0 and Y0, no exception condition is detected for the multiplication of X1 and Y1, a numeric overflow
exception condition is detected for the multiplication of X2 and Y2, and another denormal exception is detected
prior to the multiplication of sub-operands X3 and Y3. Because denormal exceptions are masked, the processor
uses the denormal source values in the multiplications of (X0 and Y0) and of (X3 and Y3) passing the results of the
multiplications through to the destination operand. With the denormal operand, the result of the X0 and Y0 compu-
tation is a normalized finite value, with no exceptions detected. However, the X3 and Y3 computation produces a
tiny and inexact result. This causes the corresponding internal numeric underflow and inexact-result exception
flags to be set.

For the multiplication of X2 and Y2, the processor stores the floating-point ∞ in the destination operand, and sets
the corresponding internal sub-operand numeric overflow flag. The result of the X1 and Y1 multiplication is passed
through to the destination operand, with no internal sub-operand exception flags being set. Following the compu-
tations, the individual sub-operand exceptions flags for denormal operand, numeric underflow, inexact result, and
numeric overflow are OR’d and the corresponding flags are set in the MXCSR register.

The net result of this computation is that:
• Multiplication of X0 and Y0 produces a normalized finite result
• Multiplication of X1 and Y1 produces a normalized finite result
• Multiplication of X2 and Y2 produces a floating-point ∞ result
• Multiplication of X3 and Y3 produces a tiny, inexact, finite result
• Denormal operand, numeric underflow, numeric underflow, and inexact result flags are set in the MXCSR

register

11.5.3.2 Handling Unmasked Exceptions
If all exceptions are unmasked, the processor:

1. First detects any pre-computation exceptions: it ORs those exceptions, sets the appropriate exception flags,
leaves the source and destination operands unaltered, and goes to step 2. If it does not detect any pre-
computation exceptions, it goes to step 5.

Figure 11-9. Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite

11-18 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

2. Checks CR4.OSXMMEXCPT[bit 10]. If this flag is set, the processor goes to step 3; if the flag is clear, it
generates an invalid-opcode exception (#UD) and makes an implicit call to the invalid-opcode exception
handler.

3. Generates a SIMD floating-point exception (#XM) and makes an implicit call to the SIMD floating-point
exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-computation exceptions or
mask the condition in such a way as to allow the processor to continue executing the instruction, the processor
resumes instruction execution as described in step 5.

5. Upon returning from the exception handler (or if no pre-computation exceptions were detected), the processor
checks for post-computation exceptions. If the processor detects any post-computation exceptions: it ORs
those exceptions, sets the appropriate exception flags, leaves the source and destination operands unaltered,
and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation exceptions were detected), the
processor completes the execution of the instruction.

The implication of this procedure is that for unmasked exceptions, the processor can generate a SIMD floating-
point exception (#XM) twice: once if it detects pre-computation exception conditions and a second time if it detects
post-computation exception conditions. For example, if SIMD floating-point exceptions are unmasked for the
computation shown in Figure 11-9, the processor would generate one SIMD floating-point exception for denormal
operand conditions and a second SIMD floating-point exception for overflow and underflow (no inexact result
exception would be generated because the multiplications of X0 and Y0 and of X1 and Y1 are exact).

11.5.3.3 Handling Combinations of Masked and Unmasked Exceptions
In situations where both masked and unmasked exceptions are detected, the processor will set exception flags for
the masked and the unmasked exceptions. However, it will not return masked results until after the processor has
detected and handled unmasked post-computation exceptions and returned from the exception handler (as in step
6 above) to finish executing the instruction.

11.5.4 Handling SIMD Floating-Point Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions that may be carried out by a
SIMD floating-point exception handler. The SSE/SSE2/SSE3 state is saved with the FXSAVE instruction (see Section
11.6.5, “Saving and Restoring the SSE/SSE2 State”).

11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions
SIMD floating-point exceptions are generated independently from x87 FPU floating-point exceptions. SIMD
floating-point exceptions do not cause assertion of the FERR# pin (independent of the value of CR0.NE[bit 5]).
They ignore the assertion and deassertion of the IGNNE# pin.

If applications use SSE/SSE2/SSE3 instructions along with x87 FPU instructions (in the same task or program),
consider the following:
• SIMD floating-point exceptions are reported independently from the x87 FPU floating-point exceptions. SIMD

and x87 FPU floating-point exceptions can be unmasked independently. Separate x87 FPU and SIMD floating-
point exception handlers must be provided if the same exception is unmasked for x87 FPU and for
SSE/SSE2/SSE3 operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU instructions. Likewise, the rounding
mode specified in the x87 FPU control word does not affect the SSE/SSE2/SSE3 instructions. To use the same
rounding mode, the rounding control bits in the MXCSR register and in the x87 FPU control word must be set
explicitly to the same value.

• The flush-to-zero mode set in the MXCSR register for SSE/SSE2/SSE3 instructions has no counterpart in the
x87 FPU. For compatibility with the x87 FPU, set the flush-to-zero bit to 0.

Vol. 1 11-19

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

• The denormals-are-zeros mode set in the MXCSR register for SSE/SSE2/SSE3 instructions has no counterpart
in the x87 FPU. For compatibility with the x87 FPU, set the denormals-are-zeros bit to 0.

• An application that expects to detect x87 FPU exceptions that occur during the execution of x87 FPU instruc-
tions will not be notified if exceptions occurs during the execution of corresponding SSE/SSE2/SSE31 instruc-
tions, unless the exception masks that are enabled in the x87 FPU control word have also been enabled in the
MXCSR register and the application is capable of handling SIMD floating-point exceptions (#XM).

— Masked exceptions that occur during an SSE/SSE2/SSE3 library call cannot be detected by unmasking the
exceptions after the call (in an attempt to generate the fault based on the fact that an exception flag is set).
A SIMD floating-point exception flag that is set when the corresponding exception is unmasked will not
generate a fault; only the next occurrence of that unmasked exception will generate a fault.

— An application which checks the x87 FPU status word to determine if any masked exception flags were set
during an x87 FPU library call will also need to check the MXCSR register to detect a similar occurrence of a
masked exception flag being set during an SSE/SSE2/SSE3 library call.

11.6 WRITING APPLICATIONS WITH SSE/SSE2 EXTENSIONS
The following sections give some guidelines for writing application programs and operating-system code that uses
the SSE and SSE2 extensions. Because SSE and SSE2 extensions share the same state and perform companion
operations, these guidelines apply to both sets of extensions.

Chapter 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, discusses the inter-
face to the processor for context switching as well as other operating system considerations when writing code that
uses SSE/SSE2/SSE3 extensions.

11.6.1 General Guidelines for Using SSE/SSE2 Extensions
The following guidelines describe how to take full advantage of the performance gains available with the SSE and
SSE2 extensions:
• Ensure that the processor supports the SSE and SSE2 extensions.
• Ensure that your operating system supports the SSE and SSE2 extensions. (Operating system support for the

SSE extensions implies support for SSE2 extension and vice versa.)
• Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
• Use the non-temporal store instructions offered with the SSE and SSE2 extensions.
• Employ the optimization and scheduling techniques described in the Intel Pentium 4 Optimization Reference

Manual (see Section 1.4, “Related Literature,” for the order number for this manual).

11.6.2 Checking for SSE/SSE2 Support
Before an application attempts to use the SSE and/or SSE2 extensions, it should check that they are present on the
processor:

1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS register can be used to check
processor’s support the CPUID instruction.

2. Check that the processor supports the SSE and/or SSE2 extensions (true if CPUID.01H:EDX.SSE[bit 25] = 1
and/or CPUID.01H:EDX.SSE2[bit 26] = 1).

Operating system must provide system level support for handling SSE state, exceptions before an application can
use the SSE and/or SSE2 extensions (see Chapter 13 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).

1. SSE3 refers to ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS; the only other SSE3 instruction that can raise
floating-point exceptions is FISTTP: it can generate x87 FPU invalid operation and inexact result exceptions.

11-20 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

If the processor attempts to execute an unsupported SSE or SSE2 instruction, the processor will generate an
invalid-opcode exception (#UD). If an operating system did not provide adequate system level support for SSE,
executing an SSE or SSE2 instructions can also generate #UD.

11.6.3 Checking for the DAZ Flag in the MXCSR Register
The denormals-are-zero flag in the MXCSR register is available in most of the Pentium 4 processors and in the Intel
Xeon processor, with the exception of some early steppings. To check for the presence of the DAZ flag in the MXCSR
register, do the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, for a description of the FXSAVE instruction and the
layout of the FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and denormals-are-zero mode are not
supported.

— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ flag and denormals-are-zero
mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1 to it will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for general guide-
lines for preventing general-protection exceptions when writing to the MXCSR register.

11.6.4 Initialization of SSE/SSE2 Extensions
The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hardware reset of the processor, this
state is initialized as follows (see Table 11-2):
• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR register is set to 1).
• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR register is set to 0).
• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR register are set to 00B).
• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).
• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to 0). If the denormals-are-zeros

mode is not supported, this bit is reserved and will be set to 0 on initialization.
• Each of the XMM registers is cleared (set to all zeros).

If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not changed.

11.6.5 Saving and Restoring the SSE/SSE2 State
The FXSAVE instruction saves the x87 FPU, MMX, SSE and SSE2 states (which includes the contents of eight XMM
registers and the MXCSR registers) in a 512-byte block of memory. The FXRSTOR instruction restores the saved
SSE and SSE2 state from memory. See the FXSAVE instruction in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A, for the layout of the 512-byte state block.

Table 11-2. SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or Reset INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged

Vol. 1 11-21

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

In addition to saving and restoring the SSE and SSE2 state, FXSAVE and FXRSTOR also save and restore the x87
FPU state (because MMX registers are aliased to the x87 FPU data registers this includes saving and restoring the
MMX state). For greater code efficiency, it is suggested that FXSAVE and FXRSTOR be substituted for the FSAVE,
FNSAVE and FRSTOR instructions in the following situations:
• When a context switch is being made in a multitasking environment
• During calls and returns from interrupt and exception handlers

In situations where the code is switching between x87 FPU and MMX technology computations (without a context
switch or a call to an interrupt or exception), the FSAVE/FNSAVE and FRSTOR instructions are more efficient than
the FXSAVE and FXRSTOR instructions.

11.6.6 Guidelines for Writing to the MXCSR Register
The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits will cause a general-protec-
tion exception (#GP) to be generated. To allow software to identify these reserved bits, the MXCSR_MASK value is
provided. Software can determine this mask value as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, for a description of FXSAVE and the layout of the
FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK value is the default value of
0000FFBFH. Note that this value indicates that bit 6 of the MXCSR register is reserved; this setting indicates
that the denormals-are-zero mode is not supported on the processor.

— If the value of the MXCSR_MASK field is non-zero, the MXCSR_MASK value should be used as the
MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR register. Thus, if the MXCSR_MASK
value is AND’d with a value to be written into the MXCSR register, the resulting value will be assured of having all
its reserved bits set to 0, preventing the possibility of a general-protection exception being generated when the
value is written to the MXCSR register.

For example, the default MXCSR_MASK value when 00000000H is returned in the FXSAVE image is 0000FFBFH. If
software AND’s a value to be written to MXCSR register with 0000FFBFH, bit 6 of the result (the DAZ flag) will be
ensured of being set to 0, which is the required setting to prevent general-protection exceptions on processors that
do not support the denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d with the value to be written
into the MXCSR register in the following situations:
• Operating system routines that receive a parameter from an application program and then write that value to

the MXCSR register (either with an FXRSTOR or LDMXCSR instruction)
• Any application program that writes to the MXCSR register and that needs to run robustly on several different

IA-32 processors

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that are supported by the MXCSR
register; they can be treated as feature flags for identifying processor capabilities.

11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions
The XMM registers and the x87 FPU and MMX registers represent separate execution environments, which has
certain ramifications when executing SSE, SSE2, MMX, and x87 FPU instructions in the same code module or when
mixing code modules that contain these instructions:

11-22 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

• Those SSE and SSE2 instructions that operate only on XMM registers (such as the packed and scalar floating-
point instructions and the 128-bit SIMD integer instructions) in the same instruction stream with 64-bit SIMD
integer or x87 FPU instructions without any restrictions. For example, an application can perform the majority
of its floating-point computations in the XMM registers, using the packed and scalar floating-point instructions,
and at the same time use the x87 FPU to perform trigonometric and other transcendental computations.
Likewise, an application can perform packed 64-bit and 128-bit SIMD integer operations together without
restrictions.

• Those SSE and SSE2 instructions that operate on MMX registers (such as the CVTPS2PI, CVTTPS2PI, CVTPI2PS,
CVTPD2PI, CVTTPD2PI, CVTPI2PD, MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be
executed in the same instruction stream as 64-bit SIMD integer or x87 FPU instructions, however, here they are
subject to the restrictions on the simultaneous use of MMX technology and x87 FPU instructions, which include:

— Transition from x87 FPU to MMX technology instructions or to SSE or SSE2 instructions that operate on MMX
registers should be preceded by saving the state of the x87 FPU.

— Transition from MMX technology instructions or from SSE or SSE2 instructions that operate on MMX
registers to x87 FPU instructions should be preceded by execution of the EMMS instruction.

11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types
SSE and SSE2 extensions operate on the same single-precision and double-precision floating-point data types that
the x87 FPU operates on. However, when operating on these data types, the SSE and SSE2 extensions operate on
them in their native format (single-precision or double-precision), in contrast to the x87 FPU which extends them
to double extended-precision floating-point format to perform computations and then rounds the result back to a
single-precision or double-precision format before writing results to memory. Because the x87 FPU operates on a
higher precision format and then rounds the result to a lower precision format, it may return a slightly different
result when performing the same operation on the same single-precision or double-precision floating-point values
than is returned by the SSE and SSE2 extensions. The difference occurs only in the least-significant bits of the
significand.

11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and
Data

SSE and SSE2 extensions define typed operations on packed and scalar floating-point data types and on 128-bit
SIMD integer data types, but IA-32 processors do not enforce this typing at the architectural level. They only
enforce it at the microarchitectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or
scalar floating-point operand or a 128-bit packed integer operand from memory into an XMM register, it does not
check that the actual data being loaded matches the data type specified in the instruction. Likewise, when the
processor performs an arithmetic operation on the data in an XMM register, it does not check that the data being
operated on matches the data type specified in the instruction.

As a general rule, because data typing of SIMD floating-point and integer data types is not enforced at the archi-
tectural level, it is the responsibility of the programmer, assembler, or compiler to insure that code enforces data
typing. Failure to enforce correct data typing can lead to computations that return unexpected results.

For example, in the following code sample, two packed single-precision floating-point operands are moved from
memory into XMM registers (using MOVAPS instructions); then a double-precision packed add operation (using the
ADDPD instruction) is performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed

; single-precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1

Pentium 4 and Intel Xeon processors execute these instructions without generating an invalid-operand exception
(#UD) and will produce the expected results in register XMM0 (that is, the high and low 64-bits of each register will
be treated as a double-precision floating-point value and the processor will operate on them accordingly). Because
the data types operated on and the data type expected by the ADDPD instruction were inconsistent, the instruction

Vol. 1 11-23

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

may result in a SIMD floating-point exception (such as numeric overflow [#O] or invalid operation [#I]) being
generated, but the actual source of the problem (inconsistent data types) is not detected.

The ability to operate on an operand that contains a data type that is inconsistent with the typing of the instruction
being executed, permits some valid operations to be performed. For example, the following instructions load a
packed double-precision floating-point operand from memory to register XMM0, and a mask to register XMM1;
then they use XORPD to toggle the sign bits of the two packed values in register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed

; double-precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double-precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using

; the mask in xmm1

In this example: XORPS or PXOR can be used in place of XORPD and yield the same correct result. However,
because of the type mismatch between the operand data type and the instruction data type, a latency penalty will
be incurred due to implementations of the instructions at the microarchitecture level.

Latency penalties can also be incurred by using move instructions of the wrong type. For example, MOVAPS and
MOVAPD can both be used to move a packed single-precision operand from memory to an XMM register. However,
if MOVAPD is used, a latency penalty will be incurred when a correctly typed instruction attempts to use the data in
the register.

Note that these latency penalties are not incurred when moving data from XMM registers to memory.

11.6.10 Interfacing with SSE/SSE2 Procedures and Functions
SSE and SSE2 extensions allow direct access to XMM registers. This means that all existing interface conventions
between procedures and functions that apply to the use of the general-purpose registers (EAX, EBX, etc.) also
apply to XMM register usage.

11.6.10.1 Passing Parameters in XMM Registers
The state of XMM registers is preserved across procedure (or function) boundaries. Parameters can be passed from
one procedure to another using XMM registers.

11.6.10.2 Saving XMM Register State on a Procedure or Function Call
The state of XMM registers can be saved in two ways: using an FXSAVE instruction or a move instruction. FXSAVE
saves the state of all XMM registers (along with the state of MXCSR and the x87 FPU registers). This instruction is
typically used for major changes in the context of the execution environment, such as a task switch. FXRSTOR
restores the XMM, MXCSR, and x87 FPU registers stored with FXSAVE.

In cases where only XMM registers must be saved, or where selected XMM registers need to be saved, move
instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD, MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used.
These instructions can also be used to restore the contents of XMM registers. To avoid performance degradation
when saving XMM registers to memory or when loading XMM registers from memory, be sure to use the appropri-
ately typed move instructions.

The move instructions can also be used to save the contents of XMM registers on the stack. Here, the stack pointer
(in the ESP register) can be used as the memory address to the next available byte in the stack. Note that the stack
pointer is not automatically incremented when using a move instruction (as it is with PUSH).

A move-instruction procedure that saves the contents of an XMM register to the stack is responsible for decre-
menting the value in the ESP register by 16. Likewise, a move-instruction procedure that loads an XMM register
from the stack needs also to increment the ESP register by 16. To avoid performance degradation when moving the
contents of XMM registers, use the appropriately typed move instructions.

11-24 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the contents of the MXCSR register
on a procedure call and return.

11.6.10.3 Caller-Save Recommendation for Procedure and Function Calls
When making procedure (or function) calls from SSE or SSE2 code, a caller-save convention is recommended for
saving the state of the calling procedure. Using this convention, any register whose content must survive intact
across a procedure call must be stored in memory by the calling procedure prior to executing the call.

The primary reason for using the caller-save convention is to prevent performance degradation. XMM registers can
contain packed or scalar double-precision floating-point, packed single-precision floating-point, and 128-bit packed
integer data types. The called procedure has no way of knowing the data types in XMM registers following a call; so
it is unlikely to use the correctly typed move instruction to store the contents of XMM registers in memory or to
restore the contents of XMM registers from memory.

As described in Section 11.6.9, “Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions
and Data,” executing a move instruction that does not match the type for the data being moved to/from XMM regis-
ters will be carried out correctly, but can lead to a greater instruction latency.

11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions
SSE2 extensions extend all 64-bit MMX SIMD integer instructions to operate on 128-bit SIMD integers using XMM
registers. The extended 128-bit SIMD integer instructions operate like the 64-bit SIMD integer instructions; this
simplifies the porting of MMX technology applications. However, there are considerations:
• To take advantage of wider 128-bit SIMD integer instructions, MMX technology code must be recompiled to

reference the XMM registers instead of MMX registers.
• Computation instructions that reference memory operands that are not aligned on 16-byte boundaries should

be replaced with an unaligned 128-bit load (MOVUDQ instruction) followed by a version of the same
computation operation that uses register instead of memory operands. Use of 128-bit packed integer
computation instructions with memory operands that are not 16-byte aligned results in a general protection
exception (#GP).

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across a full 128-bit operand
is emulated by a combination of the following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128 bits in either of two ways:

— Use of PSRLQ and PSLLQ, along with masking logic operations.

— Rewriting the code sequence to use PSRLDQ and PSLLDQ (shift double quadword operand by bytes)
• Loop counters need to be updated, since each 128-bit SIMD integer instruction operates on twice the amount

of data as its 64-bit SIMD integer counterpart.

11.6.12 Branching on Arithmetic Operations
There are no condition codes in SSE or SSE2 states. A packed-data comparison instruction generates a mask which
can then be transferred to an integer register. The following code sequence provides an example of how to perform
a conditional branch, based on the result of an SSE2 arithmetic operation.

cmppd XMM0, XMM1 ; generates a mask in XMM0
movmskpd EAX, XMM0 ; moves a 2 bit mask to eax
test EAX, 0 ; compare with desired result
jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar comparison. A conditional
branch can then be scheduled immediately following COMISD/UCOMISD.

Vol. 1 11-25

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.6.13 Cacheability Hint Instructions
SSE and SSE2 cacheability control instructions enable the programmer to control prefetching, caching, loading and
storing of data. When correctly used, these instructions improve application performance.

To make efficient use of the processor’s super-scalar microarchitecture, a program needs to provide a steady
stream of data to the executing program to avoid stalling the processor. PREFETCHh instructions minimize the
latency of data accesses in performance-critical sections of application code by allowing data to be fetched into the
processor cache hierarchy in advance of actual usage.

PREFETCHh instructions do not change the user-visible semantics of a program, although they may affect perfor-
mance. The operation of these instructions is implementation-dependent. Programmers may need to tune code for
each IA-32 processor implementation. Excessive usage of PREFETCHh instructions may waste memory bandwidth
and reduce performance. For more detailed information on the use of prefetch hints, refer to Chapter 7, “Opti-
mizing Cache Usage,”, in the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ, MOVNTQ, MASKMOVQ, and
MASKMOVDQU) minimize cache pollution when writing non-temporal data to memory (see Section 10.4.6.1,
“Cacheability Control Instructions” and Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). They
prevent non-temporal data from being written into processor caches on a store operation.

Besides reducing cache pollution, the use of weakly-ordered memory types can be important under certain data
sharing relationships, such as a producer-consumer relationship. The use of weakly ordered memory can make the
assembling of data more efficient; but care must be taken to ensure that the consumer obtains the data that the
producer intended. Some common usage models that may be affected in this way by weakly-ordered stores are:
• Library functions that use weakly ordered memory to write results
• Compiler-generated code that writes weakly-ordered results
• Hand-crafted code

The degree to which a consumer of data knows that the data is weakly ordered can vary for these cases. As a
result, the SFENCE or MFENCE instruction should be used to ensure ordering between routines that produce
weakly-ordered data and routines that consume the data. SFENCE and MFENCE provide a performance-efficient
way to ensure ordering by guaranteeing that every store instruction that precedes SFENCE/MFENCE in program
order is globally visible before a store instruction that follows the fence.

11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions
Table 11-3 describes the effects of instruction prefixes on SSE and SSE2 instructions. (Table 11-3 also applies to
SIMD integer and SIMD floating-point instructions in SSE3.) Unpredictable behavior can range from prefixes being
treated as a reserved operation on one generation of IA-32 processors to generating an invalid opcode exception
on another generation of processors.

See also “Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for complete description of instruction prefixes.

NOTE
Some SSE/SSE2/SSE3 instructions have two-byte opcodes that are either 2 bytes or 3 bytes in
length. Two-byte opcodes that are 3 bytes in length consist of: a mandatory prefix (F2H, F3H, or
66H), 0FH, and an opcode byte. See Table 11-3.

11-26 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

Table 11-3. Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable
behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable
behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes(E2H and E3H) Reserved and may result in unpredictable behavior.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

3. Updates to Chapter 14, Volume 1
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Minor update to Section 14.5.2 “Fused-Multiply-ADD (FMA) Numeric Behavior”.

Vol. 1 14-1

CHAPTER 14
PROGRAMMING WITH AVX, FMA AND AVX2

Intel® Advanced Vector Extensions (Intel® AVX) introduces 256-bit vector processing capability. The Intel AVX
instruction set extends 128-bit SIMD instruction sets by employing a new instruction encoding scheme via a vector
extension prefix (VEX). Intel AVX also offers several enhanced features beyond those available in prior generations
of 128-bit SIMD extensions.
FMA (Fused Multiply Add) extensions enhances Intel AVX further in floating-point numeric computations. FMA
provides high-throughput, arithmetic operations cover fused multiply-add, fused multiply-subtract, fused multiply
add/subtract interleave, signed-reversed multiply on fused multiply-add and multiply-subtract.

Intel AVX2 provides 256-bit integer SIMD extensions that accelerate computation across integer and floating-point
domains using 256-bit vector registers.

This chapter summarizes the key features of Intel AVX, FMA and AVX2.

14.1 INTEL AVX OVERVIEW
Intel AVX introduces the following architectural enhancements:
• Support for 256-bit wide vectors with the YMM vector register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit

Streaming SIMD extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to simplify

compiler vectorization of high-level language expressions.
• VEX prefix-encoded instruction syntax support for generalized three-operand syntax to improve instruction

programming flexibility and efficient encoding of new instruction extensions.
• Most VEX-encoded 128-bit and 256-bit AVX instructions (with both load and computational operation

semantics) are not restricted to 16-byte or 32-byte memory alignment.
• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.

With the exception of SIMD instructions operating on MMX registers, almost all legacy 128-bit SIMD instructions
have AVX equivalents that support three operand syntax. 256-bit AVX instructions employ three-operand syntax
and some with 4-operand syntax.

14.1.1 256-Bit Wide SIMD Register Support
Intel AVX introduces support for 256-bit wide SIMD registers (YMM0-YMM7 in operating modes that are 32-bit or
less, YMM0-YMM15 in 64-bit mode). The lower 128-bits of the YMM registers are aliased to the respective 128-bit
XMM registers.
Legacy SSE instructions (i.e. SIMD instructions operating on XMM state but not using the VEX prefix, also referred
to non-VEX encoded SIMD instructions) will not access the upper bits beyond bit 128 of the YMM registers. AVX
instructions with a VEX prefix and vector length of 128-bits zeroes the upper bits (above bit 128) of the YMM
register.

14-2 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

14.1.2 Instruction Syntax Enhancements
Intel AVX employs an instruction encoding scheme using a new prefix (known as “VEX” prefix). Instruction
encoding using the VEX prefix can directly encode a register operand within the VEX prefix. This support two new
instruction syntax in Intel 64 architecture:
• A non-destructive operand (in a three-operand instruction syntax): The non-destructive source reduces the

number of registers, register-register copies and explicit load operations required in typical SSE loops, reduces
code size, and improves micro-fusion opportunities.

• A third source operand (in a four-operand instruction syntax) via the upper 4 bits in an 8-bit immediate field.
Support for the third source operand is defined for selected instructions (e.g. VBLENDVPD, VBLENDVPS,
PBLENDVB).

Two-operand instruction syntax previously expressed in legacy SSE instruction as

ADDPS xmm1, xmm2/m128

128-bit AVX equivalent can be expressed in three-operand syntax as

VADDPS xmm1, xmm2, xmm3/m128

In four-operand syntax, the extra register operand is encoded in the immediate byte.
Note SIMD instructions supporting three-operand syntax but processing only 128-bits of data are considered part
of the 256-bit SIMD instruction set extensions of AVX, because bits 255:128 of the destination register are zeroed
by the processor.

14.1.3 VEX Prefix Instruction Encoding Support
Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and IA-32 instruction encoding format.
Instruction encoding using the VEX prefix provides the following capabilities:
• Direct encoding of a register operand within VEX. This provides instruction syntax support for non-destructive

source operand.
• Efficient encoding of instruction syntax operating on 128-bit and 256-bit register sets.

Figure 14-1. 256-Bit Wide SIMD Register

XMM0YMM0

XMM1YMM1

. . .
XMM15YMM15

Bit#
0127128255

Vol. 1 14-3

PROGRAMMING WITH AVX, FMA AND AVX2

• Compaction of REX prefix functionality: The equivalent functionality of the REX prefix is encoded within VEX.
• Compaction of SIMD prefix functionality and escape byte encoding: The functionality of SIMD prefix (66H, F2H,

F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This
functionality is replaced by a more compact representation of opcode extension within the VEX prefix. Similarly,
the functionality of the escape opcode byte (0FH) and two-byte escape (0F38H, 0F3AH) are also compacted
within the VEX prefix encoding.

• Most VEX-encoded SIMD numeric and data processing instruction semantics with memory operand have
relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 14.9).

VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM registers, and in some cases
with a general-purpose register as one of the operand. VEX prefix is not supported for instructions operating on
MMX or x87 registers. Details of VEX prefix and instruction encoding are discussed in Chapter 2, “Instruction
Format,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

14.2 FUNCTIONAL OVERVIEW
Intel AVX provide comprehensive functional improvements over previous generations of SIMD instruction exten-
sions. The functional improvements include:
• 256-bit floating-point arithmetic primitives: AVX enhances existing 128-bit floating-point arithmetic instruc-

tions with 256-bit capabilities for floating-point processing. Table 14-1 lists SIMD instructions promoted to AVX.
• Enhancements for flexible SIMD data movements: AVX provides a number of new data movement primitives to

enable efficient SIMD programming in relation to loading non-unit-strided data into SIMD registers, intra-
register SIMD data manipulation, conditional expression and branch handling, etc. Enhancements for SIMD
data movement primitives cover 256-bit and 128-bit vector floating-point data, and across 128-bit integer
SIMD data processing using VEX-encoded instructions.

Table 14-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions
VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?

yes yes YY 0F 1X MOVUPS

no yes MOVSS scalar

yes yes MOVUPD

no yes MOVSD scalar

no yes MOVLPS Note 1

no yes MOVLPD Note 1

no yes MOVLHPS Redundant with VPERMILPS

yes yes MOVDDUP

yes yes MOVSLDUP

yes yes UNPCKLPS

yes yes UNPCKLPD

yes yes UNPCKHPS

yes yes UNPCKHPD

no yes MOVHPS Note 1

no yes MOVHPD Note 1

no yes MOVHLPS Redundant with VPERMILPS

yes yes MOVAPS

yes yes MOVSHDUP

yes yes MOVAPD

no no CVTPI2PS MMX

14-4 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

no yes CVTSI2SS scalar

no no CVTPI2PD MMX

no yes CVTSI2SD scalar

no yes MOVNTPS

no yes MOVNTPD

no no CVTTPS2PI MMX

no yes CVTTSS2SI scalar

no no CVTTPD2PI MMX

no yes CVTTSD2SI scalar

no no CVTPS2PI MMX

no yes CVTSS2SI scalar

no no CVTPD2PI MMX

no yes CVTSD2SI scalar

no yes UCOMISS scalar

no yes UCOMISD scalar

no yes COMISS scalar

no yes COMISD scalar

yes yes YY 0F 5X MOVMSKPS

yes yes MOVMSKPD

yes yes SQRTPS

no yes SQRTSS scalar

yes yes SQRTPD

no yes SQRTSD scalar

yes yes RSQRTPS

no yes RSQRTSS scalar

yes yes RCPPS

no yes RCPSS scalar

yes yes ANDPS

yes yes ANDPD

yes yes ANDNPS

yes yes ANDNPD

yes yes ORPS

yes yes ORPD

yes yes XORPS

yes yes XORPD

yes yes ADDPS

no yes ADDSS scalar

yes yes ADDPD

no yes ADDSD scalar

yes yes MULPS

no yes MULSS scalar

yes yes MULPD

no yes MULSD scalar

yes yes CVTPS2PD

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?

Vol. 1 14-5

PROGRAMMING WITH AVX, FMA AND AVX2

no yes CVTSS2SD scalar

yes yes CVTPD2PS

no yes CVTSD2SS scalar

yes yes CVTDQ2PS

yes yes CVTPS2DQ

yes yes CVTTPS2DQ

yes yes SUBPS

no yes SUBSS scalar

yes yes SUBPD

no yes SUBSD scalar

yes yes MINPS

no yes MINSS scalar

yes yes MINPD

no yes MINSD scalar

yes yes DIVPS

no yes DIVSS scalar

yes yes DIVPD

no yes DIVSD scalar

yes yes MAXPS

no yes MAXSS scalar

yes yes MAXPD

no yes MAXSD scalar

no yes YY 0F 6X PUNPCKLBW VI

no yes PUNPCKLWD VI

no yes PUNPCKLDQ VI

no yes PACKSSWB VI

no yes PCMPGTB VI

no yes PCMPGTW VI

no yes PCMPGTD VI

no yes PACKUSWB VI

no yes PUNPCKHBW VI

no yes PUNPCKHWD VI

no yes PUNPCKHDQ VI

no yes PACKSSDW VI

no yes PUNPCKLQDQ VI

no yes PUNPCKHQDQ VI

no yes MOVD scalar

no yes MOVQ scalar

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F 7X PSHUFD VI

no yes PSHUFHW VI

no yes PSHUFLW VI

no yes PCMPEQB VI

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?

14-6 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

no yes PCMPEQW VI

no yes PCMPEQD VI

yes yes HADDPD

yes yes HADDPS

yes yes HSUBPD

yes yes HSUBPS

no yes MOVD VI

no yes MOVQ VI

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F AX LDMXCSR

no yes STMXCSR

yes yes YY 0F CX CMPPS

no yes CMPSS scalar

yes yes CMPPD

no yes CMPSD scalar

no yes PINSRW VI

no yes PEXTRW VI

yes yes SHUFPS

yes yes SHUFPD

yes yes YY 0F DX ADDSUBPD

yes yes ADDSUBPS

no yes PSRLW VI

no yes PSRLD VI

no yes PSRLQ VI

no yes PADDQ VI

no yes PMULLW VI

no no MOVQ2DQ MMX

no no MOVDQ2Q MMX

no yes PMOVMSKB VI

no yes PSUBUSB VI

no yes PSUBUSW VI

no yes PMINUB VI

no yes PAND VI

no yes PADDUSB VI

no yes PADDUSW VI

no yes PMAXUB VI

no yes PANDN VI

no yes YY 0F EX PAVGB VI

no yes PSRAW VI

no yes PSRAD VI

no yes PAVGW VI

no yes PMULHUW VI

no yes PMULHW VI

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?

Vol. 1 14-7

PROGRAMMING WITH AVX, FMA AND AVX2

yes yes CVTPD2DQ

yes yes CVTTPD2DQ

yes yes CVTDQ2PD

no yes MOVNTDQ VI

no yes PSUBSB VI

no yes PSUBSW VI

no yes PMINSW VI

no yes POR VI

no yes PADDSB VI

no yes PADDSW VI

no yes PMAXSW VI

no yes PXOR VI

yes yes YY 0F FX LDDQU VI

no yes PSLLW VI

no yes PSLLD VI

no yes PSLLQ VI

no yes PMULUDQ VI

no yes PMADDWD VI

no yes PSADBW VI

no yes MASKMOVDQU

no yes PSUBB VI

no yes PSUBW VI

no yes PSUBD VI

no yes PSUBQ VI

no yes PADDB VI

no yes PADDW VI

no yes PADDD VI

no yes SSSE3 PHADDW VI

no yes PHADDSW VI

no yes PHADDD VI

no yes PHSUBW VI

no yes PHSUBSW VI

no yes PHSUBD VI

no yes PMADDUBSW VI

no yes PALIGNR VI

no yes PSHUFB VI

no yes PMULHRSW VI

no yes PSIGNB VI

no yes PSIGNW VI

no yes PSIGND VI

no yes PABSB VI

no yes PABSW VI

no yes PABSD VI

yes yes SSE4.1 BLENDPS

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?

14-8 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

yes yes BLENDPD

yes yes BLENDVPS Note 2

yes yes BLENDVPD Note 2

no yes DPPD

yes yes DPPS

no yes EXTRACTPS Note 3

no yes INSERTPS Note 3

no yes MOVNTDQA

no yes MPSADBW VI

no yes PACKUSDW VI

no yes PBLENDVB VI

no yes PBLENDW VI

no yes PCMPEQQ VI

no yes PEXTRD VI

no yes PEXTRQ VI

no yes PEXTRB VI

no yes PEXTRW VI

no yes PHMINPOSUW VI

no yes PINSRB VI

no yes PINSRD VI

no yes PINSRQ VI

no yes PMAXSB VI

no yes PMAXSD VI

no yes PMAXUD VI

no yes PMAXUW VI

no yes PMINSB VI

no yes PMINSD VI

no yes PMINUD VI

no yes PMINUW VI

no yes PMOVSXxx VI

no yes PMOVZXxx VI

no yes PMULDQ VI

no yes PMULLD VI

yes yes PTEST

yes yes ROUNDPD

yes yes ROUNDPS

no yes ROUNDSD scalar

no yes ROUNDSS scalar

no yes SSE4.2 PCMPGTQ VI

no no SSE4.2 CRC32c integer

no yes PCMPESTRI VI

no yes PCMPESTRM VI

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?

Vol. 1 14-9

PROGRAMMING WITH AVX, FMA AND AVX2

14.2.1 256-bit Floating-Point Arithmetic Processing Enhancements
Intel AVX provides 35 256-bit floating-point arithmetic instructions, see Table 14-2. The arithmetic operations
cover add, subtract, multiply, divide, square-root, compare, max, min, round, etc., on single-precision and double-
precision floating-point data.
The enhancement in AVX on floating-point compare operation provides 32 conditional predicates to improve
programming flexibility in evaluating conditional expressions.

14.2.2 256-bit Non-Arithmetic Instruction Enhancements
Intel AVX provides new primitives for handling data movement within 256-bit floating-point vectors and promotes
many 128-bit floating data processing instructions to handle 256-bit floating-point vectors.
AVX includes 39 256-bit data movement and processing instructions that are promoted from previous generations
of SIMD instruction extensions, ranging from logical, blend, convert, test, unpacking, shuffling, load and stores
(see Table 14-3).

no yes PCMPISTRI VI

no yes PCMPISTRM VI

no no SSE4.2 POPCNT integer

Table 14-2. Promoted 256-Bit and 128-bit Arithmetic AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes SQRTPS, SQRTPD, RSQRTPS, RCPPS

yes yes ADDPS, ADDPD, SUBPS, SUBPD

yes yes MULPS, MULPD, DIVPS, DIVPD

yes yes CVTPS2PD, CVTPD2PS

yes yes CVTDQ2PS, CVTPS2DQ

yes yes CVTTPS2DQ, CVTTPD2DQ

yes yes CVTPD2DQ, CVTDQ2PD

yes yes MINPS, MINPD, MAXPS, MAXPD

yes yes HADDPD, HADDPS, HSUBPD, HSUBPS

yes yes CMPPS, CMPPD

yes yes ADDSUBPD, ADDSUBPS, DPPS

yes yes ROUNDPD, ROUNDPS

Table 14-3. Promoted 256-bit and 128-bit Data Movement AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes MOVAPS, MOVAPD, MOVDQA

yes yes MOVUPS, MOVUPD, MOVDQU

yes yes MOVMSKPS, MOVMSKPD

yes yes LDDQU, MOVNTPS, MOVNTPD, MOVNTDQ, MOVNTDQA

yes yes MOVSHDUP, MOVSLDUP, MOVDDUP

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?

14-10 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

AVX introduces 18 new data processing instructions that operate on 256-bit vectors, Table 14-4. These new primi-
tives cover the following operations:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD floating-point data fetching

primitives:

— broadcast of single or multiple data elements into a 256-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible SIMD floating-point data

manipulation primitives:

— insert/extract multiple SIMD floating-point data elements to/from 256-bit SIMD registers

— permute primitives to facilitate efficient manipulation of floating-point data elements in 256-bit SIMD
registers

• Branch handling. AVX provides several primitives to enable handling of branches in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-destructive source syntax. This is
more flexible than the equivalent SSE4 instruction syntax which uses the XMM0 register as the implied
mask for blend selection.

— Packed TEST instructions for floating-point data.

yes yes UNPCKHPD, UNPCKHPS, UNPCKLPD

yes yes BLENDPS, BLENDPD

yes yes SHUFPD, SHUFPS, UNPCKLPS

yes yes BLENDVPS, BLENDVPD

yes yes PTEST, MOVMSKPD, MOVMSKPS

yes yes XORPS, XORPD, ORPS, ORPD

yes yes ANDNPD, ANDNPS, ANDPD, ANDPS

Table 14-4. 256-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTF128 ymm1, m128 Broadcast 128-bit floating-point values in mem to low and high 128-bits in ymm1.

VBROADCASTSD ymm1, m64 Broadcast double-precision floating-point element in mem to four locations in ymm1.

VBROADCASTSS ymm1, m32 Broadcast single-precision floating-point element in mem to eight locations in ymm1.

VEXTRACTF128 xmm1/m128, ymm2,
imm8

Extracts 128-bits of packed floating-point values from ymm2 and store results in
xmm1/mem.

VINSERTF128 ymm1, ymm2,
xmm3/m128, imm8

Insert 128-bits of packed floating-point values from xmm3/mem and the remaining val-
ues from ymm2 into ymm1

VMASKMOVPS ymm1, ymm2, m256 Load packed single-precision values from mem using mask in ymm2 and store in ymm1

VMASKMOVPD ymm1, ymm2, m256 Load packed double-precision values from mem using mask in ymm2 and store in ymm1

VMASKMOVPS m256, ymm1, ymm2 Store packed single-precision values from ymm2 mask in ymm1

VMASKMOVPD m256, ymm1, ymm2 Store packed double-precision values from ymm2 using mask in ymm1

VPERMILPD ymm1, ymm2, ymm3/m256 Permute Double-Precision Floating-Point values in ymm2 using controls from xmm3/mem
and store result in ymm1

Table 14-3. Promoted 256-bit and 128-bit Data Movement AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

Vol. 1 14-11

PROGRAMMING WITH AVX, FMA AND AVX2

14.2.3 Arithmetic Primitives for 128-bit Vector and Scalar processing
Intel AVX provides a full complement of 128-bit numeric processing instructions that employ VEX-prefix encoding.
These VEX-encoded instructions generally provide the same functionality over instructions operating on XMM
register that are encoded using SIMD prefixes. The 128-bit numeric processing instructions in AVX cover floating-
point and integer data processing; across 128-bit vector and scalar processing. Table 14-5 lists the state of promo-
tion of legacy SIMD arithmetic ISA to VEX-128 encoding. Legacy SIMD floating-point arithmetic ISA promoted to
VEX-256 encoding also support VEX-128 encoding (see Table 14-2).
The enhancement in AVX on 128-bit floating-point compare operation provides 32 conditional predicates to
improve programming flexibility in evaluating conditional expressions. This contrasts with floating-point SIMD
compare instructions in SSE and SSE2 supporting only 8 conditional predicates.

VPERMILPD ymm1, ymm2/m256 imm8 Permute Double-Precision Floating-Point values in ymm2/mem using controls from imm8
and store result in ymm1

VPERMILPS ymm1, ymm2, ymm/m256 Permute Single-Precision Floating-Point values in ymm2 using controls from ymm3/mem
and store result in ymm1

VPERMILPS ymm1, ymm2/m256, imm8 Permute Single-Precision Floating-Point values in ymm2/mem using controls from imm8
and store result in ymm1

VPERM2F128 ymm1, ymm2,
ymm3/m256, imm8

Permute 128-bit floating-point fields in ymm2 and ymm3/mem using controls from imm8
and store result in ymm1

VTESTPS ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed single-precision sign bits. Set CF
if ymm2/mem AND NOT ymm1 result is all 0s in packed single-precision sign bits.

VTESTPD ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed double-precision sign bits. Set
CF if ymm2/mem AND NOT ymm1 result is all 0s in packed double-precision sign bits.

VZEROALL Zero all YMM registers

VZEROUPPER Zero upper 128 bits of all YMM registers

Table 14-5. Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not Promoted

no no CVTPI2PS, CVTPI2PD, CVTPD2PI MMX

no no CVTTPS2PI, CVTTPD2PI, CVTPS2PI MMX

no yes CVTSI2SS, CVTSI2SD, CVTSD2SI scalar

no yes CVTTSS2SI, CVTTSD2SI, CVTSS2SI scalar

no yes COMISD, RSQRTSS, RCPSS scalar

no yes UCOMISS, UCOMISD, COMISS, scalar

no yes ADDSS, ADDSD, SUBSS, SUBSD scalar

no yes MULSS, MULSD, DIVSS, DIVSD scalar

no yes SQRTSS, SQRTSD scalar

no yes CVTSS2SD, CVTSD2SS scalar

no yes MINSS, MINSD, MAXSS, MAXSD scalar

no yes PAND, PANDN, POR, PXOR VI

no yes PCMPGTB, PCMPGTW, PCMPGTD VI

Table 14-4. 256-bit AVX Instruction Enhancement

Instruction Description

14-12 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

no yes PMADDWD, PMADDUBSW VI

no yes PAVGB, PAVGW, PMULUDQ VI

no yes PCMPEQB, PCMPEQW, PCMPEQD VI

no yes PMULLW, PMULHUW, PMULHW VI

no yes PSUBSW, PADDSW, PSADBW VI

no yes PADDUSB, PADDUSW, PADDSB VI

no yes PSUBUSB, PSUBUSW, PSUBSB VI

no yes PMINUB, PMINSW VI

no yes PMAXUB, PMAXSW VI

no yes PADDB, PADDW, PADDD, PADDQ VI

no yes PSUBB, PSUBW, PSUBD, PSUBQ VI

no yes PSLLW, PSLLD, PSLLQ, PSRAW VI

no yes PSRLW, PSRLD, PSRLQ, PSRAD VI

CPUID.SSSE3

no yes PHSUBW, PHSUBD, PHSUBSW VI

no yes PHADDW, PHADDD, PHADDSW VI

no yes PMULHRSW VI

no yes PSIGNB, PSIGNW, PSIGND VI

no yes PABSB, PABSW, PABSD VI

CPUID.SSE4_1

no yes DPPD

no yes PHMINPOSUW, MPSADBW VI

no yes PMAXSB, PMAXSD, PMAXUD VI

no yes PMINSB, PMINSD, PMINUD VI

no yes PMAXUW, PMINUW VI

no yes PMOVSXxx, PMOVZXxx VI

no yes PMULDQ, PMULLD VI

no yes ROUNDSD, ROUNDSS scalar

CPUID.POPCNT

no yes POPCNT integer

CPUID.SSE4_2

no yes PCMPGTQ VI

no no CRC32 integer

no yes PCMPESTRI, PCMPESTRM VI

no yes PCMPISTRI, PCMPISTRM VI

CPUID.CLMUL

no yes PCLMULQDQ VI

CPUID.AESNI

Table 14-5. Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not Promoted

Vol. 1 14-13

PROGRAMMING WITH AVX, FMA AND AVX2

Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
integer: integer instructions are not promoted.
VI: “Vector Integer” instructions are not promoted to 256-bit

14.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing
Intel AVX provides a full complement of data processing instructions that employ VEX-prefix encoding. These VEX-
encoded instructions generally provide the same functionality over instructions operating on XMM register that are
encoded using SIMD prefixes.

A subset of new functionalities listed in Table 14-4 is also extended via VEX.128 encoding. These enhancements in
AVX on 128-bit data processing primitives include 11 new instructions (see Table 14-6) with the following capabil-
ities:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD floating-point data fetching

primitives:

— broadcast of single data element into a 128-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible SIMD floating-point data

manipulation primitives:

— permute primitives to facilitate efficient manipulation of floating-point data elements in 128-bit SIMD
registers

• Branch handling. AVX provides several primitives to enable handling of branches in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-destructive source syntax.
Branching conditions dependent on floating-point data or integer data can benefit from Intel AVX. This is
more flexible than non-VEX encoded instruction syntax that uses the XMM0 register as implied mask for
blend selection. While variable blend with implied XMM0 syntax is supported in SSE4 using SIMD prefix
encoding, VEX-encoded 128-bit variable blend instructions only support the more flexible four-operand
syntax.

— Packed TEST instructions for floating-point data.

no yes AESDEC, AESDECLAST VI

no yes AESENC, AESENCLAST VI

no yes AESIMX, AESKEYGENASSIST VI

Table 14-6. 128-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTSS xmm1, m32 Broadcast single-precision floating-point element in mem to four locations in xmm1.

VMASKMOVPS xmm1, xmm2, m128 Load packed single-precision values from mem using mask in xmm2 and store in xmm1

VMASKMOVPD xmm1, xmm2, m128 Load packed double-precision values from mem using mask in xmm2 and store in xmm1

VMASKMOVPS m128, xmm1, xmm2 Store packed single-precision values from xmm2 using mask in xmm1

VMASKMOVPD m128, xmm1, xmm2 Store packed double-precision values from xmm2 using mask in xmm1

Table 14-5. Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not Promoted

14-14 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

The 128-bit data processing instructions in AVX cover floating-point and integer data movement primitives. Legacy
SIMD non-arithmetic ISA promoted to VEX-256 encoding also support VEX-128 encoding (see Table 14-3). Table
14-7 lists the state of promotion of the remaining legacy SIMD non-arithmetic ISA to VEX-128 encoding.

VPERMILPD xmm1, xmm2, xmm3/m128 Permute Double-Precision Floating-Point values in xmm2 using controls from xmm3/mem
and store result in xmm1

VPERMILPD xmm1, xmm2/m128, imm8 Permute Double-Precision Floating-Point values in xmm2/mem using controls from imm8
and store result in xmm1

VPERMILPS xmm1, xmm2, xmm3/m128 Permute Single-Precision Floating-Point values in xmm2 using controls from xmm3/mem
and store result in xmm1

VPERMILPS xmm1, xmm2/m128, imm8 Permute Single-Precision Floating-Point values in xmm2/mem using controls from imm8
and store result in xmm1

VTESTPS xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single-precision sign bits. Set
CF if xmm2/mem AND NOT xmm1 result is all 0s in packed single-precision sign bits.

VTESTPD xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single precision sign bits. Set CF
if xmm2/mem AND NOT xmm1 result is all 0s in packed double-precision sign bits.

Table 14-7. Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not Promoted

no no MOVQ2DQ, MOVDQ2Q MMX

no yes LDMXCSR, STMXCSR

no yes MOVSS, MOVSD, CMPSS, CMPSD scalar

no yes MOVHPS, MOVHPD Note 1

no yes MOVLPS, MOVLPD Note 1

no yes MOVLHPS, MOVHLPS Redundant with VPERMILPS

no yes MOVQ, MOVD scalar

no yes PACKUSWB, PACKSSDW, PACKSSWB VI

no yes PUNPCKHBW, PUNPCKHWD VI

no yes PUNPCKLBW, PUNPCKLWD VI

no yes PUNPCKHDQ, PUNPCKLDQ VI

no yes PUNPCKLQDQ, PUNPCKHQDQ VI

no yes PSHUFHW, PSHUFLW, PSHUFD VI

no yes PMOVMSKB, MASKMOVDQU VI

no yes PAND, PANDN, POR, PXOR VI

no yes PINSRW, PEXTRW, VI

CPUID.SSSE3

no yes PALIGNR, PSHUFB VI

CPUID.SSE4_1

no yes EXTRACTPS, INSERTPS Note 3

no yes PACKUSDW, PCMPEQQ VI

Table 14-6. 128-bit AVX Instruction Enhancement

Instruction Description

Vol. 1 14-15

PROGRAMMING WITH AVX, FMA AND AVX2

Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
VI: “Vector Integer” instructions are not promoted to 256-bit
Note 1: MOVLPD/PS and MOVHPD/PS are not promoted to 256-bit. The equivalent functionality are provided by
VINSERTF128 and VEXTRACTF128 instructions as the existing instructions have no natural 256b extension
Note 3: It is expected that using 128-bit INSERTPS followed by a VINSERTF128 would be better than promoting
INSERTPS to 256-bit (for example).

14.3 DETECTION OF AVX INSTRUCTIONS
Intel AVX instructions operate on the 256-bit YMM register state. Application detection of new instruction exten-
sions operating on the YMM state follows the general procedural flow in Figure 14-2.
Prior to using AVX, the application must identify that the operating system supports the XGETBV instruction, the
YMM register state, in addition to processor’s support for YMM state management using XSAVE/XRSTOR and AVX
instructions. The following simplified sequence accomplishes both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Issue XGETBV and verify that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2)

no yes PBLENDVB, PBLENDW VI

no yes PEXTRW, PEXTRB, PEXTRD, PEXTRQ VI

no yes PINSRB, PINSRD, PINSRQ VI

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor
extended state bit vector XCR0. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSXSAVE.
XSETBV is a privileged instruction.

Figure 14-2. General Procedural Flow of Application Detection of AVX

Table 14-7. Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not Promoted

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check feature flag

for Instruction set

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

14-16 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

The following pseudocode illustrates this recommended application AVX detection process:

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system support. If YMM state
management is not enabled by an operating systems, AVX instructions will #UD regardless of
CPUID.1:ECX.AVX[bit 28]. “CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses the XSAVE
process for state management.

These steps above also apply to enhanced 128-bit SIMD floating-pointing instructions in AVX (using VEX prefix-
encoding) that operate on the YMM states.

Example 14-1. Detection of AVX Instruction

INT supports_AVX()
{ mov eax, 1

cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

}

Vol. 1 14-17

PROGRAMMING WITH AVX, FMA AND AVX2

14.3.1 Detection of VEX-Encoded AES and VPCLMULQDQ
VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate on YMM
states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and the sequence for
detection application support for AVX.

Similarly, the detection sequence for VPCLMULQDQ must combine checking for CPUID.1:ECX.PCLMULQDQ[bit 1] =
1 and the sequence for detection application support for AVX.
This is shown in the pseudocode:

Example 14-2. Detection of VEX-Encoded AESNI Instructions

INT supports_VAESNI()
{ mov eax, 1

cpuid
and ecx, 01A000000H
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
 jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 14-3. Detection of VEX-Encoded AESNI Instructions

INT supports_VPCLMULQDQ)
{ mov eax, 1

cpuid
and ecx, 018000002H
cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags
 jne not_supported
; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

14-18 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

14.4 HALF-PRECISION FLOATING-POINT CONVERSION
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type conversion to
and from single-precision floating-point data types.
Half-precision floating-point values are not used by the processor directly for arithmetic operations. But the conver-
sion operation are subject to SIMD floating-point exceptions.

Additionally, The conversion operations of VCVTPS2PH allow programmer to specify rounding control using control
fields in an immediate byte. The effects of the immediate byte are listed in Table 14-8.
Rounding control can use Imm[2] to select an override RC field specified in Imm[1:0] or use MXCSR setting.

Specific SIMD floating-point exceptions that can occur in conversion operations are shown in Table 14-9 and
Table 14-10.

VCVTPS2PH can cause denormal exceptions if the value of the source operand is denormal relative to the numer-
ical range represented by the source format (see Table 14-11).

Table 14-8. Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor

Table 14-9. Non-Numerical Behavior for VCVTPH2PS, VCVTPS2PH

Source Operands Masked Result Unmasked Result

QNaN QNaN11

NOTES:
1. The half precision output QNaN1 is created from the single precision input QNaN as follows: the sign bit is preserved, the 8-bit expo-

nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits.

QNaN11 (not an exception)

SNaN QNaN12

2. The half precision output QNaN1 is created from the single precision input SNaN as follows: the sign bit is preserved, the 8-bit expo-
nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into a quiet
NaN.

None

Table 14-10. Invalid Operation for VCVTPH2PS, VCVTPS2PH

Instruction Condition Masked Result Unmasked Result

VCVTPH2PS SRC = NaN See Table 14-9 #I=1

VCVTPS2PH SRC = NaN See Table 14-9 #I=1

Vol. 1 14-19

PROGRAMMING WITH AVX, FMA AND AVX2

VCVTPS2PH can cause an underflow exception if the result of the conversion is less than the underflow threshold
for half-precision floating-point data type , i.e. | x | < 1.0 ∗ 2−14.

VCVTPS2PH can cause an overflow exception if the result of the conversion is greater than the maximum repre-
sentable value for half-precision floating-point data type, i.e. | x | ≥ 1.0 ∗ 216.

VCVTPS2PH can cause an inexact exception if the result of the conversion is not exactly representable in the
destination format.

Table 14-11. Denormal Condition Summary

Instruction Condition Masked Result Unmasked Result

VCVTPH2PS SRC is denormal relative to
input format

res = Result rounded to the destination precision and
using the bounded exponent, but only if no unmasked
post-computation exception occurs.
#DE unchanged

Same as masked result.

VCVTPS2PH SRC is denormal relative to
input format

res = Result rounded to the destination precision and
using the bounded exponent, but only if no unmasked
post-computation exception occurs.
#DE=1

#DE=1

Table 14-12. Underflow Condition for VCVTPS2PH

Instruction Condition Masked Result1

NOTES:
1. Masked and unmasked results are shown in Table 14-11.

Unmasked Result

VCVTPS2PH Result < smallest destination
precision final normal value2

2. MXCSR.FTZ is ignored, the processor behaves as if MXCSR.FTZ = 0.

Result = +0 or -0, denormal, normal.
#UE =1.
#PE = 1 if the result is inexact.

#UE=1,
#PE = 1 if the result is
inexact.

Table 14-13. Overflow Condition for VCVTPS2PH

Instruction Condition Masked Result Unmasked Result

VCVTPS2PH Result ≥ largest destination
precision finial normal value1

Result = +Inf or -Inf.
#OE=1.

#OE=1.

Table 14-14. Inexact Condition for VCVTPS2PH

Instruction Condition Masked Result1

NOTES:
1. If a source is denormal relative to input format with DM masked and at least one of PM or UM unmasked, then an exception will be

raised with DE, UE and PE set.

Unmasked Result

VCVTPS2PH The result is not
representable in
the destination
format

res = Result rounded to the destination
precision and using the bounded
exponent, but only if no unmasked
underflow or overflow conditions occur
(this exception can occur in the presence
of a masked underflow or overflow).
#PE=1.

Only if no underflow/overflow condition occurred,
or if the corresponding exceptions are masked:
• Set #OE if masked overflow and set result as

described above for masked overflow.

• Set #UE if masked underflow and set result as
described above for masked underflow.

If neither underflow nor overflow, result equals
the result rounded to the destination precision and
using the bounded exponent set #PE = 1.

14-20 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

14.4.1 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:
• The OS has enabled YMM state management support,
• The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28] = 1.
• The processor support 16-bit floating-point conversion instructions via a CPUID feature flag

(CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 14-3.

--
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

Figure 14-3. General Procedural Flow of Application Detection of Float-16

Implied HW support for

Check enabled YMM state in
XCR0 via XGETBV

Check feature flags
for AVX and F16C

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

Vol. 1 14-21

PROGRAMMING WITH AVX, FMA AND AVX2

14.5 FUSED-MULTIPLY-ADD (FMA) EXTENSIONS
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add,
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on
256-bit vectors and additional 128-bit and scalar FMA instructions.
FMA extensions also provide 60 128-bit floating-point instructions to process 128-bit vector and scalar data. The
arithmetic operations cover fused multiply-add, fused multiply-subtract, signed-reversed multiply on fused
multiply-add and multiply-subtract.

Table 14-15. FMA Instructions

Instruction Description

VFMADD132PD/VFMADD213PD/VFMADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Add of Packed Double-Precision Floating-Point
Values

VFMADD132PS/VFMADD213PS/VFMADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Add of Packed Single-Precision Floating-Point
Values

VFMADD132SD/VFMADD213SD/VFMADD231SD
xmm0, xmm1, xmm2/m64

Fused Multiply-Add of Scalar Double-Precision Floating-Point
Values

VFMADD132SS/VFMADD213SS/VFMADD231SS
xmm0, xmm1, xmm2/m32

Fused Multiply-Add of Scalar Single-Precision Floating-Point
Values

VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Add/Subtract of Packed Double-
Precision Floating-Point Values

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Add/Subtract of Packed Single-Pre-
cision Floating-Point Values

VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Subtract/Add of Packed Double-
Precision Floating-Point Values

VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Subtract/Add of Packed Single-Pre-
cision Floating-Point Values

VFMSUB132PD/VFMSUB213PD/VFMSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Subtract of Packed Double-Precision Floating-
Point Values

VFMSUB132PS/VFMSUB213PS/VFMSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Subtract of Packed Single-Precision Floating-
Point Values

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD
xmm0, xmm1, xmm2/m64

Fused Multiply-Subtract of Scalar Double-Precision Floating-
Point Values

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS
xmm0, xmm1, xmm2/m32

Fused Multiply-Subtract of Scalar Single-Precision Floating-
Point Values

VFNMADD132PD/VFNMADD213PD/VFNMADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Add of Packed Double-Precision Float-
ing-Point Values

VFNMADD132PS/VFNMADD213PS/VFNMADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Add of Packed Single-Precision Float-
ing-Point Values

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD
xmm0, xmm1, xmm2/m64

Fused Negative Multiply-Add of Scalar Double-Precision Float-
ing-Point Values

VFNMADD132SS/VFNMADD213SS/VFNMADD231SS
xmm0, xmm1, xmm2/m32

Fused Negative Multiply-Add of Scalar Single-Precision Float-
ing-Point Values

VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Subtract of Packed Double-Precision
Floating-Point Values

VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Subtract of Packed Single-Precision
Floating-Point Values

14-22 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

14.5.1 FMA Instruction Operand Order and Arithmetic Behavior
FMA instruction mnemonics are defined explicitly with an ordered three digits, e.g. VFMADD132PD. The value of
each digit refers to the ordering of the three source operand as defined by instruction encoding specification:
• ‘1’: The first source operand (also the destination operand) in the syntactical order listed in this specification.
• ‘2’: The second source operand in the syntactical order. This is a YMM/XMM register, encoded using VEX prefix.
• ‘3’: The third source operand in the syntactical order. The first and third operand are encoded following ModR/M

encoding rules.
The ordering of each digit within the mnemonic refers to the floating-point data listed on the right-hand side of the
arithmetic equation of each FMA operation (see Table 14-17):
• The first position in the three digits of a FMA mnemonic refers to the operand position of the first FP data

expressed in the arithmetic equation of FMA operation, the multiplicand.
• The second position in the three digits of a FMA mnemonic refers to the operand position of the second FP data

expressed in the arithmetic equation of FMA operation, the multiplier.
• The third position in the three digits of a FMA mnemonic refers to the operand position of the FP data being

added/subtracted to the multiplication result.
Note the non-numerical result of an FMA operation does not resemble the mathematically-defined commutative
property between the multiplicand and the multiplier values (see Table 14-17). Consequently, software tools (such
as an assembler) may support a complementary set of FMA mnemonics for each FMA instruction for ease of
programming to take advantage of the mathematical property of commutative multiplications. For example, an
assembler may optionally support the complementary mnemonic “VFMADD312PD” in addition to the true
mnemonic “VFMADD132PD“. The assembler will generate the same instruction opcode sequence corresponding to
VFMADD132PD. The processor executes VFMADD132PD and report any NAN conditions based on the definition of
VFMADD132PD. Similarly, if the complementary mnemonic VFMADD123PD is supported by an assembler at source
level, it must generate the opcode sequence corresponding to VFMADD213PD; the complementary mnemonic
VFMADD321PD must produce the opcode sequence defined by VFMADD231PD. In the absence of FMA operations
reporting a NAN result, the numerical results of using either mnemonic with an assembler supporting both
mnemonics will match the behavior defined in Table 14-17. Support for the complementary FMA mnemonics by
software tools is optional.

14.5.2 Fused-Multiply-ADD (FMA) Numeric Behavior
FMA instructions can perform fused-multiply-add operations (including fused-multiply-subtract, and other vari-
eties) on packed and scalar data elements in the instruction operands. Separate FMA instructions are provided to
handle different types of arithmetic operations on the three source operands.
FMA instruction syntax is defined using three source operands and the first source operand is updated based on the
result of the arithmetic operations of the data elements of 128-bit or 256-bit operands, i.e. The first source operand
is also the destination operand.
The arithmetic FMA operation performed in an FMA instruction takes one of several forms, r=(x*y)+z, r=(x*y)-z,
r=-(x*y)+z, or r=-(x*y)-z. Packed FMA instructions can perform eight single-precision FMA operations or four
double-precision FMA operations with 256-bit vectors.
Scalar FMA instructions only perform one arithmetic operation on the low order data element. The content of the
rest of the data elements in the lower 128-bits of the destination operand is preserved. the upper 128bits of the
destination operand are filled with zero.

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD
xmm0, xmm1, xmm2/m64

Fused Negative Multiply-Subtract of Scalar Double-Precision
Floating-Point Values

VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS
xmm0, xmm1, xmm2/m32

Fused Negative Multiply-Subtract of Scalar Single-Precision
Floating-Point Values

Table 14-15. FMA Instructions

Instruction Description

Vol. 1 14-23

PROGRAMMING WITH AVX, FMA AND AVX2

An arithmetic FMA operation of the form, r=(x*y)+z, takes two IEEE-754-2008 single (double) precision values
and multiplies them to form an infinite precision intermediate value. This intermediate value is added to a third
single (double) precision value (also at infinite precision) and rounded to produce a single (double) precision result.

Table 14-17 describes the numerical behavior of the FMA operation, r=(x*y)+z, r=(x*y)-z, r=-(x*y)+z, r=-(x*y)-
z for various input values. The input values can be 0, finite non-zero (F in Table 14-17), infinity of either sign (INF
in Table 14-17), positive infinity (+INF in Table 14-17), negative infinity (-INF in Table 14-17), or NaN (including
QNaN or SNaN). If any one of the input values is a NAN, the result of FMA operation, r, may be a quietized NAN. The
result can be either Q(x), Q(y), or Q(z), see Table 14-17. If x is a NaN, then:

• Q(x) = x if x is QNaN or

• Q(x) = the quietized NaN obtained from x if x is SNaN
The notation for the output value in Table 14-17 are:
• “+INF”: positive infinity, “-INF”: negative infinity. When the result depends on a conditional expression, both

values are listed in the result column and the condition is described in the comment column.
• QNaNIndefinite represents the QNaN which has the sign bit equal to 1, the most significand field equal to 1, and

the remaining significand field bits equal to 0.
• The summation or subtraction of 0s or identical values in FMA operation can lead to the following situations

shown in Table 14-16
• If the FMA computation represents an invalid operation (e.g. when adding two INF with opposite signs)), the

invalid exception is signaled, and the MXCSR.IE flag is set.

Table 14-16. Rounding Behavior of Zero Result in FMA Operation

Table 14-17. FMA Numeric Behavior

x*y z (x*y) + z (x*y) - z - (x*y) + z - (x*y) - z

(+0) (+0) +0 in all rounding modes - 0 when rounding down,
and +0 otherwise

- 0 when rounding down,
and +0 otherwise

- 0 in all rounding modes

(+0) (-0) - 0 when rounding down,
and +0 otherwise

+0 in all rounding modes - 0 in all rounding modes - 0 when rounding down,
and +0 otherwise

(-0) (+0) - 0 when rounding down,
and +0 otherwise

- 0 in all rounding modes + 0 in all rounding modes - 0 when rounding down,
and +0 otherwise

(-0) (-0) - 0 in all rounding modes - 0 when rounding down,
and +0 otherwise

- 0 when rounding down,
and +0 otherwise

+ 0 in all rounding modes

F -F - 0 when rounding down,
and +0 otherwise

2*F -2*F - 0 when rounding down,
and +0 otherwise

F F 2*F - 0 when rounding down,
and +0 otherwise

- 0 when rounding down,
and +0 otherwise

-2*F

x
(multiplicand)

y
(multiplier)

z
r=(x*y)

+z
r=(x*y)

-z
r =

-(x*y)+z
r=

-(x*y)-z
Comment

NaN 0, F, INF,
NaN

0, F,
INF,
NaN

Q(x) Q(x) Q(x) Q(x) Signal invalid exception if x or y or z is SNaN

0, F, INF NaN 0, F,
INF,
NaN

Q(y) Q(y) Q(y) Q(y) Signal invalid exception if y or z is SNaN

0, F, INF 0, F, INF NaN Q(z) Q(z) Q(z) Q(z) Signal invalid exception if z is SNaN

INF F, INF +IN
F

+INF QNaNIn
definite

QNaNInd
efinite

-INF if x*y and z have the same sign

QNaNIn
definite

 -INF +INF QNaNInd
efinite

if x*y and z have opposite signs

14-24 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

If unmasked floating-point exceptions are signaled (invalid operation, denormal operand, overflow, underflow, or
inexact result) the result register is left unchanged and a floating-point exception handler is invoked.

14.5.3 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.
Application Software must identify that hardware supports AVX, after that it must also detect support for FMA by
CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is:

INF F, INF -INF -INF QNaNIn
definite

QNaNInd
efinite

+INF if x*y and z have the same sign

QNaNIn
definite

 +INF -INF QNaNInd
efinite

if x*y and z have opposite signs

INF F, INF 0, F +INF +INF -INF -INF if x and y have the same sign

-INF -INF +INF +INF if x and y have opposite signs

INF 0 0, F,
INF

QNaNIn
definite

QNaNIn
definite

QNaNInd
efinite

QNaNInd
efinite

Signal invalid exception

0 INF 0, F,
INF

QNaNIn
definite

QNaNIn
definite

QNaNInd
efinite

QNaNInd
efinite

Signal invalid exception

F INF +IN
F

+INF QNaNIn
definite

QNaNInd
efinite

-INF if x*y and z have the same sign

QNaNIn
definite

-INF +INF
QNaNInd
efinite

if x*y and z have opposite signs

F INF -INF -INF QNaNIn
definite

QNaNInd
efinite

+INF if x*y and z have the same sign

QNaNIn
definite

+INF -INF QNaNInd
efinite

if x*y and z have opposite signs

F INF 0,F +INF +INF -INF -INF if x * y > 0

-INF -INF +INF +INF if x * y < 0

0,F 0,F INF +INF -INF +INF -INF if z > 0

-INF +INF -INF +INF if z < 0

0 0 0 0 0 0 0 The sign of the result depends on the sign of
the operands and on the rounding mode. The
product x*y is +0 or -0, depending on the signs
of x and y. The summation/subtraction of the
zero representing (x*y) and the zero represent-
ing z can lead to one of the four cases shown in
Table 14-16.

0 F 0 0 0 0 0

F 0 0 0 0 0 0

0 0 F z -z z -z

0 F F z -z z -z

F 0 F z -z z -z

F F 0 x*y x*y -x*y -x*y Rounded to the destination precision, with
bounded exponent

F F F (x*y)+z (x*y)-z -(x*y)+z -(x*y)-z Rounded to the destination precision, with
bounded exponent; however, if the exact values
of x*y and z are equal in magnitude with signs
resulting in the FMA operation producing 0, the
rounding behavior described in Table 14-16.

x
(multiplicand)

y
(multiplier)

z r=(x*y)
+z

r=(x*y)
-z

r =
-(x*y)+z

r=
-(x*y)-z

Comment

Vol. 1 14-25

PROGRAMMING WITH AVX, FMA AND AVX2

--
INT supports_fma()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018001000H
cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags
 jne not_supported
; processor supports AVX,FMA instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

Note that FMA comprises 256-bit and 128-bit SIMD instructions operating on YMM states.

14.6 OVERVIEW OF INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. AVX2 instructions follow the same programming model as AVX instructions.
In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.

14.6.1 AVX2 and 256-bit Vector Integer Processing
AVX2 promotes the vast majority of 128-bit integer SIMD instruction sets to operate with 256-bit wide YMM regis-
ters. AVX2 instructions are encoded using the VEX prefix and require the same operating system support as AVX.
Generally, most of the promoted 256-bit vector integer instructions follow the 128-bit lane operation, similar to the
promoted 256-bit floating-point SIMD instructions in AVX.
Newer functionalities in AVX2 generally fall into the following categories:
• Fetching non-contiguous data elements from memory using vector-index memory addressing. These “gather”

instructions introduce a new memory-addressing form, consisting of a base register and multiple indices
specified by a vector register (either XMM or YMM). Data elements sizes of 32 and 64-bits are supported, and
data types for floating-point and integer elements are also supported.

• Cross-lane functionalities are provided with several new instructions for broadcast and permute operations.
Some of the 256-bit vector integer instructions promoted from legacy SSE instruction sets also exhibit cross-
lane behavior, e.g. VPMOVZ/VPMOVS family.

• AVX2 complements the AVX instructions that are typed for floating-point operation with a full compliment of
equivalent set for operating with 32/64-bit integer data elements.

14-26 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

• Vector shift instructions with per-element shift count. Data elements sizes of 32 and 64-bits are supported.

14.7 PROMOTED VECTOR INTEGER INSTRUCTIONS IN AVX2
In AVX2, most SSE/SSE2/SSE3/SSSE3/SSE4 vector integer instructions have been promoted to support VEX.256
encodings. Table 14-18 summarizes the promotion status for existing instructions. The column “VEX.128” indicates
whether the instruction using VEX.128 prefix encoding is supported.
The column “VEX.256” indicates whether 256-bit vector form of the instruction using the VEX.256 prefix encoding
is supported, and under which feature flag.

Table 14-18. Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction

AVX2 AVX YY 0F 6X PUNPCKLBW

AVX2 AVX PUNPCKLWD

AVX2 AVX PUNPCKLDQ

AVX2 AVX PACKSSWB

AVX2 AVX PCMPGTB

AVX2 AVX PCMPGTW

AVX2 AVX PCMPGTD

AVX2 AVX PACKUSWB

AVX2 AVX PUNPCKHBW

AVX2 AVX PUNPCKHWD

AVX2 AVX PUNPCKHDQ

AVX2 AVX PACKSSDW

AVX2 AVX PUNPCKLQDQ

AVX2 AVX PUNPCKHQDQ

no AVX MOVD

no AVX MOVQ

AVX AVX MOVDQA

AVX AVX MOVDQU

AVX2 AVX YY 0F 7X PSHUFD

AVX2 AVX PSHUFHW

AVX2 AVX PSHUFLW

AVX2 AVX PCMPEQB

AVX2 AVX PCMPEQW

AVX2 AVX PCMPEQD

AVX AVX MOVDQA

AVX AVX MOVDQU

no AVX PINSRW

no AVX PEXTRW

AVX2 AVX PSRLW

AVX2 AVX PSRLD

Vol. 1 14-27

PROGRAMMING WITH AVX, FMA AND AVX2

AVX2 AVX PSRLQ

AVX2 AVX PADDQ

AVX2 AVX PMULLW

AVX2 AVX PMOVMSKB

AVX2 AVX PSUBUSB

AVX2 AVX PSUBUSW

AVX2 AVX PMINUB

AVX2 AVX PAND

AVX2 AVX PADDUSB

AVX2 AVX PADDUSW

AVX2 AVX PMAXUB

AVX2 AVX PANDN

AVX2 AVX YY 0F EX PAVGB

AVX2 AVX PSRAW

AVX2 AVX PSRAD

AVX2 AVX PAVGW

AVX2 AVX PMULHUW

AVX2 AVX PMULHW

AVX AVX MOVNTDQ

AVX2 AVX PSUBSB

AVX2 AVX PSUBSW

AVX2 AVX PMINSW

AVX2 AVX POR

AVX2 AVX PADDSB

AVX2 AVX PADDSW

AVX2 AVX PMAXSW

AVX2 AVX PXOR

AVX AVX YY 0F FX LDDQU

AVX2 AVX PSLLW

AVX2 AVX PSLLD

AVX2 AVX PSLLQ

AVX2 AVX PMULUDQ

AVX2 AVX PMADDWD

AVX2 AVX PSADBW

AVX2 AVX PSUBB

AVX2 AVX PSUBW

AVX2 AVX PSUBD

AVX2 AVX PSUBQ

Table 14-18. Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction

14-28 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

AVX2 AVX PADDB

AVX2 AVX PADDW

AVX2 AVX PADDD

AVX2 AVX SSSE3 PHADDW

AVX2 AVX PHADDSW

AVX2 AVX PHADDD

AVX2 AVX PHSUBW

AVX2 AVX PHSUBSW

AVX2 AVX PHSUBD

AVX2 AVX PMADDUBSW

AVX2 AVX PALIGNR

AVX2 AVX PSHUFB

AVX2 AVX PMULHRSW

AVX2 AVX PSIGNB

AVX2 AVX PSIGNW

AVX2 AVX PSIGND

AVX2 AVX PABSB

AVX2 AVX PABSW

AVX2 AVX PABSD

AVX2 AVX MOVNTDQA

AVX2 AVX MPSADBW

AVX2 AVX PACKUSDW

AVX2 AVX PBLENDVB

AVX2 AVX PBLENDW

AVX2 AVX PCMPEQQ

no AVX PEXTRD

no AVX PEXTRQ

no AVX PEXTRB

no AVX PEXTRW

no AVX PHMINPOSUW

no AVX PINSRB

no AVX PINSRD

no AVX PINSRQ

AVX2 AVX PMAXSB

AVX2 AVX PMAXSD

AVX2 AVX PMAXUD

AVX2 AVX PMAXUW

AVX2 AVX PMINSB

Table 14-18. Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction

Vol. 1 14-29

PROGRAMMING WITH AVX, FMA AND AVX2

Table 14-19 compares complementary SIMD functionalities introduced in AVX and AVX2. instructions.

AVX2 AVX PMINSD

AVX2 AVX PMINUD

AVX2 AVX PMINUW

AVX2 AVX PMOVSXxx

AVX2 AVX PMOVZXxx

AVX2 AVX PMULDQ

AVX2 AVX PMULLD

AVX AVX PTEST

AVX2 AVX SSE4.2 PCMPGTQ

no AVX PCMPESTRI

no AVX PCMPESTRM

no AVX PCMPISTRI

no AVX PCMPISTRM

no AVX AESNI AESDEC

no AVX AESDECLAST

no AVX AESENC

no AVX AESECNLAST

no AVX AESIMC

no AVX AESKEYGENASSIST

no AVX CLMUL PCLMULQDQ

Table 14-19. VEX-Only SIMD Instructions in AVX and AVX2

AVX2 AVX Comment

VBROADCASTI128 VBROADCASTF128 256-bit only

VBROADCASTSD ymm1, xmm VBROADCASTSD ymm1, m64 256-bit only

VBROADCASTSS (from xmm) VBROADCASTSS (from m32)

VEXTRACTI128 VEXTRACTF128 256-bit only

VINSERTI128 VINSERTF128 256-bit only

VPMASKMOVD VMASKMOVPS

VPMASKMOVQ! VMASKMOVPD

VPERMILPD in-lane

VPERMILPS in-lane

VPERM2I128 VPERM2F128 256-bit only

VPERMD cross-lane

VPERMPS cross-lane

VPERMQ cross-lane

VPERMPD cross-lane

Table 14-18. Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction

14-30 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

Table 14-20. New Primitive in AVX2 Instructions

VTESTPD

VTESTPS

VPBLENDD

VPSLLVD/Q

VPSRAVD

VPSRLVD/Q

VGATHERDPD/QPD

VGATHERDPS/QPS

VPGATHERDD/QD

VPGATHERDQ/QQ

Instruction Description

VPERMD ymm1, ymm2, ymm3/m256 Permute doublewords in ymm3/m256 using indexes in ymm2 and store the result in ymm1.

VPERMPD ymm1, ymm2/m256, imm8 Permute double-precision FP elements in ymm2/m256 using indexes in imm8 and store the
result in ymm1.

VPERMPS ymm1, ymm2, ymm3/m256 Permute single-precision FP elements in ymm3/m256 using indexes in ymm2 and store the
result in ymm1.

VPERMQ ymm1, ymm2/m256, imm8 Permute quadwords in ymm2/m256 using indexes in imm8 and store the result in ymm1.

VPSLLVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 left by amount specified in the corresponding element of
xmm3/m128 while shifting in 0s.

VPSLLVQ xmm1, xmm2, xmm3/m128 Shift quadwords in xmm2 left by amount specified in the corresponding element of
xmm3/m128 while shifting in 0s.

VPSLLVD ymm1, ymm2, ymm3/m256 Shift doublewords in ymm2 left by amount specified in the corresponding element of
ymm3/m256 while shifting in 0s.

VPSLLVQ ymm1, ymm2, ymm3/m256 Shift quadwords in ymm2 left by amount specified in the corresponding element of
ymm3/m256 while shifting in 0s.

VPSRAVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 right by amount specified in the corresponding element of
xmm3/m128 while shifting in the sign bits.

VPSRLVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 right by amount specified in the corresponding element of
xmm3/m128 while shifting in 0s.

VPSRLVQ xmm1, xmm2, xmm3/m128 Shift quadwords in xmm2 right by amount specified in the corresponding element of
xmm3/m128 while shifting in 0s.

VPSRLVD ymm1, ymm2, ymm3/m256 Shift doublewords in ymm2 right by amount specified in the corresponding element of
ymm3/m256 while shifting in 0s.

VPSRLVQ ymm1, ymm2, ymm3/m256 Shift quadwords in ymm2 right by amount specified in the corresponding element of
ymm3/m256 while shifting in 0s.

VGATHERDD xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather dword values from memory conditioned on
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERQD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather dword values from memory conditioned on
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERDD ymm1, vm32y, ymm2 Using dword indices specified in vm32y, gather dword values from memory conditioned on
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

VGATHERQD ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather dword values from memory conditioned on
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

Table 14-19. VEX-Only SIMD Instructions in AVX and AVX2

AVX2 AVX Comment

Vol. 1 14-31

PROGRAMMING WITH AVX, FMA AND AVX2

14.7.1 Detection of AVX2
Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.
Application Software must identify that hardware supports AVX, after that it must also detect support for AVX2 by
checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode sequence for detection of
AVX2 is:
--
INT supports_avx2()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov eax, 7

VGATHERDPD xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather double-precision FP values from memory
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into
xmm1.

VGATHERQPD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather double-precision FP values from memory
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into
xmm1.

VGATHERDPD ymm1, vm32x, ymm2 Using dword indices specified in vm32x, gather double-precision FP values from memory
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into
ymm1.

VGATHERQPD ymm1, vm64y ymm2 Using qword indices specified in vm64y, gather double-precision FP values from memory
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into
ymm1.

VGATHERDPS xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather single-precision FP values from memory
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into
xmm1.

VGATHERQPS xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather single-precision FP values from memory
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into
xmm1.

VGATHERDPS ymm1, vm32y, ymm2 Using dword indices specified in vm32y, gather single-precision FP values from memory
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into
ymm1.

VGATHERQPS ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather single-precision FP values from memory
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into
ymm1.

VGATHERDQ xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather qword values from memory conditioned on
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERQQ xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather qword values from memory conditioned on
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERDQ ymm1, vm32x, ymm2 Using dword indices specified in vm32x, gather qword values from memory conditioned on
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

VGATHERQQ ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather qword values from memory conditioned on
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

Instruction Description

14-32 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

mov ecx, 0
cpuid
and ebx, 20H
cmp ebx, 20H; check AVX2 feature flags
 jne not_supported
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

14.8 ACCESSING YMM REGISTERS
The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e.
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (255:128) of the YMM registers. AVX and FMA instructions with a VEX
prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
Upper bits of YMM registers (255:128) can be read and written by many instructions with a VEX.256 prefix.

XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers.

14.9 MEMORY ALIGNMENT
Memory alignment requirements on VEX-encoded instruction differs from non-VEX-encoded instructions. Memory
alignment applies to non-VEX-encoded SIMD instructions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory (e.g. MOVAPD, MOVAPS,

MOVDQA, etc.). These instructions always require memory address to be aligned on 16-byte boundary.
• Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less of data from memory (e.g.

MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.). These instructions do not require memory address to be
aligned on 16-byte boundary.

• The vast majority of arithmetic and data processing instructions in legacy SSE instructions (non-VEX-encoded
SIMD instructions) support memory access semantics. When these instructions access 16 bytes of data from
memory, the memory address must be aligned on 16-byte boundary.

Most arithmetic and data processing instructions encoded using the VEX prefix and performing memory accesses
have more flexible memory alignment requirements than instructions that are encoded without the VEX prefix.
Specifically,
• With the exception of explicitly aligned 16 or 32 byte SIMD load/store instructions, most VEX-encoded,

arithmetic and data processing instructions operate in a flexible environment regarding memory address
alignment, i.e. VEX-encoded instruction with 32-byte or 16-byte load semantics will support unaligned load
operation by default. Memory arguments for most instructions with VEX prefix operate normally without

Vol. 1 14-33

PROGRAMMING WITH AVX, FMA AND AVX2

causing #GP(0) on any byte-granularity alignment (unlike Legacy SSE instructions). The instructions that
require explicit memory alignment requirements are listed in Table 14-22.

Software may see performance penalties when unaligned accesses cross cacheline boundaries, so reasonable
attempts to align commonly used data sets should continue to be pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand
sizes and alignment scenarios. The list of guaranteed atomic operations are described in Section 8.1.1 of IA-32
Intel® Architecture Software Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce any new
guaranteed atomic memory operations.
AVX instructions can generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when
CR0.AM=1. 16 and 32-byte memory references will not generate #AC(0) fault. See Table 14-21 for details.
Certain AVX instructions always require 16- or 32-byte alignment (see the complete list of such instructions in
Table 14-22). These instructions will #GP(0) if not aligned to 16-byte boundaries (for 16-byte granularity loads and
stores) or 32-byte boundaries (for 32-byte loads and stores).

Table 14-21. Alignment Faulting Conditions when Memory Access is Not Aligned
EFLAGS.AC==1 && Ring-3 && CR0.AM == 1 0 1

In
st

ru
ct

io
n

Ty
pe

AV
X

, F
M

A
,

16- or 32-byte “explicitly unaligned” loads and stores (see Table
14-23)

no fault no fault

VEX op YMM, m256 no fault no fault

VEX op XMM, m128 no fault no fault

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

SS
E

16 byte “explicitly unaligned” loads and stores (see Table 14-23) no fault no fault

op XMM, m128 #GP(0) #GP(0)

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

Table 14-22. Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256

(V)MOVDQA m128, xmm VMOVDQA m256, ymm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256

(V)MOVAPS m128, xmm VMOVAPS m256, ymm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256

(V)MOVAPD m128, xmm VMOVAPD m256, ymm

(V)MOVNTPS m128, xmm VMOVNTPS m256, ymm

(V)MOVNTPD m128, xmm VMOVNTPD m256, ymm

(V)MOVNTDQ m128, xmm VMOVNTDQ m256, ymm

(V)MOVNTDQA xmm, m128 VMOVNTDQA ymm, m256

14-34 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

14.10 SIMD FLOATING-POINT EXCEPTIONS
AVX instructions can generate SIMD floating-point exceptions (#XM) and respond to exception masks in the same
way as Legacy SSE instructions. When CR4.OSXMMEXCPT=0 any unmasked FP exceptions generate an Undefined
Opcode exception (#UD).
AVX FP exceptions are created in a similar fashion (differing only in number of elements) to Legacy SSE and SSE2
instructions capable of generating SIMD floating-point exceptions.
AVX introduces no new arithmetic operations (AVX floating-point are analogues of existing Legacy SSE instruc-
tions).
F16C, FMA instructions can generate SIMD floating-point exceptions (#XM). The requirement that apply to AVX
also apply to F16C and FMA.
The subset of AVX2 instructions that operate on floating-point data do not generate #XM.
The detailed exception conditions for AVX instructions and legacy SIMD instructions (excluding instructions that
operates on MMX registers) are described in a number of exception class types, depending on the operand syntax
and memory operation characteristics. The complete list of SIMD instruction exception class types are defined in
Chapter 2, “Instruction Format,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

14.11 EMULATION
Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software.
This technique is not supported with AVX instructions.
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. This will cause AVX instructions
to #UD. Emulation of F16C, AVX2, and FMA by operating system can be done similarly as with emulating AVX
instructions.

14.12 WRITING AVX FLOATING-POINT EXCEPTION HANDLERS
AVX and FMA floating-point exceptions are handled in an entirely analogous way to Legacy SSE floating-point
exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide
an exception handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Program-
ming with Streaming SIMD Extensions 2 (SSE2),” describes the SIMD floating-point exception classes and gives
suggestions for writing an exception handler to handle them.

Table 14-23. Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128

(V)MOVDQU m128, m128

(V)MOVUPS xmm, m128

(V)MOVUPS m128, xmm

(V)MOVUPD xmm, m128

(V)MOVUPD m128, xmm

VMOVDQU ymm, m256

VMOVDQU m256, ymm

VMOVUPS ymm, m256

VMOVUPS m256, ymm

VMOVUPD ymm, m256

VMOVUPD m256, ymm

Vol. 1 14-35

PROGRAMMING WITH AVX, FMA AND AVX2

To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.OSXM-
MEXCPT flag (bit 10) must be set.

The guidelines for writing AVX floating-point exception handlers also apply to F16C and FMA.

14.13 GENERAL PURPOSE INSTRUCTION SET ENHANCEMENTS
Enhancements in the general-purpose instruction set consist of several categories:
• A rich collection of instructions to manipulate integer data at bit-granularity. Most of the bit-manipulation

instructions employ VEX-prefix encoding to support three-operand syntax with non-destructive source
operands. Two of the bit-manipulating instructions (LZCNT, TZCNT) are not encoded using VEX. The VEX-
encoded bit-manipulation instructions include: ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, PEXT, PDEP, SARX,
SHLX, SHRX, and RORX.

• Enhanced integer multiply instruction (MULX) in conjunctions with some of the bit-manipulation instructions
allow software to accelerate calculation of large integer numerics (wider than 128-bits).

• INVPCID instruction targets system software that manages processor context IDs.

14-36 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

4. Updates to Chapter 2, Volume 2A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

--

Change to this chapter: Updates to TupleType naming in Table 2-34 and Table 2-35. Updates to Table 2-39 “#UD
Conditions of Operand-Encoding EVEX Prefix Bit Fields”, Table 2-40 “#UD Conditions of Opmask Related
Encoding Field”, Table 2-46 “Type E2 Class Exception Conditions”, and Table 2-49 “Type E4 Class Exception
Conditions”.

Vol. 2A 2-1

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-
32e mode and its sub-modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE,
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4
may be placed in any order relative to each other.
• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H.

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and
input/output instructions. (F2H is also used as a mandatory prefix for some instructions.)

• REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output
instructions. F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none3

Address
displacement
of 1, 2, or 4
bytes or none3

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Prefixes of
1 byte each
(optional)1, 2

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section
2.2.1, “REX Prefixes” for additional information.
2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®
AVX)”.
3. Some rare instructions can take an 8B immediate or 8B displacement.

2-2 Vol. 2A

INSTRUCTION FORMAT

— BND prefix is encoded using F2H if the following conditions are true:

• CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set.

• BNDCFGU.EN and/or IA32_BNDCFGS.EN is set.

• When the F2 prefix precedes a near CALL, a near RET, a near JMP, a short Jcc, or a near Jcc instruction
(see Chapter 17, “Intel® MPX,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved).

• 36H—SS segment override prefix (use with any branch instruction is reserved).

• 3EH—DS segment override prefix (use with any branch instruction is reserved).

• 26H—ES segment override prefix (use with any branch instruction is reserved).

• 64H—FS segment override prefix (use with any branch instruction is reserved).

• 65H—GS segment override prefix (use with any branch instruction is reserved).

— Branch hints1:

• 2EH—Branch not taken (used only with Jcc instructions).

• 3EH—Branch taken (used only with Jcc instructions).
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some
instructions).

• Group 4

• 67H—Address-size override prefix.
The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-L,” for a description
of this prefix.
Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes
only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.
Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality.
Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for
a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes
and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.
The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can
be the default; use of the prefix selects the non-default size.
Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes
may use 66H as a mandatory prefix to express distinct functionality.
Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.
The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

1. Some earlier microarchitectures used these as branch hints, but recent generations have not and they are reserved for future hint
usage.

Vol. 2A 2-3

INSTRUCTION FORMAT

2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the
ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of opera-
tion, size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.
Two-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
• An escape opcode byte 0FH as the primary opcode and a second opcode byte.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous

bullet).
For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte is a mandatory prefix (it is not
considered as a repeat prefix).
Three-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode bytes.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as

previous bullet).
For example, PHADDW for XMM registers consists of the following sequence: 66 0F 38 01. The first byte is the
mandatory prefix.
Valid opcode expressions are defined in Appendix A and Appendix B.

2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M
byte) following the primary opcode. The ModR/M byte contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose

of the reg/opcode field is specified in the primary opcode.
• The r/m field can specify a register as an operand or it can be combined with the mod field to encode an

addressing mode. Sometimes, certain combinations of the mod field and the r/m field are used to express
opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and
scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is
present). If a displacement is required, it can be 1, 2, or 4 bytes.
If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An imme-
diate operand can be 1, 2 or 4 bytes.

2-4 Vol. 2A

INSTRUCTION FORMAT

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table
2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in
Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field
in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B.
In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the
first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide
ways of specifying a memory location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX
technology and XMM registers.
The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required
to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M =
000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM
register XMM0. The register used is determined by the opcode byte and the operand-size attribute.
Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the 3-bit Reg/Opcode
field when the field is used to give the location of a second operand. The second operand must be a general-
purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute.
If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode exten-
sion. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six
are represented in decimal form.
The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by
8 array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4 and 5 are specified by the
column of the table in which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure below
demonstrates interpretation of one table value.

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);

Vol. 2A 2-5

INSTRUCTION FORMAT

NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the

index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

2-6 Vol. 2A

INSTRUCTION FORMAT

NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used
as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field.
Table rows in the body of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the scaling
factor (determined by SIB byte bits 6 and 7).

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

Vol. 2A 2-7

INSTRUCTION FORMAT

NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the

following address modes:
MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are:
• Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software

unmodified.
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space.

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
99
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

2-8 Vol. 2A

INSTRUCTION FORMAT

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.
Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if an instruction references one
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is ignored.
Only one REX prefix is allowed per instruction. If used, the REX prefix byte must immediately precede the opcode
byte or the escape opcode byte (0FH). When a REX prefix is used in conjunction with an instruction containing a
mandatory prefix, the mandatory prefix must come before the REX so the REX prefix can be immediately preceding
the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix should have REX placed between F3 and
0F E6. Other placements are ignored. The instruction-size limit of 15 bytes still applies to instructions with a REX
prefix. See Figure 2-3.

2.2.1.1 Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending
on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte.
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base)

byte.
• Instructions without ModR/M: the reg field of the opcode.
In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the
addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.
The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality
is still available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1).
See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix
fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:
• Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like

the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations.
• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored.
• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

Figure 2-3. Prefix Ordering in 64-bit Mode

REX

Immediate data
of 1, 2, or 4
bytes or none

Address
displacement of
1, 2, or 4 bytes

1 byte
(if required)

1 byte
(if required)

1-, 2-, or
3-byte
opcode

(optional)Grp 1, Grp
2, Grp 3,
Grp 4
(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes

Vol. 2A 2-9

INSTRUCTION FORMAT

• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is
ignored when ModR/M specifies other registers or defines an extended opcode.

• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field

used for accessing GPRs.

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

REX PREFIX

0100WR0B

Opcode mod

≠11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-3

REX PREFIX

0100WR0B

Opcode mod

11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-4

2-10 Vol. 2A

INSTRUCTION FORMAT

In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s
reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional
addressing capability for byte-registers that makes the least-significant byte of GPRs available for byte operations.
Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encod-
ings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each
case behaves.

Figure 2-6. Memory Addressing With a SIB Byte

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

mod

≠ 11

ModRM Byte

r/m

100

reg

rrr

scale

ss

SIB Byte

REX PREFIX

0100WRXB

Opcode

Rrrr

base

Bbbb

bbb

Xxxx

index

xxx

OM17Xfig1-5

REX PREFIX

0100W00B

Opcode

Bbbb

reg

bbb

OM17Xfig1-6

Vol. 2A 2-11

INSTRUCTION FORMAT

2.2.1.3 Displacement
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement
sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

2.2.1.4 Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate
absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For
these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode). See
Table 2-6.

2.2.1.5 Immediates
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the
processor sign-extends all immediates to 64 bits prior to their use.
Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV
reg, imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions
can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to
a 64-bit operand size.
For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

Table 2-5. Special Cases of REX Encodings
ModR/M or
SIB

Sub-field
Encodings

Compatibility Mode
Operation

Compatibility Mode
Implications Additional Implications

ModR/M Byte mod ≠ 11 SIB byte present. SIB byte required for
ESP-based addressing.

REX prefix adds a fourth bit (b) which is not decoded
(don't care).

SIB byte also required for R12-based addressing.
r/m =
b*100(ESP)

ModR/M Byte mod = 0 Base register not
used.

EBP without a
displacement must be
done using

mod = 01 with
displacement of 0.

REX prefix adds a fourth bit (b) which is not decoded
(don't care).

Using RBP or R13 without displacement must be done
using mod = 01 with a displacement of 0.

r/m =
b*101(EBP)

SIB Byte index =
0100(ESP)

Index register not
used.

ESP cannot be used as
an index register.

REX prefix adds a fourth bit (b) which is decoded.

There are no additional implications. The expanded
index field allows distinguishing RSP from R12,
therefore R12 can be used as an index.

SIB Byte base =
0101(EBP)

Base register is
unused if mod = 0.

Base register depends
on mod encoding.

REX prefix adds a fourth bit (b) which is not decoded.

This requires explicit displacement to be used with
EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B

Table 2-6. Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX

2-12 Vol. 2A

INSTRUCTION FORMAT

2.2.1.6 RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An
effective address is formed by adding displacement to the 64-bit RIP of the next instruction.
In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative
addressing. Without RIP-relative addressing, all ModR/M modes address memory relative to zero.
RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 2-7 shows the ModR/M and SIB
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative
addressing is encoded using a redundant form.
In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than
displacement-only. See Table 2-7.

The ModR/M encoding for RIP-relative addressing does not depend on using a prefix. Specifically, the r/m bit field
encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting
R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B
combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode
R13 + 0 using a 1-byte displacement of zero.
RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix
does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the
computed effective address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this
operand size). These are:
• Near branches.
• All instructions, except far branches, that implicitly reference the RSP.

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the
ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the
processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. CR8
becomes the Task Priority Register (TPR).
In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access
unimplemented registers results in an invalid-opcode exception (#UD).

Table 2-7. RIP-Relative Addressing
ModR/M and SIB Sub-field Encodings Compatibility Mode

Operation
64-bit Mode
Operation

Additional Implications in 64-bit mode

ModR/M Byte mod = 00 Disp32 RIP + Disp32 Must use SIB form with normal (zero-based)
displacement addressing r/m = 101 (none)

SIB Byte base = 101 (none) if mod = 00, Disp32 Same as legacy None

index = 100 (none)

scale = 0, 1, 2, 4

Vol. 2A 2-13

INSTRUCTION FORMAT

2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field,
operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX
encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite
the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact represen-
tation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme
also allows more headroom for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when necessary. For example, the third

source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.
• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers).
• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-

tation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-

R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a
subset of SIMD instructions need them.

• Extensibility for future instruction extensions without significant instruction length increase.
Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax.
VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, F2H, F3H in legacy SSE instructions. VEX
prefix provides substantially richer capability than the REX prefix.

Figure 2-8. Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes

2-14 Vol. 2A

INSTRUCTION FORMAT

2.3.5 The VEX Prefix
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX
instructions; while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields
providing specific capability, they are shown in Figure 2-9.
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source

operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded
as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to
distinguish encoded values of other VEX bit fields.

• REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is
encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’s complement
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two
and three-byte opcode. The one or two leading bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape
(0FH) and two-byte escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. The
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant
byte sequence, 0FH, 0FH 3AH, 0FH 38H. These VEX-encoded instruction may have 128 bit vector length or 256
bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any other
prefixes. If VEX prefix is present a REX prefix is not supported.
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are
reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by
one byte. This may be helpful in some situations for code alignment.
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain
new instruction functionality can only be encoded with the VEX prefix.
The VEX prefix will #UD on any instruction containing MMX register sources or destinations.

Vol. 2A 2-15

INSTRUCTION FORMAT

Figure 2-9. VEX bit fields

The following subsections describe the various fields in two or three-byte VEX prefix.

2.3.5.1 VEX Byte 0, bits[7:0]
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h
first byte, while the 2-byte VEX uses the C5h first byte.

2.3.5.2 VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit
must be set to ‘1’ otherwise the instruction is LES or LDS.

11000100 1

670

vvvv

1 03 2

L

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2
(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm:

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form

2-16 Vol. 2A

INSTRUCTION FORMAT

This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architec-
tures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending
on the specific opcode.
• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a

general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has same
meaning in the corresponding AVX equivalent form. In 32-bit modes for these instructions, VEX.W is silently
ignored.

• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

• For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and
setting to other than zero will cause instruction to #UD.

2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or Dest
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with
existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to
place only inverted, 64-bit valid fields (extended register selectors) in these upper bits.
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that
for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source
register specifier stored in inverted (1’s complement) form.
VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with
no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b
otherwise instruction will #UD.
In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or YMM registers. In 32-bit and
16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte
VEX version will ignore this bit).

Vol. 2A 2-17

INSTRUCTION FORMAT

Table 2-8. VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register operand.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded
instructions have syntax with less than three operands, e.g. VEX-encoded pack shift instructions support one
source operand and one destination operand).
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with
respect to encoding destination and source operands vary with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for

instructions with 2 or more source operands.
• VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts.

The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “Opcode”
column in Table 2-9 is described in detail in section 3.1.1.

• VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b.

Table 2-9. Instructions with a VEX.vvvv destination

VEX.vvvv Dest Register Valid in Legacy/Compatibility 32-bit modes?

1111B XMM0/YMM0 Valid

1110B XMM1/YMM1 Valid

1101B XMM2/YMM2 Valid

1100B XMM3/YMM3 Valid

1011B XMM4/YMM4 Valid

1010B XMM5/YMM5 Valid

1001B XMM6/YMM6 Valid

1000B XMM7/YMM7 Valid

0111B XMM8/YMM8 Invalid

0110B XMM9/YMM9 Invalid

0101B XMM10/YMM10 Invalid

0100B XMM11/YMM11 Invalid

0011B XMM12/YMM12 Invalid

0010B XMM13/YMM13 Invalid

0001B XMM14/YMM14 Invalid

0000B XMM15/YMM15 Invalid

Opcode Instruction mnemonic

VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8

2-18 Vol. 2A

INSTRUCTION FORMAT

The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the

destination register operand or a source register operand.
The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction

operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four
operands. The role of bits 7:4 of the immediate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A). Several bits are
reserved for future use and will #UD unless 0.

Table 2-10. VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 0Fh opcode byte.

2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If “VEX.L = 1”, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector
operations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits
255:128 of all YMM registers accessible in the current operating mode.
See the following table.

Table 2-11. VEX.L interpretation

2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”
Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix
behaves as if it was encoded prior to VEX, but after all other encoded prefixes.
See the following table.

VEX.m-mmmm Implied Leading Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit

Vol. 2A 2-19

INSTRUCTION FORMAT

Table 2-12. VEX.pp interpretation

2.3.7 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color.
Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

2.3.9 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and
PBLENDVB use imm8[7:4] to encode one of the source registers.

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers
If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits
(above bit 128) of the equivalent YMM register. Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1 Vector Length Transition and Programming Considerations
An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register
operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any
future extensions to the vector registers. A calling function that uses such extensions should save their state before
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is
recommended that software handling involuntary calls accommodate this by not executing instructions encoded
with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions,
then software must take special care to avoid actions that would, on future processors, zero the upper bits of
vector registers.
Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the
XSAVE and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software
that handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first
save and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with
save/restore masks that set bits that correspond to all vector-register extensions. Ideally, software should rely on
a mechanism that is cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore mask bits
for all vector-register extensions that are enabled in XCR0.) Saving and restoring state with instructions other than
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector
registers - even if doing so functions correctly on processors supporting 256-bit vector registers. (The same is true

pp Implies this prefix after other prefixes but before VEX

00B None

01B 66

10B F3

11B F2

2-20 Vol. 2A

INSTRUCTION FORMAT

if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported
extensions to the vector registers.)

2.3.11 AVX Instruction Length
The AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11
bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains
15 bytes.

2.3.12 Vector SIB (VSIB) Memory Addressing
In Intel® Advanced Vector Extensions 2 (Intel® AVX2), an SIB byte that follows the ModR/M byte can support VSIB
memory addressing to an array of linear addresses. VSIB addressing is only supported in a subset of Intel AVX2
instructions. VSIB memory addressing requires 32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing
is not supported when address size attribute is overridden to 16 bits. In 16-bit protected mode, VSIB memory
addressing is permitted if address size attribute is overridden to 32 bits. Additionally, VSIB memory addressing is
supported only with VEX prefix.
In VSIB memory addressing, the SIB byte consists of:
• The scale field (bit 7:6) specifies the scale factor.
• The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector

register specifies an index.
• The base field (bits 2:0) specifies the register number of the base register.
Table 2-3 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8L-R15L applicable only in 64-bit
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 2-3). In 32-bit mode,
R8L-R15L does not apply.
Table rows in the body of the table indicate the vector index register used as the index field and each supported
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-
most column includes vector registers VR8-VR15 (i.e. XMM8/YMM8-XMM15/YMM15), which are only available in
64-bit mode and does not apply if encoding in 32-bit mode.

Table 2-13. 32-Bit VSIB Addressing Forms of the SIB Byte
r32

(In decimal) Base =
(In binary) Base =

EAX/
R8L
0
000

ECX/
R9L
1
001

EDX/
R10L
2
010

EBX/
R11L
3
011

ESP/
R12L
4
100

EBP/
R13L1

5
101

ESI/
R14L
6
110

EDI/
R15L
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*1 00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*2 01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

Vol. 2A 2-21

INSTRUCTION FORMAT

2.3.12.1 64-bit Mode VSIB Memory Addressing
In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one
of the 16 vector registers as the vector index register.
In 64-bit mode the top row of Table 2-13 base register should be interpreted as the full 64-bit of each register.

2.4 AVX AND SSE INSTRUCTION EXCEPTION SPECIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table 2-14 summarizes the exception behavior into separate classes, with detailed exception
conditions defined in sub-sections 2.4.1 through 2.5.1. For example, ADDPS contains the entry:
“See Exceptions Type 2”
In this entry, “Type2” can be looked up in Table 2-14.
The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction
summary table.
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the
feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the
exception classes defined in this section. For instructions that operate on MMX registers, see
Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*4 10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*8 11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

NOTES:
1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the

base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:
MOD Effective Address
00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

Table 2-13. 32-Bit VSIB Addressing Forms of the SIB Byte (Contd.)

2-22 Vol. 2A

INSTRUCTION FORMAT

Table 2-14. Exception class description

See Table 2-15 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point

Exceptions (#XM)

Type 1
AVX,

Legacy SSE
16/32 byte explicitly

aligned
None

Type 2
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
Yes

Type 3
AVX,

Legacy SSE
< 16 byte Yes

Type 4
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
No

Type 5
AVX,

Legacy SSE
< 16 byte No

Type 6 AVX (no Legacy SSE) Varies (At present, none do)

Type 7
AVX,

Legacy SSE
None None

Type 8 AVX None None

Type 11
F16C 8 or 16 byte, Not explicitly

aligned, no AC#
Yes

Type 12
AVX2 Not explicitly aligned, no

AC#
No

Vol. 2A 2-23

INSTRUCTION FORMAT

Table 2-15. Instructions in each Exception Class

(*) - Additional exception restrictions are present - see the Instruction description for details
(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s, i.e. no

alignment checks are performed.

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ,
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*,
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS,
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS,
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS,
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS,
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS,
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS,
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS,
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, (V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS,
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS,
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS,
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD,
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD,
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU***,
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*,
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW,
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB,
(V)PBLENDW, (V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB,
(V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW,
(V)PHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB,
(V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD,
(V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD,
(V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB,
(V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ,
(V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PUNPCKHBW, (V)PUNPCKHWD,
(V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, (V)PUNPCKLQDQ,
(V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD,
(V)UNPCKLPS, (V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, VPERMQ, VPSLLVD, VPSLLVQ,
VPSRAVD, VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F128

Type 5
(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS,
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, VSTMXCSR

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**,
VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM2I128

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW,
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ

2-24 Vol. 2A

INSTRUCTION FORMAT

(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the memory operand is not
aligned to 16-Byte boundary.

Table 2-15 classifies exception behaviors for AVX instructions. Within each class of exception conditions that are
listed in Table 2-18 through Table 2-27, certain subsets of AVX instructions may be subject to #UD exception
depending on the encoded value of the VEX.L field. Table 2-17 provides supplemental information of AVX instruc-
tions that may be subject to #UD exception if encoded with incorrect values in the VEX.W or VEX.L field.

Table 2-16. #UD Exception and VEX.W=1 Encoding

Exception Class #UD If VEX.W = 1 in all modes
#UD If VEX.W = 1 in
non-64-bit modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD, VPERMD,
VPERMPS, VPERM2I128, VPSRAVD, VPERMILPD, VPERMILPS, VPERM2F128

Type 5

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128,
VINSERTF128, VMASKMOVPS, VMASKMOVPD, VBROADCASTI128,
VPBROADCASTB/W/D, VEXTRACTI128, VINSERTI128

Type 7

Type 8

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12

Vol. 2A 2-25

INSTRUCTION FORMAT

Table 2-17. #UD Exception and VEX.L Field Encoding
Exception

Class
#UD If VEX.L = 0

#UD If (VEX.L = 1 && AVX2 not present && AVX
present)

#UD If (VEX.L = 1 && AVX2
present)

Type 1 VMOVNTDQA

Type 2
VDPPD VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D,
VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D,
VPADDQ, VPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND,
VPANDN, VPAVGB/W, VPBLENDVB, VPBLENDW,
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q,
VPHADDW/D, VPHADDSW, VPHMINPOSUW, VPHSUBD/W,
VPHSUBSW, VPMADDWD, VPMADDUBSW, VPMAXSB/W/D,
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D,
VPMULHUW, VPMULHRSW, VPMULHW/LW, VPMULLD,
VPMULUDQ, VPMULDQ, VPOR, VPSADBW, VPSHUFB/D,
VPSHUFHW/LW, VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D,
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W,
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ,
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

VPCMP(E/I)STRI/M,
PHMINPOSUW

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD,
VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD,
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW,
VPINSRQ, VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Same as column 3

Type 6

VEXTRACTF128,
VPERM2F128,
VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ,
VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD,
VPSRLW, VPSRLD, VPSRLQ

VMOVLHPS, VMOVHLPS

Type 8

Type 11

Type 12

2-26 Vol. 2A

INSTRUCTION FORMAT

2.4.1 Exceptions Type 1 (Aligned memory reference)

Table 2-18. Type 1 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X
VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Vol. 2A 2-27

INSTRUCTION FORMAT

2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)

Table 2-19. Type 2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception,
#XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

2-28 Vol. 2A

INSTRUCTION FORMAT

2.4.3 Exceptions Type 3 (<16 Byte memory argument)

Table 2-20. Type 3 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 Bytes or
less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

Vol. 2A 2-29

INSTRUCTION FORMAT

2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)

Table 2-21. Type 4 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

NOTES:
1. PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the memory operand is not aligned to

16-Byte boundary.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

2-30 Vol. 2A

INSTRUCTION FORMAT

2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-22. Type 5 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Vol. 2A 2-31

INSTRUCTION FORMAT

2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23. Type 6 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault
#PF(fault-code)

X X For a page fault.

Alignment Check
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is 3.

2-32 Vol. 2A

INSTRUCTION FORMAT

2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-24. Type 7 Class Exception Conditions

2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-25. Type 8 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual-8086 mode.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv ≠ 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Vol. 2A 2-33

INSTRUCTION FORMAT

2.4.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26. Type 11 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF
(fault-code)

X X X For a page fault.

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

2-34 Vol. 2A

INSTRUCTION FORMAT

2.4.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

2.5 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS
VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded
general-purpose-register instructions have the following properties:
• Instruction syntax support for three encodable operands.
• Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via

VEX.vvvv, and destructive three-operand syntax.
• Elimination of escape opcode byte (0FH), two-byte escape via a compact bit field representation within the VEX

prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15)

for direct register access or memory addressing.
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only.
• VEX-encoded GPR instructions are encoded with VEX.L=0.

Table 2-27. Type 12 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm ≠ ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If any vector register is used more than once between the destination register,
mask register and the index register in VSIB addressing.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.

Vol. 2A 2-35

INSTRUCTION FORMAT

Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD.
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

2.5.1 Exception Conditions for VEX-Encoded GPR Instructions
The exception conditions applicable to VEX-encoded GPR instruction differs from those of legacy GPR instructions.
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GRP instructions are
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is
not encodable.

(*) - Additional exception restrictions are present - see the Instruction description for details.

2.6 INTEL® AVX-512 ENCODING
The majority of the Intel AVX-512 family of instructions (operating on 512/256/128-bit vector register operands)
are encoded using a new prefix (called EVEX). Opmask instructions (operating on opmask register operands) are
encoded using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using
the VEX prefix, and many other capabilities not available with the VEX prefix.
The significant feature differences between EVEX and VEX are summarized below.

Table 2-28. VEX-Encoded GPR Instructions

Exception Class Instruction

See Table 2-29 ANDN, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

Table 2-29. Exception Definition (VEX-Encoded GPR Instructions)

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If BMI1/BMI2 CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

2-36 Vol. 2A

INSTRUCTION FORMAT

• EVEX is a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte
(C4H is the first byte) prefix.

• EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.
• EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded

vector instructions. Opmask instructions, whose source/destination operands are opmask registers and treat
the content of an opmask register as a single value, are encoded using the VEX prefix.

• EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve the encoding
density of the instruction byte stream.

• EVEX prefix can encode functionality that are specific to instruction classes (e.g., packed instruction with
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic
semantic can support “suppress all exceptions” functionality).

2.6.1 Instruction Format and EVEX
The placement of the EVEX prefix in an IA instruction is represented in Figure 2-10.

The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 2-11. The first byte must be 62H, followed
by three payload bytes, denoted as P0, P1, and P2 individually or collectively as P[23:0] (see Figure 2-11).

Figure 2-10. AVX-512 Instruction Format and the EVEX Prefix

Figure 2-11. Bit Field Layout of the EVEX Prefix

[Immediate][Prefixes] [Disp32][SIB]ModR/MOpcodeEVEX

of bytes: 4 1 1 1 4 1

[Disp8*N]

1

EVEX 62H P0 P1 P2

P0

7 6 5 4 3 2 01
R X B R’ 0 0 mm

P1

7 6 5 4 3 2 01
W v v v v 1 pp

P2

7 6 5 4 3 2 01
z L’ L b V’ a aa

P[7:0]

P[15:8]

P[23:16]

Vol. 2A 2-37

INSTRUCTION FORMAT

The bit fields in P[23:0] are divided into the following functional groups (Table 2-30 provides a tabular summary):
• Reserved bits: P[3:2] must be 0, otherwise #UD.
• Fixed-value bit: P[10] must be 1, otherwise #UD.
• Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is

identical to VEX.pp.
• Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows

access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers.
• Operand specifier modifier bit for vector register: P[4] (or EVEX.R’) allows access to the high 16 vector register

set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector
register when SIB or VSIB addressing are not needed.

• Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector
register operand in a non-destructive source syntax, vector index register operand can access an upper 16
vector register using P[19].

• Op-mask register specifiers: P[18:16] encodes op-mask register set k0-k7 in instructions operating on vector
registers.

• EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to
64-bit in 64-bit mode.

• Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the
masked elements or leave masked element unchanged.

• Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different
classes of instructions and can affect the meaning of the remaining field (EVEX.L’L). The functionality for the
following instruction classes are:

— Broadcasting a single element across the destination vector register: this applies to the instruction class
with Load+Op semantic where one of the source operand is from memory.

— Redirect L’L field (P[22:21]) as static rounding control for floating-point instructions with rounding
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).

— Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.

— For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.

Table 2-30. EVEX Prefix Bit Field Functional Grouping

Notation Bit field Group Position Comment

-- Reserved P[3 : 2] Must be 0.

-- Fixed Value P[10] Must be 1.

EVEX.mm Compressed legacy escape P[1: 0] Identical to low two bits of VEX.mmmmm.

EVEX.pp Compressed legacy prefix P[9 : 8] Identical to VEX.pp.

EVEX.RXB Next-8 register specifier modifier P[7 : 5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx).

EVEXR’ High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.reg.

EVEXX High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent.

EVEX.vvvv NDS register specifier P[14 : 11] Same as VEX.vvvv.

EVEXV’ High-16 NDS/VIDX register specifier P[19] Combine with EVEX.vvvv or when VSIB present.

EVEX.aaa Embedded opmask register specifier P[18 : 16]

EVEX.W Osize promotion/Opcode extension P[15]

EVEX.z Zeroing/Merging P[23]

EVEX.b Broadcast/RC/SAE Context P[20]

EVEX.L’L Vector length/RC P[22 : 21]

2-38 Vol. 2A

INSTRUCTION FORMAT

• Vector length/rounding control specifier: P[22:21] can serve one of three options.

— Vector length information for packed vector instructions.

— Ignored for instructions operating on vector register content as a single data element.

— Rounding control for floating-point instructions that have a rounding semantic and whose source and
destination operands are all vector registers.

2.6.2 Register Specifier Encoding and EVEX
EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction
syntax and memory addressing in 64-bit mode are shown in Table 2-31. Opmask register encoding is described in
Section 2.6.3.

The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are
shown in Table 2-32.

2.6.3 Opmask Register Encoding
There are eight opmask registers, k0-k7. Opmask register encoding falls into two categories:
• Opmask registers that are the source or destination operands of an instruction treating the content of opmask

register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using
standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not support
conditional update of the destination operand.

• An opmask register providing conditional processing and/or conditional update of the destination register of a
vector instruction is encoded using EVEX.aaa field (see Section 2.6.4).

Table 2-31. 32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits

41

NOTES:
1. Not applicable for accessing general purpose registers.

3 [2:0] Reg. Type Common Usages

REG EVEX.R’ REX.R modrm.reg GPR, Vector Destination or Source

NDS/NDD EVEX.V’ EVEX.vvvv GPR, Vector 2ndSource or Destination

RM EVEX.X EVEX.B modrm.r/m GPR, Vector 1st Source or Destination

BASE 0 EVEX.B modrm.r/m GPR memory addressing

INDEX 0 EVEX.X sib.index GPR memory addressing

VIDX EVEX.V’ EVEX.X sib.index Vector VSIB memory addressing

Table 2-32. EVEX Encoding Register Specifiers in 32-bit Mode

[2:0] Reg. Type Common Usages

REG modrm.reg GPR, Vector Destination or Source

NDS/NDD EVEX.vvv GPR, Vector 2nd Source or Destination

RM modrm.r/m GPR, Vector 1st Source or Destination

BASE modrm.r/m GPR Memory Addressing

INDEX sib.index GPR Memory Addressing

VIDX sib.index Vector VSIB Memory Addressing

Vol. 2A 2-39

INSTRUCTION FORMAT

• An opmask register serving as the destination or source operand of a vector instruction is encoded using
standard modR/M byte’s reg field and rm fields.

2.6.4 Masking Support in EVEX
EVEX can encode an opmask register to conditionally control per-element computational operation and updating of
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. k0 can be used as a regular source or destination but cannot be encoded as a predicate operand.
AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking:
• Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old

value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case
of EVEX.z = 0.

• Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set
to 0 when the corresponding mask bit has a 0 value.

AVX-512 Foundation instructions can be divided into the following groups:
• Instructions which support “zeroing-masking”.

— Also allow merging-masking.
• Instructions which require aaa = 000.

— Do not allow any form of masking.
• Instructions which allow merging-masking but do not allow zeroing-masking.

— Require EVEX.z to be set to 0.

— This group is mostly composed of instructions that write to memory.
• Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.

— Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.

2.6.5 Compressed Displacement (disp8*N) Support in EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 2-34 and Table 2-35 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.
Table 2-34 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of

Table 2-33. Opmask Register Specifier Encoding

[2:0] Register Access Common Usages

REG modrm.reg k0-k7 Source

NDS VEX.vvvv k0-k7 2nd Source

RM modrm.r/m k0-7 1st Source

{k1} EVEX.aaa k01-k7

NOTES:
1. Instructions that overwrite the conditional mask in opmask do not permit using k0 as the embedded mask.

Opmask

2-40 Vol. 2A

INSTRUCTION FORMAT

numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword (see Section 2.6.11).
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 2-35. Table 2-35
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 2-35. Instruc-
tion classified in Table 2-35 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction,
providing the cross reference for the scaling factor N to encoding memory addressing operand.
Note that the disp8*N rules still apply when using 16b addressing.

Table 2-34. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 2-35. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by

EVEX.W64bit N/A 8 8 8

Tuple2
32bit 0 8 8 8

Broadcast (2 elements)
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements)
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements)

Half Mem N/A N/A 8 16 32 SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

Vol. 2A 2-41

INSTRUCTION FORMAT

2.6.6 EVEX Encoding of Broadcast/Rounding/SAE Support
EVEX.b can provide three types of encoding context, depending on the instruction classes:
• Embedded broadcasting of one data element from a source memory operand to the destination for vector

instructions with “load+op” semantic.
• Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.
• “Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that

do not have rounding semantic.

2.6.7 Embedded Broadcast Support in EVEX
EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit
(double word or single-precision floating-point) and 64-bit data elements, and when the source operand is from
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element
is loaded from memory and broadcasted to all other elements instead of loading the full memory size.
The following instruction classes do not support embedded broadcasting:
• Instructions with only one scalar result is written to the vector destination.
• Instructions with explicit broadcast functionality provided by its opcode.
• Instruction semantic is a pure load or a pure store operation.

2.6.8 Static Rounding Support in EVEX
Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both
cases, the field EVEX.L’L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is
set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR masking controls are set.

2.6.9 SAE Support in EVEX
The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR
masking controls are set.

2.6.10 Vector Length Orthogonality
The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths.
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector
instructions are generally determined using the L’L field in EVEX prefix, except for 512-bit floating-point, reg-reg
instructions with rounding semantic. The table below shows the vector length corresponding to various values of
the L’L bits. When EVEX is used to encode scalar instructions, L’L is generally ignored.
When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L’L fields are summarized in
Table 2-36.

2-42 Vol. 2A

INSTRUCTION FORMAT

2.6.11 #UD Equations for EVEX
Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and
opcode dependent.

2.6.11.1 State Dependent #UD
In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 2-37 lists instruction categories with
respect to required processor state components. Attempts to execute a given category of instructions while
enabled states were less than the required bit vector in XCR0 shown in Table 2-37 will cause #UD.

2.6.11.2 Opcode Independent #UD
A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns
listed in Table 2-38.

Table 2-36. EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions

Position P2[4] P2[6:5] P2[6:5]

Broadcast/Rounding/SAE Context EVEX.b EVEX.L’L EVEX.RC

Reg-reg, FP Instructions w/ rounding semantic Enable static rounding
control (SAE implied)

Vector length Implied
(512 bit or scalar)

00b: SAE + RNE
01b: SAE + RD
10b: SAE + RU
11b: SAE + RZ

FP Instructions w/o rounding semantic, can cause #XF SAE control 00b: 128-bit
01b: 256-bit
10b: 512-bit
11b: Reserved (#UD)

NA

Load+op Instructions w/ memory source Broadcast Control NA

Other Instructions (
Explicit Load/Store/Broadcast/Gather/Scatter)

Must be 0 (otherwise
#UD)

NA

Table 2-37. OS XSAVE Enabling Requirements of Instruction Categories

Instruction Categories Vector Register State Access Required XCR0 Bit Vector [7:0]

Legacy SIMD prefix encoded Instructions (e.g SSE) XMM xxxxxx11b

VEX-encoded instructions operating on YMM YMM xxxxx111b

EVEX-encoded 128-bit instructions ZMM 111xx111b

EVEX-encoded 256-bit instructions ZMM 111xx111b

EVEX-encoded 512-bit instructions ZMM 111xx111b

VEX-encoded instructions operating on opmask k-reg xx1xxx11b

Table 2-38. Opcode Independent, State Dependent EVEX Bit Fields

Position Notation 64-bit #UD Non-64-bit #UD

P[3 : 2] -- if > 0 if > 0

P[10] -- if 0 if 0

P[1: 0] EVEX.mm if 00b if 00b

P[7 : 6] EVEX.RX None (valid) None (BOUND if EVEX.RX != 11b)

Vol. 2A 2-43

INSTRUCTION FORMAT

2.6.11.3 Opcode Dependent #UD
This section describes legal values for the rest of the EVEX bit fields. Table 2-39 lists the #UD conditions of EVEX
prefix bit fields which encodes or modifies register operands.

Table 2-40 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEX.z

Table 2-39. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.R P[7] ModRM.reg encodes k-reg if EVEX.R = 0 None (BOUND if
EVEX.RX != 11b)ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes all other registers None (valid)

EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)

ModRM.r/m encodes k-reg or GPR None (ignored)

ModRM.r/m without SIB/VSIB None (ignored)

ModRM.r/m with SIB/VSIB None (valid)

EVEX.B P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)

ModRM.r/m encodes other registers None (valid)

ModRM.r/m base present None (valid)

ModRM.r/m base not present None (ignored)

EVEXR’ P[4] ModRM.reg encodes k-reg or GPR if 0 None (ignored)

ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes ZMM/YMM/XMM None (valid)

EVEX.vvvv P[14 : 11] vvvv encodes ZMM/YMM/XMM None (valid) None (valid)
P[14] ignored

Otherwise if != 1111b if != 1111b

EVEXV’ P[19] Encodes ZMM/YMM/XMM None (valid) None (ignored)

Otherwise if 0 None (ignored)

Table 2-40. #UD Conditions of Opmask Related Encoding Field

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.aaa P[18 : 16] Instructions do not use opmask for conditional processing1.

NOTES:
1. E.g., VBROADCASTMxxx, VPMOVM2x, VPMOVx2M.

if aaa != 000b if aaa != 000b

Opmask used as conditional processing mask and updated
at completion2.

2. E.g., Gather/Scatter family.

if aaa = 000b if aaa = 000b;

Opmask used as conditional processing. None (valid3)

3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all elements will be pro-
cessed as if there was a mask of ‘all ones’ regardless of the actual value in K0.

None (valid1)

EVEX.z P[23] Vector instruction using opmask as source or destination4. if EVEX.z != 0 if EVEX.z != 0

Store instructions or gather/scatter instructions. if EVEX.z != 0 if EVEX.z != 0

Instruction supporting conditional processing mask with
EVEX.aaa = 000b.

if EVEX.z != 0 if EVEX.z != 0

VEX.vvvv Varies K-regs are instruction operands not mask control. if vvvv = 0xxxb None

2-44 Vol. 2A

INSTRUCTION FORMAT

Table 2-41 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.

2.6.12 Device Not Available
EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CR0.TS[bit 3]= 1.

2.6.13 Scalar Instructions
EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support
masking (using the least significant bit of the opmask register), but broadcasting is not supported.

2.7 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS
The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of
“E##” or with a suffix “E##XX”. The “##” designation generally follows that of AVX/AVX2 instructions. The
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are named
“E##NF”. A summary table of exception classes by class names are shown below.

4. E.g., VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M.

Table 2-41. #UD Conditions Dependent on EVEX.b Context

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.L’Lb P[22 : 20] Reg-reg, FP instructions with rounding semantic. None (valid1)

NOTES:
1. L’L specifies rounding control, see Table 2-36, supports {er} syntax.

None (valid1)

Other reg-reg, FP instructions that can cause #XF. None (valid2)

2. L’L specifies vector length, see Table 2-36, supports {sae} syntax.

None (valid2)

Other reg-mem instructions in Table 2-34. None (valid3)

3. L’L specifies vector length, see Table 2-36, supports embedded broadcast syntax

None (valid3)

Other instruction classes4 in Table 2-35.

4. L’L specifies either vector length or ignored.

If EVEX.b > 0 If EVEX.b > 0

Table 2-42. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)

Type E1 Vector Moves/Load/Stores Explicitly aligned, w/ fault suppression None

Type E1NF Vector Non-temporal Stores Explicitly aligned, no fault suppression None

Type E2 FP Vector Load+op Support fault suppression Yes

Type E2NF FP Vector Load+op No fault suppression Yes

Type E3 FP Scalar/Partial Vector, Load+Op Support fault suppression Yes

Type E3NF FP Scalar/Partial Vector, Load+Op No fault suppression Yes

Type E4 Integer Vector Load+op Support fault suppression No

Type E4NF Integer Vector Load+op No fault suppression No

Type E5 Legacy-like Promotion Varies, Support fault suppression No

Vol. 2A 2-45

INSTRUCTION FORMAT

Table 2-43 lists EVEX-encoded instruction mnemonic by exception classes.

Type E5NF Legacy-like Promotion Varies, No fault suppression No

Type E6 Post AVX Promotion Varies, w/ fault suppression No

Type E6NF Post AVX Promotion Varies, no fault suppression No

Type E7NM Register-to-register op None None

Type E9NF Miscellaneous 128-bit Vector-length Specific, no fault suppression None

Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression None

Type E10NF Non-XF Scalar Vector Length ignored, no fault suppression None

Type E11 VCVTPH2PS Half Vector Length, w/ fault suppression Yes

Type E11NF VCVTPS2PH Half Vector Length, no fault suppression Yes

Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression None

Type E12NP Gather and Scatter Prefetch Family VSIB addressing, w/o page fault None

Table 2-43. EVEX Instructions in each Exception Class

Exception Class Instruction

Type E1 VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQA64

Type E1NF VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS

Type E2

VADDPD, VADDPS, VCMPPD, VCMPPS, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PS, VCVTPS2DQ, VCVTTPD2DQ,
VCVTTPS2DQ, VDIVPD, VDIVPS, VFMADDxxxPD, VFMADDxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPS,
VFMSUBxxxPD, VFMSUBxxxPS, VFNMADDxxxPD, VFNMADDxxxPS, VFNMSUBxxxPD, VFNMSUBxxxPS, VMAXPD,
VMAXPS, VMINPD, VMINPS, VMULPD, VMULPS, VSQRTPD, VSQRTPS, VSUBPD, VSUBPS

VCVTPD2QQ, VCVTPD2UQQ, VCVTPD2UDQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PS, VCVTTPD2DQ,
VCVTTPD2QQ, VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PS, VCVTUQQ2PD,
VCVTUQQ2PS, VFIXUPIMMPD, VFIXUPIMMPS, VGETEXPPD, VGETEXPPS, VGETMANTPD, VGETMANTPS, VRANGEPD,
VRANGEPS, VREDUCEPD, VREDUCEPS, VRNDSCALEPD, VRNDSCALEPS, VSCALEFPD, VSCALEFPS, VRCP28PD,
VRCP28PS, VRSQRT28PD, VRSQRT28PS

Type E3

VADDSD, VADDSS, VCMPSD, VCMPSS, VCVTPS2PD, VCVTSD2SS, VCVTSS2SD, VDIVSD, VDIVSS, VMAXSD, VMAXSS,
VMINSD, VMINSS, VMULSD, VMULSS, VSQRTSD, VSQRTSS, VSUBSD, VSUBSS

VCVTPS2QQ, VCVTPS2UQQ, VCVTTPS2QQ, VCVTTPS2UQQ, VFMADDxxxSD, VFMADDxxxSS, VFMSUBxxxSD,
VFMSUBxxxSS, VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSS, VFIXUPIMMSD,
VFIXUPIMMSS, VGETEXPSD, VGETEXPSS, VGETMANTSD, VGETMANTSS, VRANGESD, VRANGESS, VREDUCESD,
VREDUCESS, VRNDSCALESD, VRNDSCALESS, VSCALEFSD, VSCALEFSS, VRCP28SD, VRCP28SS, VRSQRT28SD,
VRSQRT28SS

Type E3NF

VCOMISD, VCOMISS, VCVTSD2SI, VCVTSI2SD, VCVTSI2SS, VCVTSS2SI, VCVTTSD2SI, VCVTTSS2SI, VUCOMISD,
VUCOMISS

VCVTSD2USI, VCVTTSD2USI, VCVTSS2USI, VCVTTSS2USI, VCVTUSI2SD, VCVTUSI2SS

Table 2-42. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)

2-46 Vol. 2A

INSTRUCTION FORMAT

Type E4

VANDPD, VANDPS, VANDNPD, VANDNPS, VORPD, VORPS, VPABSD, VPABSQ, VPADDD, VPADDQ, VPANDD, VPANDQ,
VPANDND, VPANDNQ, VPCMPEQD, VPCMPEQQ, VPCMPGTD, VPCMPGTQ, VPMAXSD, VPMAXSQ, VPMAXUD,
VPMAXUQ, VPMINSD, VPMINSQ, VPMINUD, VPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD,
VPORQ, VPSUBD, VPSUBQ, VPXORD, VPXORQ, VXORPD, VXORPS, VPSLLVD, VPSLLVQ,

VBLENDMPD, VBLENDMPS, VPBLENDMD, VPBLENDMQ, VFPCLASSPD, VFPCLASSPS, VPCMPD, VPCMPQ, VPCMPUD,
VPCMPUQ, VPLZCNTD, VPLZCNTQ, VPROLD, VPROLQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)1,
VPTERNLOGD, VPTERNLOGQ, VPTESTMD, VPTESTMQ, VPTESTNMD, VPTESTNMQ, VRCP14PD, VRCP14PS,
VRSQRT14PD, VRSQRT14PS, VPCONFLICTD, VPCONFLICTQ, VPSRAVW, VPSRAVD, VPSRAVW, VPSRAVQ,
VPMADD52LUQ, VPMADD52HUQ

E4.nb2

VMOVUPD, VMOVUPS, VMOVDQU8, VMOVDQU16, VMOVDQU32, VMOVDQU64, VPCMPB, VPCMPW, VPCMPUB,
VPCMPUW, VEXPANDPD, VEXPANDPS, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ,
VCOMPRESSPD, VCOMPRESSPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB,
VPADDUSW, VPAVGB, VPAVGW, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPMAXSB, VPMAXSW,
VPMAXUB, VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW,
VPMULLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB, VPTESTMW, VPTESTNMB, VPTESTNMW, VPSLLW,
VPSRAW, VPSRLW, VPSLLVW, VPSRLVW

Type E4NF

VPACKSSDW, VPACKUSDW VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ, VPUNPCKLQDQ, VSHUFPD,
VSHUFPS, VUNPCKHPD, VUNPCKHPS, VUNPCKLPD, VUNPCKLPS, VPERMD, VPERMPS, VPERMPD, VPERMQ,

VALIGND, VALIGNQ, VPERMI2D, VPERMI2PS, VPERMI2PD, VPERMI2Q, VPERMT2D, VPERMT2PS, VPERMT2Q,
VPERMT2PD, VPERMILPD, VPERMILPS, VSHUFI32X4, VSHUFI64X2, VSHUFF32X4, VSHUFF64X2,
VPMULTISHIFTQB

E4NF.nb2

VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP,
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD,
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD,
VPERMW, VPERMI2W, VPERMT2W

Type E5

VCVTDQ2PD, PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ,
PMOVZXBW, PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ

VCVTUDQ2PD

Type E5NF VMOVDDUP

Type E6

VBROADCASTSS, VBROADCASTSD, VBROADCASTF32X4, VBROADCASTI32X4, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ,

VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4,
VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4,
VFPCLASSSD, VFPCLASSSS, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW,
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW,
VPMOVUSDW

Type E6NF

VEXTRACTF32X4, VEXTRACTF64X2, VEXTRACTF32X8, VINSERTF32X4, VINSERTF64X2, VINSERTF64X4,
VINSERTF32X8, VINSERTI32X4, VINSERTI64X2, VINSERTI64X4, VINSERTI32X8, VEXTRACTI32X4,
VEXTRACTI64X2, VEXTRACTI32X8, VEXTRACTI64X4, VPBROADCASTMB2Q, VPBROADCASTMW2D, VPMOVWB,
VPMOVSWB, VPMOVUSWB

Type
E7NM.1284

VMOVLHPS, VMOVHLPS

Type E7NM.
(VPBROADCASTD, VPBROADCASTQ, VPBROADCASTB, VPBROADCASTW)5, VPMOVM2B, VPMOVM2D, VPMOVM2Q,
VPMOVM2W, VPMOVB2M, VPMOVD2M, VPMOVQ2M, VPMOVW2M

Table 2-43. EVEX Instructions in each Exception Class (Contd.)

Exception Class Instruction

Vol. 2A 2-47

INSTRUCTION FORMAT

Type E9NF
VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VPEXTRB, VPEXTRD,
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ

Type E10 VMOVSD, VMOVSS, VRCP14SD, VRCP14SS, VRSQRT14SD, VRSQRT14SS,

Type E10NF (VCVTSI2SD, VCVTUSI2SD)6

Type E11 VCVTPH2PS, VCVTPS2PH

Type E12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS,
VSCATTERQPD, VSCATTERQPS

Type E12NP
 VGATHERPF0DPD, VGATHERPF0DPS, VGATHERPF0QPD, VGATHERPF0QPS, VGATHERPF1DPD, VGATHERPF1DPS,
VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPF0DPD, VSCATTERPF0DPS, VSCATTERPF0QPD,
VSCATTERPF0QPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS

NOTES:
1. Operand encoding Full tupletype with immediate.
2. Embedded broadcast is not supported with the “.nb” suffix.
3. Operand encoding Mem128 tupletype.
4. #UD raised if EVEX.L’L !=00b (VL=128).
5. The source operand is a general purpose register.
6. W0 encoding only.

Table 2-43. EVEX Instructions in each Exception Class (Contd.)

Exception Class Instruction

2-48 Vol. 2A

INSTRUCTION FORMAT

2.7.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow
exception class E1.

Table 2-44. Type E1 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in
a non-canonical form.

General Protection,
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

Vol. 2A 2-49

INSTRUCTION FORMAT

EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression
follow exception class E1NF.

Table 2-45. Type E1NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

2-50 Vol. 2A

INSTRUCTION FORMAT

2.7.2 Exceptions Type E2 of EVEX-Encoded Instructions
EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.

Table 2-46. Type E2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in a
non-canonical form.

General Protec-
tion, #GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the CS,
DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If EVEX.B=1, alignment checking is enabled, and an unaligned memory reference of 8
bytes or less is made while the current privilege level is 3.

SIMD Floating-
point Exception,
#XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.

Vol. 2A 2-51

INSTRUCTION FORMAT

2.7.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception
class E3.

Table 2-47. Type E3 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes
or less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.

2-52 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow
exception class E3NF.

Table 2-48. Type E3NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X EVEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes
or less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.

Vol. 2A 2-53

INSTRUCTION FORMAT

2.7.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow
exception class E4.

Table 2-49. Type E4 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4.nb subclass (see E4.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If EVEX.B=1, alignment checking is enabled, and an unaligned memory reference
of 8 bytes or less is made while the current privilege level is 3.

2-54 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression
follow exception class E4NF.

Table 2-50. Type E4NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4NF.nb subclass (see E4NF.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Vol. 2A 2-55

INSTRUCTION FORMAT

2.7.5 Exceptions Type E5 and E5NF
EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault
suppression follow exception class E5.

EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault
suppression follow exception class E5NF.

Table 2-51. Type E5 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

2-56 Vol. 2A

INSTRUCTION FORMAT

Table 2-52. Type E5NF Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Vol. 2A 2-57

INSTRUCTION FORMAT

2.7.6 Exceptions Type E6 and E6NF

Table 2-53. Type E6 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference of 8 bytes or less is made while the current privilege
level is 3.

2-58 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow
exception class E6NF.

Table 2-54. Type E6NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X For a page fault.

Alignment Check
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference of 8 bytes or less is made while the current privilege
level is 3.

Vol. 2A 2-59

INSTRUCTION FORMAT

2.7.7 Exceptions Type E7NM
EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class
E7NM.

Table 2-55. Type E7NM Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• Instruction specific EVEX.L’L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

2-60 Vol. 2A

INSTRUCTION FORMAT

2.7.8 Exceptions Type E9 and E9NF
EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory
fault suppression follow exception class E9.

Table 2-56. Type E9 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Vol. 2A 2-61

INSTRUCTION FORMAT

EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP
exception nor support memory fault suppression follow exception class E9NF.

Table 2-57. Type E9NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

2-62 Vol. 2A

INSTRUCTION FORMAT

2.7.9 Exceptions Type E10
EVEX-encoded scalar instructions that ignore EVEX.L’L vector length encoding and do not cause no SIMD FP excep-
tion, support memory fault suppression follow exception class E10.

Table 2-58. Type E10 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Vol. 2A 2-63

INSTRUCTION FORMAT

EVEX-encoded scalar instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP exception nor
support memory fault suppression follow exception class E10NF.

Table 2-59. Type E10NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

2-64 Vol. 2A

INSTRUCTION FORMAT

2.7.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do
not cause #AC follow exception class E11.

Table 2-60. Type E11 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X If fault suppression not set, and an illegal address in the SS segment.

X If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF (fault-
code)

X X X If fault suppression not set, and a page fault.

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception, {sae} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.

Vol. 2A 2-65

INSTRUCTION FORMAT

2.7.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

Table 2-61. Type E12 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).
• If vvvv != 1111b.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

X X X X If index = destination register (gather operation).

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.

2-66 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.

Table 2-62. Type E12NP Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Vol. 2A 2-67

INSTRUCTION FORMAT

2.8 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS
The exception behavior of VEX-encoded opmask instructions are listed below.
Exception conditions of Opmask instructions that do not address memory are listed as Type K20.

Table 2-63. TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If ModRM:[7:6] != 11b.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

2-68 Vol. 2A

INSTRUCTION FORMAT

Exception conditions of Opmask instructions that address memory are listed as Type K21.

Table 2-64. TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

5. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

--
Change to this chapter: Updates to tupletype naming throughout chapter; these updates are not covered in this
document as they are considered minor in nature and extensive in page count. See changes listed in chapter 2 of
Volume 2A for details on the minor adjustments to naming.
Updates to the following instructions are covered here with change bars: CALL, INT n/INTO/INT 3, IRET/IRETD,
KMOVW/KMOVB/KMOVQ/KMOVD, and LSL.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-122 Vol. 2A

CALL—Call Procedure

Instruction Operand Encoding

Description

Saves procedure linking information on the stack and branches to the called procedure specified using the target
operand. The target operand specifies the address of the first instruction in the called procedure. The operand can
be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:
• Near Call — A call to a procedure in the current code segment (the segment currently pointed to by the CS

register), sometimes referred to as an intra-segment call.
• Far Call — A call to a procedure located in a different segment than the current code segment, sometimes

referred to as an inter-segment call.
• Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level than that

of the currently executing program or procedure.
• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See
“Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for additional information on near, far, and inter-privilege-level calls. See Chapter 7,
“Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for infor-
mation on performing task switches with the CALL instruction.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 M N.S. Valid Call near, relative, displacement relative to next
instruction.

E8 cd CALL rel32 M Valid Valid Call near, relative, displacement relative to next
instruction. 32-bit displacement sign extended to
64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect, address given in r/m16.

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect, address given in r/m32.

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect, address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address given in m16:16.

In 32-bit mode: if selector points to a gate, then RIP
= 32-bit zero extended displacement taken from
gate; else RIP = zero extended 16-bit offset from
far pointer referenced in the instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points to a gate, then RIP
= 64-bit displacement taken from gate; else RIP =
zero extended 32-bit offset from far pointer
referenced in the instruction.

REX.W + FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector points to a gate, then RIP
= 64-bit displacement taken from gate; else RIP =
64-bit offset from far pointer referenced in the
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-123

Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the offset
of the instruction following the CALL instruction) on the stack (for use later as a return-instruction pointer). The
processor then branches to the address in the current code segment specified by the target operand. The target
operand specifies either an absolute offset in the code segment (an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register; this
value points to the instruction following the CALL instruction). The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory location
(r/m16, r/m32, or r/m64). The operand-size attribute determines the size of the target operand (16, 32 or 64
bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the upper two bytes of the
EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute
offset indirectly using the stack pointer [ESP] as the base register, the base value used is the value of the ESP
before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code level, it
is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP(RIP) register. In
64-bit mode the relative offset is always a 32-bit immediate value which is sign extended to 64-bits before it is
added to the value in the RIP register for the target calculation. As with absolute offsets, the operand-size attribute
determines the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always be 64-
bits because the operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086 mode, the
processor pushes the current value of both the CS and EIP registers on the stack for use as a return-instruction
pointer. The processor then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the
segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-
byte (32-bit operand size) far address immediate. With the indirect method, the target operand specifies a memory
location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into
the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be used to
perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access
rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The
operand- size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment
selector and its descriptor are loaded into CS register; the offset from the instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same
privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making
calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a call gate. The segment selector specified by the target operand identifies the call gate. The target
operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the call gate descriptor. (The offset from the target operand
is ignored when a call gate is used.)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-124 Vol. 2A

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is specified in the TSS for the currently running task. The branch to the
new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a
segment at the same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment
selector and stack pointer for the calling procedure’s stack, an optional set of parameters from the calling proce-
dures stack, and the segment selector and instruction pointer for the calling procedure’s code segment. (A value in
the call gate descriptor determines how many parameters to copy to the new stack.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target
operand specifies the segment selector of the task gate for the new task activated by the switch (the offset in the
target operand is ignored). The task gate in turn points to the TSS for the new task, which contains the segment
selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value for the next instruc-
tion that was to be executed before the calling task was suspended. This instruction pointer value is loaded into the
EIP register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of
the task gate. See Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS register and
the new TSS’s previous task link field is loaded with the old task’s TSS selector. Code is expected to suspend this
nested task by executing an IRET instruction which, because the NT flag is set, automatically uses the previous task
link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruction differs
in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET instruction
to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call gate. If
the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from the first 64
KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only
a 16-bit return address offset can be saved. Also, the call should be made using a 16-bit call gate so that 16-bit
values can be pushed on the stack. See Chapter 21, “Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction can be
used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode since task switches are
not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine
the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an absolute far address either directly
with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its
descriptor are loaded into CS register and the offset from the instruction is loaded into the EIP register. The differ-
ence is that 64-bit mode may be entered. This specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code
segment at the same privilege level. However, using this mechanism requires that the target code segment
descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-125

operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target
operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the
currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using
a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result
of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0,
the limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for the offset, of which the
upper 32-bits are undefined.) On the new stack, the processor pushes the segment selector and stack pointer for
the calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be used to
perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit mode since task
switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the corresponding
descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type
of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming,
a general-protection exception is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far address indirectly with a
memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct specification of absolute far
address is not defined in 64-bit mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded into the CS register; the offset
from the instruction is loaded into the EIP register. The new code segment may specify entry either into compati-
bility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the
same privilege level. However, using this mechanism requires that the target code segment descriptor have the L
bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target
operand can only specify the call gate segment selector indirectly with a memory location (m16:16, m16:32 or
m16:64). The processor obtains the segment selector for the new code segment and the new instruction pointer
(offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is
used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the
currently running task. The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack
switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use
a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack pointer for the calling proce-
dure’s stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter
copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called
within the new code segment.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-126 Vol. 2A

Operation

IF near call
THEN IF near relative call

THEN
IF OperandSize = 64

THEN
tempDEST ← SignExtend(DEST); (* DEST is rel32 *)
tempRIP ← RIP + tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP ← tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP ← EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;

FI;
ELSE (* Near absolute call *)

IF OperandSize = 64
THEN

tempRIP ← DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP ← tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP ← DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-127

IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;

Push(IP);
EIP ← tempEIP;

FI;
FI;rel/abs

FI; near

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-128 Vol. 2A

CONFORMING-CODE-SEGMENT:
IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF DPL > CPL

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF target mode = Compatibility mode

 THEN tempEIP ← tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN
tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL)

THEN #GP(new code segment selector); FI;
IF segment not present

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-129

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF target mode = Compatibility mode

 THEN tempEIP ← tempEIP AND 00000000_FFFFFFFFH; FI;
IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call-gate selector); FI;
IF call gate not present

THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL

THEN #GP(0); FI;
IF call-gate code-segment selector index is outside descriptor table limits

THEN #GP(call-gate code-segment selector); FI;
Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL

THEN #GP(call-gate code-segment selector); FI;

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-130 Vol. 2A

IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present

THEN #NP(call-gate code-segment selector); FI;
IF call-gate code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN
TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE
IF current TSS is 16-bit

THEN
TSSstackAddress ← (new code-segment DPL ∗ 4) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)
TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
FI;
IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;
Read new stack-segment descriptor;
IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL
or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present

THEN #SS(NewSS); FI;
IF CallGateSize = 32

THEN
IF new stack does not have room for parameters plus 16 bytes

THEN #SS(NewSS); FI;
IF CallGate(InstructionPointer) not within new code-segment limit

THEN #GP(0); FI;
SS ← newSS; (* Segment descriptor information also loaded *)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-131

Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
IF CallGateSize = 16

THEN
IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

THEN #GP(0); FI;
SS ← newSS; (* Segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) is non-canonical)

THEN #GP(0); FI;
SS ← NewSS; (* NewSS is NULL)
RSP ← NewESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-132 Vol. 2A

Push(oldCS:oldIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64)

IF pushing 16 bytes on the stack touches non-canonical addresses
THEN #SS(0); FI;

IF RIP non-canonical
THEN #GP(0); FI;

CS:IP ← CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) ← CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector); FI;
IF task gate not present

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF descriptor is not a TSS segment

 THEN #GP(TSS selector); FI;
IF TSS descriptor specifies that the TSS is busy

 THEN #GP(TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-133

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits.
If the segment descriptor pointed to by the segment selector in the destination operand is not
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task
state segment.
If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than
the RPL of the call-gate, task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate does not indicate it is a code
segment.
If the segment selector from a call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a call gate is greater than the CPL.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and the segment pointed to is
marked not present.
If stack segment does not have room for the return address, parameters, or stack segment
pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, call gate, task gate, or TSS is not present.
#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is NULL.
If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed.
If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL of the
code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#UD If the LOCK prefix is used.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

3-134 Vol. 2A

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
#GP(selector) If a memory address accessed by the selector is in non-canonical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits.
If code segment or 64-bit call gate overlaps non-canonical space.
If the segment descriptor pointed to by the segment selector in the destination operand is not
for a conforming-code segment, nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in the destination operand is a
code segment and has both the D-bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL.
If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-
bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it
is a code segment.

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack
segment when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error
code onto the stack violates the canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.
#TS(selector) If the load of the new RSP exceeds the limit of the TSS.
#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-459

INT n/INTO/INT 3—Call to Interrupt Procedure

Instruction Operand Encoding

Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination operand
(see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1). The destination operand specifies a vector from 0 to 255, encoded as an 8-bit
unsigned intermediate value. Each vector provides an index to a gate descriptor in the IDT. The first 32 vectors are
reserved by Intel for system use. Some of these vectors are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt handler. The
INTO instruction is a special mnemonic for calling overflow exception (#OF), exception 4. The overflow interrupt
checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. (The
INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the debug exception
handler. (This one byte form is valuable because it can be used to replace the first byte of any instruction with a
breakpoint, including other one byte instructions, without over-writing other code).

An interrupt generated by INTO or INT3 (CC) differs from one generated by INT n in the following ways:
• The normal IOPL checks do not occur in virtual-8086 mode. The interrupt is taken (without fault) with any IOPL

value.
• The interrupt redirection enabled by the virtual-8086 mode extensions (VME) does not occur. The interrupt is

always handled by a protected-mode handler.

(These features do not pertain to CD03, the “normal” 2-byte opcode for INT 3. Intel and Microsoft assemblers will
not generate the CD03 opcode from any mnemonic, but this opcode can be created by direct numeric code defini-
tion or by self-modifying code.)

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that of a far call made
with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS register is pushed
onto the stack before the return address. (The return address is a far address consisting of the current values of
the CS and EIP registers.) Returns from interrupt procedures are handled with the IRET instruction, which pops the
EFLAGS information and return address from the stack.

The vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it provides index into the
IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception handler procedure.
In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an interrupt gate, trap gate,
or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and
a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment. (Note that in
real-address mode, the IDT is called the interrupt vector table, and its pointers are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken given the conditions in
the upper portion of the table. Each Y in the lower section of the decision table represents a procedure defined in
the “Operation” section for this instruction (except #GP).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CC INT 3 ZO Valid Valid Interrupt 3—trap to debugger.

CD ib INT imm8 I Valid Valid Interrupt vector specified by immediate byte.

CE INTO ZO Invalid Valid Interrupt 4—if overflow flag is 1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

I imm8 NA NA NA

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

3-460 Vol. 2A

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n instruction. If
the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3, the processor executes
a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target CPL of the
interrupt handler procedure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The initial base
address value of the IDTR after the processor is powered up or reset is 0.

Operation

The following operational description applies not only to the INT n and INTO instructions, but also to external inter-
rupts, nonmaskable interrupts (NMIs), and exceptions. Some of these events push onto the stack an error code.

The operational description specifies numerous checks whose failure may result in delivery of a nested exception.
In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception. In some cases, the error
code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values. The pseudofunc-
tion produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext; (2) if idt is 1, the error
code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT depends on
the nature of the event whose delivery encountered a nested exception: if that event is a software interrupt, EXT is
0; otherwise, EXT is 1.

Table 3-51. Decision Table

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-
GATE

Y Y Y Y Y

INTER-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTRA-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:
− Don't Care.
Y Yes, action taken.

Blank Action not taken.

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-461

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE = 1 *)

IF (EFLAGS.VM = 1 AND CR4.VME = 0 AND IOPL < 3 AND INT n)
THEN

 #GP(0); (* Bit 0 of error code is 0 because INT n *)
ELSE

IF (EFLAGS.VM = 1 AND CR4.VME = 1 AND INT n)
THEN

Consult bit n of the software interrupt redirection bit map in the TSS;
IF bit n is clear

THEN (* redirect interrupt to 8086 program interrupt handler *)
Push EFLAGS[15:0]; (* if IOPL < 3, save VIF in IF position and save IOPL position as 3 *)
Push CS;
Push IP;
IF IOPL = 3

THEN IF ← 0; (* Clear interrupt flag *)
ELSE VIF ← 0; (* Clear virtual interrupt flag *)

FI;
TF ← 0; (* Clear trap flag *)
load CS and EIP (lower 16 bits only) from entry n in interrupt vector table referenced from TSS;

ELSE
IF IOPL = 3

THEN GOTO PROTECTED-MODE;
ELSE #GP(0); (* Bit 0 of error code is 0 because INT n *)

FI;
FI;

ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)

THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;

ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;

FI;
FI;

FI;
FI;
REAL-ADDRESS-MODE:

IF ((vector_number « 2) + 3) is not within IDT limit
THEN #GP; FI;

IF stack not large enough for a 6-byte return information
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS ← IDT(Descriptor (vector_number « 2), selector));
EIP ← IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

3-462 Vol. 2A

IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF software interrupt (* Generated by INT n, INT3, or INTO *)
THEN

IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0)); FI;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
IF gate not present

THEN #NP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
END;
IA-32e-MODE:

IF INTO and CS.L = 1 (64-bit mode)
THEN #UD;

FI;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
IF software interrupt (* Generated by INT n, INT 3, or INTO *)

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
FI;
IF gate not present

THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE = 1, task gate *)

Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits

THEN #GP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF TSS not present
THEN #NP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-463

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(EXT); FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(EXT); FI;
END;
TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code-segment descriptor is not present,
THEN #NP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is non-conforming with DPL < CPL
THEN

IF VM = 0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,
DPL < CPL *)

ELSE (* VM = 1 *)
IF new code-segment DPL ≠ 0

THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL
THEN

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

FI;
FI;

END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

3-464 Vol. 2A

THEN
(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit
THEN

TSSstackAddress ← (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)
TSSstackAddress ← (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI;
IF NewSS index is not within its descriptor-table limits
or NewSS RPL ≠ new code-segment DPL

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ new code-segment DPL
or new stack-segment Type does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF NewSS is not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IA-32e mode *)
IF IDT-gate IST = 0

THEN TSSstackAddress ← (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress ← (IDT gate IST « 3) + 28;

FI;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)

FI;
IF IDT gate is 32-bit

THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI
ELSE

IF IDT gate is 16-bit
THEN

IF new stack does not have room for 12 bytes (error code pushed)

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-465

or 10 bytes (no error code pushed);
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
FI;

FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ESP ← NewESP;
SS ← NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
SS ← NewSS;

FI;
IF IDT gate is 32-bit

THEN
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE
IF IDT gate 16-bit

THEN
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)

ELSE (* 64-bit IDT gate *)
CS:RIP ← Gate(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
IF IDT gate is 32-bit

THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF IDT gate 16-bit

THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

3-466 Vol. 2A

Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL ← new code-segment DPL;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate

THEN IF ← 0 (* Interrupt flag set to 0, interrupts disabled *); FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)
IF current TSS is 32-bit

THEN
IF TSS limit < 9

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 8);
NewESP ← 4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)
IF TSS limit < 5

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 4);
NewESP ← 2 bytes loaded from (current TSS base + 2);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewSS index is not within its descriptor table limits
or NewSS RPL ≠ 0

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ 0 or stack segment does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new stack segment not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF IDT gate is 32-bit
THEN

IF new stack does not have room for 40 bytes (error code pushed)
or 36 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IDT gate is 16-bit)
IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-467

FI;
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
RF ← 0;
NT ← 0;
IF service through interrupt gate

THEN IF = 0; FI;
TempSS ← SS;
TempESP ← ESP;
SS ← NewSS;
ESP ← NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (* Segment registers made NULL, invalid for use in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS ← Gate(CS); (* Segment descriptor information also loaded *)
CS(RPL) ← 0;
CPL ← 0;
IF IDT gate is 32-bit

THEN
EIP ← Gate(instruction pointer);

ELSE (* IDT gate is 16-bit *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Start execution of new routine in Protected Mode *)

END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, DPL = CPL or conforming segment *)
IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST ≠ 0
THEN

TSSstackAddress ← (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
ELSE NewRSP ← RSP;

FI;
FI;
IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

3-468 Vol. 2A

THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *)

IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limit

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ELSE

IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)

RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
FI;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP ← GATE(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate

THEN IF ← 0; FI; (* Interrupt flag set to 0; interrupts disabled *)
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-469

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, depending on
the mode of operation of the processor when the INT instruction is executed (see the “Operation” section). If the
interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions
#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code

segment limits.
If the segment selector in the interrupt-, trap-, or task gate is NULL.
If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside
its descriptor table limits.
If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n, INT 3, or INTO instruction and the DPL of an inter-
rupt-, trap-, or task-descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor for
a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(error_code) If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment and no stack switch occurs.
If the SS register is being loaded and the segment pointed to is marked not present.
If pushing the return address, flags, error code, or stack segment pointer exceeds the bounds
of the new stack segment when a stack switch occurs.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.
#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment

being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor pointed to by the stack segment selector in the TSS is
not equal to the DPL of the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the interrupt vector number is outside the IDT limits.
#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment.

#UD If the LOCK prefix is used.

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

3-470 Vol. 2A

Virtual-8086 Mode Exceptions
#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the interrupt-

, trap-, or task-gate descriptor is not equal to 3.
If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code
segment limits.
If the segment selector in the interrupt-, trap-, or task gate is NULL.
If a interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside its
descriptor table limits.
If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n instruction and the DPL of an interrupt-, trap-, or task-
descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor for
a code segment.
If the segment selector for a TSS has its local/global bit set for local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is marked not present.
If pushing the return address, flags, error code, stack segment pointer, or data segments
exceeds the bounds of the stack segment.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.
#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment

being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the DPL of
the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.
#BP If the INT 3 instruction is executed.
#OF If the INTO instruction is executed and the OF flag is set.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-471

64-Bit Mode Exceptions
#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is non-canonical.

If the segment selector in the 64-bit interrupt or trap gate is NULL.
If the vector selects a descriptor outside the IDT limits.
If the vector points to a gate which is in non-canonical space.
If the vector points to a descriptor which is not a 64-bit interrupt gate or 64-bit trap gate.
If the descriptor pointed to by the gate selector is outside the descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canonical space.
If the descriptor pointed to by the gate selector is not a code segment.
If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both the L-
bit and D-bit set.
If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space with no
stack switch.
If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in non-canonical
space on a stack switch (either CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.
#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-canonical space.

If the RSP from the TSS is outside descriptor table limits.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-479

IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted by
an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to perform
a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task switch or
when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the section titled
“Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure. During
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt procedure,
without a task switch. The code segment being returned to must be equally or less privileged than the interrupt
handler routine (as indicated by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return is
to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the IRET
instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “Handling Multiple NMIs” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction unblocks NMIs.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET ZO Valid Valid Interrupt return (16-bit operand size).

CF IRETD ZO Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ ZO Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L

3-480 Vol. 2A

This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked before the excep-
tion handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to 64
bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF PE = 0
THEN GOTO REAL-ADDRESS-MODE;

ELSIF (IA32_EFER.LMA = 0)
THEN

IF (EFLAGS.VM = 1)
THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE;

FI;
ELSE GOTO IA-32e-MODE;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
ELSE (* OperandSize = 16 *)

EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
FI;

ELSE

IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-481

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

PROTECTED-MODE:
IF NT = 1

THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
EIP ← Pop(); (* 16-bit pop; clear upper bits *)
CS ← Pop(); (* 16-bit pop *)
tempEFLAGS ← Pop(); (* 16-bit pop; clear upper bits *)

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN GOTO RETURN-TO-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE-RETURN;

FI;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within CS limit

THEN #GP(0); FI;
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF EIP not within CS limit

THEN #GP(0); FI;
EFLAGS ← tempEFLAGS;
ESP ← Pop();
SS ← Pop(); (* Pop 2 words; throw away high-order word *)
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF CS(RPL) > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN

IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L

3-482 Vol. 2A

ESP ← Pop();
SS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16
THEN

ESP ← Pop(); (* 16-bit pop; clear upper bits *)
SS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP ← Pop();
SS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← CS(RPL);
FOR each SegReg in (ES, FS, GS, and DS)

DO
tempDesc ← descriptor cache for SegReg (* hidden part of segment register *)
IF (SegmentSelector == NULL) OR (tempDesc(DPL) < CPL AND tempDesc(Type) is (data or non-conforming code)))

THEN (* Segment register invalid *)
SegmentSelector ← 0; (*Segment selector becomes null*)

FI;
OD;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;

IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-483

IF CPL = 0
 THEN

 EFLAGS(IOPL) ← tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
 FI;
END;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

EIP ← Pop(); (* 16-bit pop; clear upper bits *)
CS ← Pop(); (* 16-bit pop *)
tempEFLAGS ← Pop(); (* 16-bit pop; clear upper bits *)

FI;
ELSE (* OperandSize = 64 *)

THEN
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)
tempRFLAGS ← Pop();

FI;
IF CS.RPL > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE

IF instruction began in 64-Bit Mode
THEN

IF OperandSize = 32
THEN

ESP ← Pop();
SS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16
THEN

ESP ← Pop(); (* 16-bit pop; clear upper bits *)
SS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP ← Pop();
SS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified
according to the EFLAGS image stored in the previous task’s TSS.

IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L

3-484 Vol. 2A

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-485

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.
If the return stack segment is not present.

#NP (selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.

KMOVW/KMOVB/KMOVQ/KMOVD—Move from and to Mask Registers

INSTRUCTION SET REFERENCE, A-L

3-502 Vol. 2A

KMOVW/KMOVB/KMOVQ/KMOVD—Move from and to Mask Registers

Instruction Operand Encoding

Description
Copies values from the source operand (second operand) to the destination operand (first operand). The source
and destination operands can be mask registers, memory location or general purpose. The instruction cannot be
used to transfer data between general purpose registers and or memory locations.
When moving to a mask register, the result is zero extended to MAX_KL size (i.e., 64 bits currently). When moving
to a general-purpose register (GPR), the result is zero-extended to the size of the destination. In 32-bit mode, the
default GPR destination’s size is 32 bits. In 64-bit mode, the default GPR destination’s size is 64 bits. Note that
VEX.W can only be used to modify the size of the GPR operand in 64b mode.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.L0.0F.W0 90 /r
KMOVW k1, k2/m16

RM V/V AVX512F Move 16 bits mask from k2/m16 and store the result in k1.

VEX.L0.66.0F.W0 90 /r
KMOVB k1, k2/m8

RM V/V AVX512DQ Move 8 bits mask from k2/m8 and store the result in k1.

VEX.L0.0F.W1 90 /r
KMOVQ k1, k2/m64

RM V/V AVX512BW Move 64 bits mask from k2/m64 and store the result in k1.

VEX.L0.66.0F.W1 90 /r
KMOVD k1, k2/m32

RM V/V AVX512BW Move 32 bits mask from k2/m32 and store the result in k1.

VEX.L0.0F.W0 91 /r
KMOVW m16, k1

MR V/V AVX512F Move 16 bits mask from k1 and store the result in m16.

VEX.L0.66.0F.W0 91 /r
KMOVB m8, k1

MR V/V AVX512DQ Move 8 bits mask from k1 and store the result in m8.

VEX.L0.0F.W1 91 /r
KMOVQ m64, k1

MR V/V AVX512BW Move 64 bits mask from k1 and store the result in m64.

VEX.L0.66.0F.W1 91 /r
KMOVD m32, k1

MR V/V AVX512BW Move 32 bits mask from k1 and store the result in m32.

VEX.L0.0F.W0 92 /r
KMOVW k1, r32

RR V/V AVX512F Move 16 bits mask from r32 to k1.

VEX.L0.66.0F.W0 92 /r
KMOVB k1, r32

RR V/V AVX512DQ Move 8 bits mask from r32 to k1.

VEX.L0.F2.0F.W1 92 /r
KMOVQ k1, r64

RR V/I AVX512BW Move 64 bits mask from r64 to k1.

VEX.L0.F2.0F.W0 92 /r
KMOVD k1, r32

RR V/V AVX512BW Move 32 bits mask from r32 to k1.

VEX.L0.0F.W0 93 /r
KMOVW r32, k1

RR V/V AVX512F Move 16 bits mask from k1 to r32.

VEX.L0.66.0F.W0 93 /r
KMOVB r32, k1

RR V/V AVX512DQ Move 8 bits mask from k1 to r32.

VEX.L0.F2.0F.W1 93 /r
KMOVQ r64, k1

RR V/I AVX512BW Move 64 bits mask from k1 to r64.

VEX.L0.F2.0F.W0 93 /r
KMOVD r32, k1

RR V/V AVX512BW Move 32 bits mask from k1 to r32.

Op/En Operand 1 Operand 2

RM ModRM:reg (w) ModRM:r/m (r)

MR ModRM:r/m (w, ModRM:[7:6] must not be 11b) ModRM:reg (r)

RR ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b)

KMOVW/KMOVB/KMOVQ/KMOVD—Move from and to Mask Registers

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-503

Operation
KMOVW
IF *destination is a memory location*

DEST[15:0] SRC[15:0]
IF *destination is a mask register or a GPR *

DEST ZeroExtension(SRC[15:0])

KMOVB
IF *destination is a memory location*

DEST[7:0] SRC[7:0]
IF *destination is a mask register or a GPR *

DEST ZeroExtension(SRC[7:0])

KMOVQ
IF *destination is a memory location or a GPR*

DEST[63:0] SRC[63:0]
IF *destination is a mask register*

DEST ZeroExtension(SRC[63:0])

KMOVD
IF *destination is a memory location*

DEST[31:0] SRC[31:0]
IF *destination is a mask register or a GPR *

DEST ZeroExtension(SRC[31:0])

Intel C/C++ Compiler Intrinsic Equivalent
KMOVW __mmask16 _mm512_kmov(__mmask16 a);

Flags Affected
None

SIMD Floating-Point Exceptions
None

Other Exceptions
Instructions with RR operand encoding See Exceptions Type K20.
Instructions with RM or MR operand encoding See Exceptions Type K21.

LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-547

LSL—Load Segment Limit

Instruction Operand Encoding

Description

Loads the unscrambled segment limit from the segment descriptor specified with the second operand (source
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS register. The source
operand (which can be a register or a memory location) contains the segment selector for the segment descriptor
being accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the destination register, soft-
ware can compare the segment limit with the offset of a pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of the segment
descriptor. If the descriptor has a byte granular segment limit (the granularity flag is set to 0), the destination
operand is loaded with a byte granular value (byte limit). If the descriptor has a page granular segment limit (the
granularity flag is set to 1), the LSL instruction will translate the page granular limit (page limit) into a byte limit
before loading it into the destination operand. The translation is performed by shifting the 20-bit “raw” limit left 12
bits and filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When the operand size
is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are truncated and only the low-order 16 bits
are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the destination register:
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of the GDT or LDT being

accessed
• Checks that the descriptor type is valid for this instruction. All code and data segment descriptors are valid for

(can be accessed with) the LSL instruction. The valid special segment and gate descriptor types are given in the
following table.

• If the segment is not a conforming code segment, the instruction checks that the specified segment descriptor
is visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or equal to the DPL of
the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is cleared and no
value is loaded in the destination operand.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 03 /r LSL r16, r16/m16 RM Valid Valid Load: r16 ← segment limit, selector r16/m16.

0F 03 /r LSL r32, r32/m16* RM Valid Valid Load: r32 ← segment limit, selector r32/m16.

REX.W + 0F 03 /r LSL r64, r32/m16* RM Valid Valid Load: r64 ← segment limit, selector r32/m16

NOTES:
* For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-L

3-548 Vol. 2A

Operation

IF SRC(Offset) > descriptor table limit
THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) OR (RPL > DPL)
or Segment type is not valid for instruction

THEN
ZF ← 0;

ELSE
temp ← SegmentLimit([SRC]);
IF (G ← 1)

THEN temp ← ShiftLeft(12, temp) OR 00000FFFH;
ELSE IF OperandSize = 32

THEN DEST ← temp; FI;
ELSE IF OperandSize = 64 (* REX.W used *)

THEN DEST (* Zero-extended *) ← temp; FI;
ELSE (* OperandSize = 16 *)

DEST ← temp AND FFFFH;
FI;

FI;

Table 3-55. Segment and Gate Descriptor Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT1 Yes

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate No Reserved No

5 16-bit/32-bit task gate No Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes 64-bit TSS1 Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS1 Yes

C 32-bit call gate No 64-bit call gate No

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No

NOTES:
1. In this case, the descriptor comprises 16 bytes; bits 12:8 of the upper 4 bytes must be 0.

LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-549

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while

the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LSL instruction cannot be executed in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LSL instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS segment is in a non-canonical

form.
#GP(0) If the memory operand effective address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while

the current privilege level is 3.
#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

6. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, M-U.

--
Change to this chapter: Updates to tupletype naming throughout chapter; these updates are not covered in this
document as they are considered minor in nature and extensive in page count. See changes listed in chapter 2 of
Volume 2A for details on the minor adjustments to naming.

Updates to the following instructions are covered here with change bars: MOV, MOVSX/MOVSXD, PHMINPOSUW,
SETcc, SFENCE, SWAPGS, and UD.

Moved PREFETCHWT1 to chapter 7.

MOV—Move

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-35

MOV—Move
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r8***,r/m8*** RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to r/m16.

REX.W + 8C /r MOV r16/r32/m16, Sreg** MR Valid Valid Move zero extended 16-bit segment register
to r16/r32/r64/m16.

REX.W + 8C /r MOV r64/m16, Sreg** MR Valid Valid Move zero extended 16-bit segment register
to r64/m16.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of r/m64 to segment
register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to AL.

REX.W + A0 MOV AL,moffs8* FD Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to AX.

A1 MOV EAX,moffs32* FD Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* FD Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8,AL TD Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV moffs32*,EAX TD Valid Valid Move EAX to (seg:offset).

REX.W + A3 MOV moffs64*,RAX TD Valid N.E. Move RAX to (offset).

B0+ rb ib MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb ib MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw iw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd id MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd io MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 ib MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 ib MOV r/m8***, imm8 MI Valid N.E. Move imm8 to r/m8.

C7 /0 iw MOV r/m16, imm16 MI Valid Valid Move imm16 to r/m16.

C7 /0 id MOV r/m32, imm32 MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 id MOV r/m64, imm32 MI Valid N.E. Move imm32 sign extended to 64-bits to
r/m64.

MOV—Move

INSTRUCTION SET REFERENCE, M-U

4-36 Vol. 2B

Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can be
an immediate value, general-purpose register, segment register, or memory location; the destination register can
be a general-purpose register, segment register, or memory location. Both operands must be the same size, which
can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode excep-
tion (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid
segment selector. In protected mode, moving a segment selector into a segment register automatically causes the
segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) part
of the segment register. While loading this information, the segment selector and segment descriptor information
is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution of the next instruction.
This operation allows a stack pointer to be loaded into the ESP register with the next instruction (MOV ESP, stack-
pointer value) before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient method of
loading the SS and ESP registers.

When executing MOV Reg, Sreg, the processor copies the content of Sreg to the 16 least significant bits of the
general-purpose register. The upper bits of the destination register are zero for most IA-32 processors (Pentium

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64

refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64
bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” sec-
tion for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV SS instruction, the break-
point may not be triggered. However, in a sequence of instructions that load the SS register, only the first instruction in the
sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP

MOV—Move

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-37

Pro processors and later) and all Intel 64 processors, with the exception that bits 31:16 are undefined for Intel
Quark X1000 processors, Pentium and earlier processors.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as described in the
following listing. These checks are performed on the segment selector and the segment descriptor to which it
points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
or ((RPL > DPL) and (CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None

MOV—Move

INSTRUCTION SET REFERENCE, M-U

4-38 Vol. 2B

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not

present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

MOV—Move

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-39

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment selector when CPL = 3.
If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL
≠ RPL.

#GP(selector) If segment selector index is outside descriptor table limits.
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-U

4-124 Vol. 2B

MOVSX/MOVSXD—Move with Sign-Extension

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the destination operand (register) and
sign extends the value to 16 or 32 bits (see Figure 7-6 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1). The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

DEST ← SignExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F BE /r MOVSX r16, r/m8 RM Valid Valid Move byte to word with sign-extension.

0F BE /r MOVSX r32, r/m8 RM Valid Valid Move byte to doubleword with sign-
extension.

REX.W + 0F BE /r MOVSX r64, r/m8 RM Valid N.E. Move byte to quadword with sign-extension.

0F BF /r MOVSX r32, r/m16 RM Valid Valid Move word to doubleword, with sign-
extension.

REX.W + 0F BF /r MOVSX r64, r/m16 RM Valid N.E. Move word to quadword with sign-extension.

63 /r* MOVSXD r16, r/m16 RM Valid Valid Move word to word with sign-extension.

63 /r* MOVSXD r32, r/m32 RM Valid Valid Move doubleword to doubleword with sign-
extension.

REX.W + 63 /r MOVSXD r64, r/m32 RM Valid N.E. Move doubleword to quadword with sign-
extension.

NOTES:
* The use of MOVSXD without REX.W in 64-bit mode is discouraged. Regular MOV should be used instead of using MOVSXD without

REX.W.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-125

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, M-U

4-286 Vol. 2B

PHMINPOSUW — Packed Horizontal Word Minimum

Instruction Operand Encoding

Description

Determine the minimum unsigned word value in the source operand (second operand) and place the unsigned
word in the low word (bits 0-15) of the destination operand (first operand). The word index of the minimum value
is stored in bits 16-18 of the destination operand. The remaining upper bits of the destination are set to zero.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding XMM destination register remain
unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination XMM register are zeroed. VEX.vvvv is reserved
and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHMINPOSUW (128-bit Legacy SSE version)
INDEX 0;
MIN SRC[15:0]
IF (SRC[31:16] < MIN)

THEN INDEX 1; MIN SRC[31:16]; FI;
IF (SRC[47:32] < MIN)

THEN INDEX 2; MIN SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN)

THEN INDEX 7; MIN SRC[127:112]; FI;
DEST[15:0] MIN;
DEST[18:16] INDEX;
DEST[127:19] 0000000000000000000000000000H;

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 41 /r
PHMINPOSUW xmm1, xmm2/m128

RM V/V SSE4_1 Find the minimum unsigned word in
xmm2/m128 and place its value in the low
word of xmm1 and its index in the second-
lowest word of xmm1.

VEX.128.66.0F38.WIG 41 /r
VPHMINPOSUW xmm1, xmm2/m128

RM V/V AVX Find the minimum unsigned word in
xmm2/m128 and place its value in the low
word of xmm1 and its index in the second-
lowest word of xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-287

VPHMINPOSUW (VEX.128 encoded version)
INDEX 0
MIN SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX 1; MIN SRC[31:16]
IF (SRC[47:32] < MIN) THEN INDEX 2; MIN SRC[47:32]
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX 7; MIN SRC[127:112]
DEST[15:0] MIN
DEST[18:16] INDEX
DEST[127:19] 0000000000000000000000000000H
DEST[MAXVL-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW: __m128i _mm_minpos_epu16(__m128i packed_words);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv ≠ 1111B.

SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-U

4-592 Vol. 2B

SETcc—Set Byte on Condition
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

0F 97 SETA r/m8 M Valid Valid Set byte if above (CF=0 and ZF=0).

REX + 0F 97 SETA r/m8* M Valid N.E. Set byte if above (CF=0 and ZF=0).

0F 93 SETAE r/m8 M Valid Valid Set byte if above or equal (CF=0).

REX + 0F 93 SETAE r/m8* M Valid N.E. Set byte if above or equal (CF=0).

0F 92 SETB r/m8 M Valid Valid Set byte if below (CF=1).

REX + 0F 92 SETB r/m8* M Valid N.E. Set byte if below (CF=1).

0F 96 SETBE r/m8 M Valid Valid Set byte if below or equal (CF=1 or ZF=1).

REX + 0F 96 SETBE r/m8* M Valid N.E. Set byte if below or equal (CF=1 or ZF=1).

0F 92 SETC r/m8 M Valid Valid Set byte if carry (CF=1).

REX + 0F 92 SETC r/m8* M Valid N.E. Set byte if carry (CF=1).

0F 94 SETE r/m8 M Valid Valid Set byte if equal (ZF=1).

REX + 0F 94 SETE r/m8* M Valid N.E. Set byte if equal (ZF=1).

0F 9F SETG r/m8 M Valid Valid Set byte if greater (ZF=0 and SF=OF).

REX + 0F 9F SETG r/m8* M Valid N.E. Set byte if greater (ZF=0 and SF=OF).

0F 9D SETGE r/m8 M Valid Valid Set byte if greater or equal (SF=OF).

REX + 0F 9D SETGE r/m8* M Valid N.E. Set byte if greater or equal (SF=OF).

0F 9C SETL r/m8 M Valid Valid Set byte if less (SF≠ OF).

REX + 0F 9C SETL r/m8* M Valid N.E. Set byte if less (SF≠ OF).

0F 9E SETLE r/m8 M Valid Valid Set byte if less or equal (ZF=1 or SF≠ OF).

REX + 0F 9E SETLE r/m8* M Valid N.E. Set byte if less or equal (ZF=1 or SF≠ OF).

0F 96 SETNA r/m8 M Valid Valid Set byte if not above (CF=1 or ZF=1).

REX + 0F 96 SETNA r/m8* M Valid N.E. Set byte if not above (CF=1 or ZF=1).

0F 92 SETNAE r/m8 M Valid Valid Set byte if not above or equal (CF=1).

REX + 0F 92 SETNAE r/m8* M Valid N.E. Set byte if not above or equal (CF=1).

0F 93 SETNB r/m8 M Valid Valid Set byte if not below (CF=0).

REX + 0F 93 SETNB r/m8* M Valid N.E. Set byte if not below (CF=0).

0F 97 SETNBE r/m8 M Valid Valid Set byte if not below or equal (CF=0 and
ZF=0).

REX + 0F 97 SETNBE r/m8* M Valid N.E. Set byte if not below or equal (CF=0 and
ZF=0).

0F 93 SETNC r/m8 M Valid Valid Set byte if not carry (CF=0).

REX + 0F 93 SETNC r/m8* M Valid N.E. Set byte if not carry (CF=0).

0F 95 SETNE r/m8 M Valid Valid Set byte if not equal (ZF=0).

REX + 0F 95 SETNE r/m8* M Valid N.E. Set byte if not equal (ZF=0).

0F 9E SETNG r/m8 M Valid Valid Set byte if not greater (ZF=1 or SF≠ OF)

REX + 0F 9E SETNG r/m8* M Valid N.E. Set byte if not greater (ZF=1 or SF≠ OF).

0F 9C SETNGE r/m8 M Valid Valid Set byte if not greater or equal (SF≠ OF).

REX + 0F 9C SETNGE r/m8* M Valid N.E. Set byte if not greater or equal (SF≠ OF).

0F 9D SETNL r/m8 M Valid Valid Set byte if not less (SF=OF).

REX + 0F 9D SETNL r/m8* M Valid N.E. Set byte if not less (SF=OF).

0F 9F SETNLE r/m8 M Valid Valid Set byte if not less or equal (ZF=0 and SF=OF).

SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-593

Instruction Operand Encoding

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags (CF, SF, OF, ZF, and PF) in the
EFLAGS register. The destination operand points to a byte register or a byte in memory. The condition code suffix
(cc) indicates the condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the relationship between two unsigned
integer values. The terms “greater” and “less” are associated with the SF and OF flags and refer to the relationship
between two signed integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example, SETG (set byte if greater) and
SETNLE (set if not less or equal) have the same opcode and test for the same condition: ZF equals 0 and SF equals
OF. These alternate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS Condition
Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows the alternate
mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This representation can be obtained by
choosing the logically opposite condition for the SETcc instruction, then decrementing the result. For example, to
test for overflow, use the SETNO instruction, then decrement the result.

REX + 0F 9F SETNLE r/m8* M Valid N.E. Set byte if not less or equal (ZF=0 and SF=OF).

0F 91 SETNO r/m8 M Valid Valid Set byte if not overflow (OF=0).

REX + 0F 91 SETNO r/m8* M Valid N.E. Set byte if not overflow (OF=0).

0F 9B SETNP r/m8 M Valid Valid Set byte if not parity (PF=0).

REX + 0F 9B SETNP r/m8* M Valid N.E. Set byte if not parity (PF=0).

0F 99 SETNS r/m8 M Valid Valid Set byte if not sign (SF=0).

REX + 0F 99 SETNS r/m8* M Valid N.E. Set byte if not sign (SF=0).

0F 95 SETNZ r/m8 M Valid Valid Set byte if not zero (ZF=0).

REX + 0F 95 SETNZ r/m8* M Valid N.E. Set byte if not zero (ZF=0).

0F 90 SETO r/m8 M Valid Valid Set byte if overflow (OF=1)

REX + 0F 90 SETO r/m8* M Valid N.E. Set byte if overflow (OF=1).

0F 9A SETP r/m8 M Valid Valid Set byte if parity (PF=1).

REX + 0F 9A SETP r/m8* M Valid N.E. Set byte if parity (PF=1).

0F 9A SETPE r/m8 M Valid Valid Set byte if parity even (PF=1).

REX + 0F 9A SETPE r/m8* M Valid N.E. Set byte if parity even (PF=1).

0F 9B SETPO r/m8 M Valid Valid Set byte if parity odd (PF=0).

REX + 0F 9B SETPO r/m8* M Valid N.E. Set byte if parity odd (PF=0).

0F 98 SETS r/m8 M Valid Valid Set byte if sign (SF=1).

REX + 0F 98 SETS r/m8* M Valid N.E. Set byte if sign (SF=1).

0F 94 SETZ r/m8 M Valid Valid Set byte if zero (ZF=1).

REX + 0F 94 SETZ r/m8* M Valid N.E. Set byte if zero (ZF=1).

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-U

4-594 Vol. 2B

The reg field of the ModR/M byte is not used for the SETCC instruction and those opcode bits are ignored by the
processor.

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform addressing to additional byte
registers. Otherwise, this instruction’s operation is the same as in legacy mode and compatibility mode.

Operation

IF condition
THEN DEST ← 1;
ELSE DEST ← 0;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

SFENCE—Store Fence

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-597

SFENCE—Store Fence

Instruction Operand Encoding

Description

Orders processor execution relative to all memory stores prior the SFENCE instruction. The processor ensures that
every store prior to SFENCE is globally visible before any store after SFENCE becomes globally visible. The SFENCE
instruction is ordered with respect to memory stores, other SFENCE instructions, MFENCE instructions, and any
serializing instructions (such as the CPUID instruction). It is not ordered with respect to memory loads or the
LFENCE instruction.

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as
out-of-order issue, write-combining, and write-collapsing. The degree to which a consumer of data recognizes or
knows that the data is weakly ordered varies among applications and may be unknown to the producer of this data.
The SFENCE instruction provides a performance-efficient way of ensuring store ordering between routines that
produce weakly-ordered results and routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of F8. For this instruction, the processor
ignores the r/m field of the ModR/M byte. Thus, SFENCE is encoded by any opcode of the form 0F AE Fx, where x
is in the range 8-F.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

NP 0F AE F8 SFENCE ZO Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, M-U

4-664 Vol. 2B

SWAPGS—Swap GS Base Register

Instruction Operand Encoding

Description

SWAPGS exchanges the current GS base register value with the value contained in MSR address C0000102H
(IA32_KERNEL_GS_BASE). The SWAPGS instruction is a privileged instruction intended for use by system soft-
ware.

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point. Neither is there a
straightforward method to obtain a pointer to kernel structures from which the kernel stack pointer could be read.
Thus, the kernel cannot save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory operands. No registers need to be
saved before using the instruction. SWAPGS exchanges the CPL 0 data pointer from the IA32_KERNEL_GS_BASE
MSR with the GS base register. The kernel can then use the GS prefix on normal memory references to access
kernel data structures. Similarly, when the OS kernel is entered using an interrupt or exception (where the kernel
stack is already set up), SWAPGS can be used to quickly get a pointer to the kernel data structures.

The IA32_KERNEL_GS_BASE MSR itself is only accessible using RDMSR/WRMSR instructions. Those instructions
are only accessible at privilege level 0. The WRMSR instruction ensures that the IA32_KERNEL_GS_BASE MSR
contains a canonical address.

Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)
THEN

#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp ← GS.base;
GS.base ← IA32_KERNEL_GS_BASE;
IA32_KERNEL_GS_BASE ← tmp;

Flags Affected

None

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 F8 SWAPGS ZO Valid Invalid Exchanges the current GS base register value
with the value contained in MSR address
C0000102H.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-665

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.
#UD If the LOCK prefix is used.

UD—Undefined Instruction

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-683

UD—Undefined Instruction

Instruction Operand Encoding

Description

Generates an invalid opcode exception. This instruction is provided for software testing to explicitly generate an
invalid opcode exception. The opcodes for this instruction are reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on processor state or memory.

Even though it is the execution of the UD instruction that causes the invalid opcode exception, the instruction
pointer saved by delivery of the exception references the UD instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F FF /r 1 r32, r/m32

NOTES:
1. Some older processors decode the UD0 instruction without a ModR/M byte. As a result, those processors would deliver an invalid-

opcode exception instead of a fault on instruction fetch when the instruction with a ModR/M byte (and any implied bytes) would
cross a page or segment boundary.

RM Valid Valid Raise invalid opcode exception.

0F B9 /r UD1 r32, r/m32 RM Valid Valid Raise invalid opcode exception.

0F 0B UD2 ZO Valid Valid Raise invalid opcode exception.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

RM ModRM:reg (r) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

7. Updates to Chapter 5, Volume 2C
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C: Instruction Set Reference, V-Z.

--
Change to this chapter: Updates to tupletype naming throughout chapter; these updates are not covered in this
document as they are considered minor in nature and extensive in page count. See changes listed in chapter 2 of
Volume 2A for details on the minor adjustments to naming.

Added the following instructions: VPERMI2B, VPERMT2B, VPMADD52HUQ, VPMADD52LUQ, and
VPMULTISHIFTQB.

Moved some instructions to chapter 7.

VPERMI2B—Full Permute of Bytes from Two Tables Overwriting the Index

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-343

VPERMI2B—Full Permute of Bytes from Two Tables Overwriting the Index

Instruction Operand Encoding

Description

Permutes byte values in the second operand (the first source operand) and the third operand (the second source
operand) using the byte indices in the first operand (the destination operand) to select byte elements from the
second or third source operands. The selected byte elements are written to the destination at byte granularity
under the writemask k1.
The first and second operands are ZMM/YMM/XMM registers. The first operand contains input indices to select
elements from the two input tables in the 2nd and 3rd operands. The first operand is also the destination of the
result. The third operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In each index
byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each input table.
Note that these instructions permit a byte value in the source operands to be copied to more than one location in
the destination operand. Also, the same tables can be reused in subsequent iterations, but the index elements are
overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.DDS.128.66.0F38.W0 75 /r
VPERMI2B xmm1 {k1}{z}, xmm2,
xmm3/m128

A V/V AVX512VL
AVX512_VBMI

Permute bytes in xmm3/m128 and xmm2 using
byte indexes in xmm1 and store the byte results
in xmm1 using writemask k1.

EVEX.DDS.256.66.0F38.W0 75 /r
VPERMI2B ymm1 {k1}{z}, ymm2,
ymm3/m256

A V/V AVX512VL
AVX512_VBMI

Permute bytes in ymm3/m256 and ymm2 using
byte indexes in ymm1 and store the byte results
in ymm1 using writemask k1.

EVEX.DDS.512.66.0F38.W0 75 /r
VPERMI2B zmm1 {k1}{z}, zmm2,
zmm3/m512

A V/V AVX512_VBMI Permute bytes in zmm3/m512 and zmm2 using
byte indexes in zmm1 and store the byte results
in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA

VPERMI2B—Full Permute of Bytes from Two Tables Overwriting the Index

INSTRUCTION SET REFERENCE, V-Z

5-344 Vol. 2C

Operation

VPERMI2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:

id ← 3;
ELSE IF VL = 256:

id ← 4;
ELSE IF VL = 512:

id ← 5;
FI;
TMP_DEST[VL-1:0] ← DEST[VL-1:0];
FOR j ← 0 TO KL-1

off ← 8*SRC1[j*8 + id: j*8] ;
IF k1[j] OR *no writemask*:

DEST[j*8 + 7: j*8] ← TMP_DEST[j*8+id+1]? SRC2[off+7:off] : SRC1[off+7:off];
ELSE IF *zeroing-masking*

DEST[j*8 + 7: j*8] ← 0;
*ELSE

DEST[j*8 + 7: j*8] remains unchanged*
FI;

ENDFOR
DEST[MAX_VL-1:VL] ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPERMI2B __m512i _mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b);
VPERMI2B __m512i _mm512_mask2_permutex2var_epi8(__m512i a, __m512i idx, __mmask64 k, __m512i b);
VPERMI2B __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512i a, __m512i idx, __m512i b);
VPERMI2B __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);
VPERMI2B __m256i _mm256_mask2_permutex2var_epi8(__m256i a, __m256i idx, __mmask32 k, __m256i b);
VPERMI2B __m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);
VPERMI2B __m128i _mm_permutex2var_epi8(__m128i a, __m128i idx, __m128i b);
VPERMI2B __m128i _mm_mask2_permutex2var_epi8(__m128i a, __m128i idx, __mmask16 k, __m128i b);
VPERMI2B __m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128i a, __m128i idx, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.nb.

VPERMT2B—Full Permute of Bytes from Two Tables Overwriting a Table

INSTRUCTION SET REFERENCE, V-Z

5-370 Vol. 2C

VPERMT2B—Full Permute of Bytes from Two Tables Overwriting a Table

Instruction Operand Encoding

Description

Permutes byte values from two tables, comprising of the first operand (also the destination operand) and the third
operand (the second source operand). The second operand (the first source operand) provides byte indices to
select byte results from the two tables. The selected byte elements are written to the destination at byte granu-
larity under the writemask k1.
The first and second operands are ZMM/YMM/XMM registers. The second operand contains input indices to select
elements from the two input tables in the 1st and 3rd operands. The first operand is also the destination of the
result. The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In
each index byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each
input table.
Note that these instructions permit a byte value in the source operands to be copied to more than one location in
the destination operand. Also, the second table and the indices can be reused in subsequent iterations, but the first
table is overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.

Opcode/
Instruction

Op
/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.DDS.128.66.0F38.W0 7D /r
VPERMT2B xmm1 {k1}{z}, xmm2,
xmm3/m128

A V/V AVX512VL
AVX512_VBMI

Permute bytes in xmm3/m128 and xmm1 using byte
indexes in xmm2 and store the byte results in xmm1
using writemask k1.

EVEX.NDS.256.66.0F38.W0 7D /r
VPERMT2B ymm1 {k1}{z}, ymm2,
ymm3/m256

A V/V AVX512VL
AVX512_VBMI

Permute bytes in ymm3/m256 and ymm1 using byte
indexes in ymm2 and store the byte results in ymm1
using writemask k1.

EVEX.NDS.512.66.0F38.W0 7D /r
VPERMT2B zmm1 {k1}{z}, zmm2,
zmm3/m512

A V/V AVX512_VBMI Permute bytes in zmm3/m512 and zmm1 using byte
indexes in zmm2 and store the byte results in zmm1
using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA

VPERMT2B—Full Permute of Bytes from Two Tables Overwriting a Table

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-371

Operation

VPERMT2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:

id ← 3;
ELSE IF VL = 256:

id ← 4;
ELSE IF VL = 512:

id ← 5;
FI;
TMP_DEST[VL-1:0] ← DEST[VL-1:0];
FOR j ← 0 TO KL-1

off ← 8*SRC1[j*8 + id: j*8] ;
IF k1[j] OR *no writemask*:

DEST[j*8 + 7: j*8] ← SRC1[j*8+id+1]? SRC2[off+7:off] : TMP_DEST[off+7:off];
ELSE IF *zeroing-masking*

DEST[j*8 + 7: j*8] ← 0;
*ELSE

DEST[j*8 + 7: j*8] remains unchanged*
FI;

ENDFOR
DEST[MAX_VL-1:VL] ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPERMT2B __m512i _mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b);
VPERMT2B __m512i _mm512_mask_permutex2var_epi8(__m512i a, __mmask64 k, __m512i idx, __m512i b);
VPERMT2B __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512i a, __m512i idx, __m512i b);
VPERMT2B __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);
VPERMT2B __m256i _mm256_mask_permutex2var_epi8(__m256i a, __mmask32 k, __m256i idx, __m256i b);
VPERMT2B __m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);
VPERMT2B __m128i _mm_permutex2var_epi8(__m128i a, __m128i idx, __m128i b);
VPERMT2B __m128i _mm_mask_permutex2var_epi8(__m128i a, __mmask16 k, __m128i idx, __m128i b);
VPERMT2B __m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128i a, __m128i idx, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.nb.

VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit Accumulators

INSTRUCTION SET REFERENCE, V-Z

5-398 Vol. 2C

VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit
Products to 64-bit Accumulators

Instruction Operand Encoding

Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the
third operand) to form packed 104-bit intermediate results. The high 52-bit, unsigned integer of each 104-bit
product is added to the corresponding qword unsigned integer of the destination operand (the first operand)
under the writemask k1.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit
granularity.

Opcode/
Instruction

Op/
En

32/64
bit Mode
Support

CPUID Description

EVEX.DDS.128.66.0F38.W1 B5 /r
VPMADD52HUQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst

A V/V AVX512_IFMA
AVX512VL

Multiply unsigned 52-bit integers in xmm2 and
xmm3/m128 and add the high 52 bits of the 104-
bit product to the qword unsigned integers in
xmm1 using writemask k1.

EVEX.DDS.256.66.0F38.W1 B5 /r
VPMADD52HUQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst

A V/V AVX512_IFMA
AVX512VL

Multiply unsigned 52-bit integers in ymm2 and
ymm3/m128 and add the high 52 bits of the 104-
bit product to the qword unsigned integers in
ymm1 using writemask k1.

EVEX.DDS.512.66.0F38.W1 B5 /r
VPMADD52HUQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst

A V/V AVX512_IFMA Multiply unsigned 52-bit integers in zmm2 and
zmm3/m128 and add the high 52 bits of the 104-
bit product to the qword unsigned integers in
zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m(r) NA

VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit Accumulators

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-399

Operation

VPMADD52HUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1

i j * 64;
IF k1[j] OR *no writemask* THEN

IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] ← ZeroExtend64(src2[51:0]);

ELSE
tsrc2[63:0] ← ZeroExtend64(src2[i+51:i];

FI;
Temp128[127:0] ← ZeroExtend64(src1[i+51:i]) * tsrc2[63:0];
Temp2[63:0] ← DEST[i+63:i] + ZeroExtend64(temp128[103:52]) ;
DEST[i+63:i] ← Temp2[63:0];

ELSE
IF *zeroing-masking* THEN

DEST[i+63:i] ← 0;
ELSE *merge-masking*

DEST[i+63:i] is unchanged;
FI;

FI;
ENDFOR
DEST[MAX_VL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52HUQ __m512i _mm512_madd52hi_epu64(__m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m512i _mm512_mask_madd52hi_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m512i _mm512_maskz_madd52hi_epu64(__mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m256i _mm256_madd52hi_epu64(__m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m256i _mm256_mask_madd52hi_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m256i _mm256_maskz_madd52hi_epu64(__mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m128i _mm_madd52hi_epu64(__m128i a, __m128i b, __m128i c);
VPMADD52HUQ __m128i _mm_mask_madd52hi_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52HUQ __m128i _mm_maskz_madd52hi_epu64(__mmask8 k, __m128i a, __m128i b, __m128i c);

Flags Affected

None.

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4.

VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword Accumulators

INSTRUCTION SET REFERENCE, V-Z

5-400 Vol. 2C

VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products
to Qword Accumulators

Instruction Operand Encoding

Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the
third operand) to form packed 104-bit intermediate results. The low 52-bit, unsigned integer of each 104-bit
product is added to the corresponding qword unsigned integer of the destination operand (the first operand)
under the writemask k1.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit
granularity.

Opcode/
Instruction

Op/En 32/64
bit Mode
Support

CPUID Description

EVEX.DDS.128.66.0F38.W1 B4 /r
VPMADD52LUQ xmm1 {k1}{z},
xmm2,xmm3/m128/m64bcst

A V/V AVX512_IFMA
AVX512VL

Multiply unsigned 52-bit integers in xmm2 and
xmm3/m128 and add the low 52 bits of the 104-bit
product to the qword unsigned integers in xmm1
using writemask k1.

EVEX.DDS.256.66.0F38.W1 B4 /r
VPMADD52LUQ ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst

A V/V AVX512_IFMA
AVX512VL

Multiply unsigned 52-bit integers in ymm2 and
ymm3/m128 and add the low 52 bits of the 104-bit
product to the qword unsigned integers in ymm1
using writemask k1.

EVEX.DDS.512.66.0F38.W1 B4 /r
VPMADD52LUQ zmm1 {k1}{z},
zmm2,zmm3/m512/m64bcst

A V/V AVX512_IFMA Multiply unsigned 52-bit integers in zmm2 and
zmm3/m128 and add the low 52 bits of the 104-bit
product to the qword unsigned integers in zmm1
using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m(r) NA

VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword Accumulators

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-401

Operation

VPMADD52LUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1

i j * 64;
IF k1[j] OR *no writemask* THEN

IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] ← ZeroExtend64(src2[51:0]);

ELSE
tsrc2[63:0] ← ZeroExtend64(src2[i+51:i];

FI;
Temp128[127:0] ← ZeroExtend64(src1[i+51:i]) * tsrc2[63:0];
Temp2[63:0] ← DEST[i+63:i] + ZeroExtend64(temp128[51:0]) ;
DEST[i+63:i] ← Temp2[63:0];

ELSE
IF *zeroing-masking* THEN

DEST[i+63:i] ← 0;
ELSE *merge-masking*

DEST[i+63:i] is unchanged;
FI;

FI;
ENDFOR

DEST[MAX_VL-1:VL] ← 0;

Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52LUQ __m512i _mm512_madd52lo_epu64(__m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_mask_madd52lo_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_maskz_madd52lo_epu64(__mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m256i _mm256_madd52lo_epu64(__m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_mask_madd52lo_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_maskz_madd52lo_epu64(__mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m128i _mm_madd52lo_epu64(__m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_mask_madd52lo_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_maskz_madd52lo_epu64(__mmask8 k, __m128i a, __m128i b, __m128i c);

Flags Affected

None.

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4.

VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-435

VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources

Instruction Operand Encoding

Description

This instruction selects eight unaligned bytes from each input qword element of the second source operand (the
third operand) and writes eight assembled bytes for each qword element in the destination operand (the first
operand). Each byte result is selected using a byte-granular shift control within the corresponding qword element
of the first source operand (the second operand). Each byte result in the destination operand is updated under the
writemask k1.
Only the low 6 bits of each control byte are used to select an 8-bit slot to extract the output byte from the qword
data in the second source operand. The starting bit of the 8-bit slot can be unaligned relative to any byte boundary
and is left-shifted from the beginning of the input qword source by the amount specified in the low 6-bit of the
control byte. If the 8-bit slot would exceed the qword boundary, the out-of-bound portion of the 8-bit slot is
wrapped back to start from bit 0 of the input qword element.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register.

Opcode /
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.NDS.128.66.0F38.W1 83 /r
VPMULTISHIFTQB xmm1 {k1}{z},
xmm2,xmm3/m128/m64bcst

A V/V AVX512_VBMI
AVX512VL

Select unaligned bytes from qwords in
xmm3/m128/m64bcst using control bytes in
xmm2, write byte results to xmm1 under k1.

EVEX.NDS.256.66.0F38.W1 83 /r
VPMULTISHIFTQB ymm1 {k1}{z},
ymm2,ymm3/m256/m64bcst

A V/V AVX512_VBMI
AVX512VL

Select unaligned bytes from qwords in
ymm3/m256/m64bcst using control bytes in
ymm2, write byte results to ymm1 under k1.

EVEX.NDS.512.66.0F38.W1 83 /r
VPMULTISHIFTQB zmm1 {k1}{z},
zmm2,zmm3/m512/m64bcst

A V/V AVX512_VBMI Select unaligned bytes from qwords in
zmm3/m512/m64bcst using control bytes in
zmm2, write byte results to zmm1 under k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources

INSTRUCTION SET REFERENCE, V-Z

5-436 Vol. 2C

Operation

VPMULTISHIFTQB DEST, SRC1, SRC2 (EVEX encoded version)
(KL, VL) = (2, 128),(4, 256), (8, 512)
FOR i ← 0 TO KL-1

IF EVEX.b=1 AND src2 is memory THEN
tcur ← src2.qword[0]; //broadcasting

ELSE
tcur ← src2.qword[i];

FI;
FOR j ← 0 to 7

ctrl ← src1.qword[i].byte[j] & 63;
FOR k ← 0 to 7

res.bit[k] ← tcur.bit[(ctrl+k) mod 64];
ENDFOR
IF k1[i*8+j] or no writemask THEN

dst.qword[i].byte[j] ← res;
ELSE IF zeroing-masking THEN

dst.qword[i].byte[j] ← 0;
ENDFOR

ENDFOR
DEST.qword[MAX_VL-1:VL] ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPMULTISHIFTQB __m512i _mm512_multishift_epi64_epi8(__m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_mask_multishift_epi64_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_maskz_multishift_epi64_epi8(__mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m256i _mm256_multishift_epi64_epi8(__m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_mask_multishift_epi64_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_maskz_multishift_epi64_epi8(__mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m128i _mm_multishift_epi64_epi8(__m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_mask_multishift_epi64_epi8(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_maskz_multishift_epi64_epi8(__mmask8 k, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

8. Addition of Chapter 7, Volume 2D
Chapter 7 was added to the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D: Instruc-
tion Set Reference.

--

New chapter added.

Vol. 2D 7-1

CHAPTER 7
INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™

PROCESSORS

This chapter describes the instruction set that is unique to Intel® Xeon Phi™ Processors based on the Knights
Landing microarchitecture. The set is not supported in any other Intel processors. Included are Intel® AVX-512
instructions. For additional instructions supported on these processors, see Chapter 3, “Instruction Set Reference,
A-L”, Chapter 4, “Instruction Set Reference, M-U”, and Chapter 5, “Instruction Set Reference, V-Z”.

PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-2 Vol. 2D

PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.
The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can occur
at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to the
fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is also
unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHh instructions, or any other
general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char const *, int hint= _MM_HINT_ET1);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

0F 0D /2
PREFETCHWT1 m8

M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint
with intent to write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-3

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point Values with Less Than 2^-23 Relative Er-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-4 Vol. 2D

VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point
Values with Less Than 2^-23 Relative Error

Instruction Operand Encoding

Description

Computes the approximate base-2 exponential evaluation of the double-precision floating-point values in the
source operand (the second operand) and stores the results to the destination operand (the first operand) using
the writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PD
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] EXP2_23_DP(SRC[63:0])
ELSE DEST[i+63:i] EXP2_23_DP(SRC[i+63:i])

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W1 C8 /r
VEXP2PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes approximations to the exponential 2^x (with less
than 2^-23 of maximum relative error) of the packed double-
precision floating-point values from zmm2/m512/m64bcst and
stores the floating-point result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) ModRM:r/m (r) NA NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point Values with Less Than 2^-23 Relative

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-5

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PD __m512d _mm512_exp2a23_round_pd (__m512d a, int sae);
VEXP2PD __m512d _mm512_mask_exp2a23_round_pd (__m512d a, __mmask8 m, __m512d b, int sae);
VEXP2PD __m512d _mm512_maskz_exp2a23_round_pd (__mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow

Other Exceptions

See Exceptions Type E2.

Table 6-1. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #I

+∞ +∞

+/-0 1.0f Exact result

-∞ +0.0f

Integral value N 2^ (N) Exact result

VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point Values with Less Than 2^-23 Relative Er-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-6 Vol. 2D

VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point
Values with Less Than 2^-23 Relative Error

Instruction Operand Encoding

Description

Computes the approximate base-2 exponential evaluation of the single-precision floating-point values in the source
operand (the second operand) and store the results in the destination operand (the first operand) using the
writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PS
(KL, VL) = (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] EXP2_23_SP(SRC[31:0])
ELSE DEST[i+31:i] EXP2_23_SP(SRC[i+31:i])

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C8 /r
VEXP2PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes approximations to the exponential 2^x (with less
than 2^-23 of maximum relative error) of the packed single-
precision floating-point values from zmm2/m512/m32bcst and
stores the floating-point result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) ModRM:r/m (r) NA NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point Values with Less Than 2^-23 Relative Er-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-7

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PS __m512 _mm512_exp2a23_round_ps (__m512 a, int sae);
VEXP2PS __m512 _mm512_mask_exp2a23_round_ps (__m512 a, __mmask16 m, __m512 b, int sae);
VEXP2PS __m512 _mm512_maskz_exp2a23_round_ps (__mmask16 m, __m512 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow

Other Exceptions

See Exceptions Type E2.

Table 6-2. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #I

+∞ +∞

+/-0 1.0f Exact result

-∞ +0.0f

Integral value N 2^ (N) Exact result

VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-8 Vol. 2D

VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /1 /vsib
VGATHERPF0DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single-precision data
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W0 C7 /1 /vsib
VGATHERPF0QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single-precision data
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W1 C6 /1 /vsib
VGATHERPF0DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double-precision data
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W1 C7 /1 /vsib
VGATHERPF0QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double-precision data
using opmask k1 and T0 hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

NA NA NA

VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-9

VGATHERPF0DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0QPS (EVEX encoded version)
(KL, VL) = (8, 256)
FOR j 0 TO KL-1

i j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPF0DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF0QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-10 Vol. 2D

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /2 /vsib
VGATHERPF1DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single-precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W0 C7 /2 /vsib
VGATHERPF1QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single-precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C6 /2 /vsib
VGATHERPF1DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double-precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C7 /2 /vsib
VGATHERPF1QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double-precision data using
opmask k1 and T1 hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

NA NA NA

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-11

VGATHERPF1DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1QPS (EVEX encoded version)
(KL, VL) = (8, 256)
FOR j 0 TO KL-1

i j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPF1DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF1QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-12 Vol. 2D

VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values
with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PD (EVEX encoded versions)
(KL, VL) = (8, 512)

FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] RCP_28_DP(1.0/SRC[63:0]);
ELSE DEST[i+63:i] RCP_28_DP(1.0/SRC[i+63:i]);

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W1 CA /r
VRCP28PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes the approximate reciprocals (< 2^-28 relative error)
of the packed double-precision floating-point values in
zmm2/m512/m64bcst and stores the results in zmm1. Under
writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-13

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PD __m512d _mm512_rcp28_round_pd (__m512d a, int sae);
VRCP28PD __m512d _mm512_mask_rcp28_round_pd(__m512d a, __mmask8 m, __m512d b, int sae);
VRCP28PD __m512d _mm512_maskz_rcp28_round_pd(__mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

Table 6-3. VRCP28PD Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-1022 INF Positive input denormal or zero; #Z

-2-1022 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-14 Vol. 2D

VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value
with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the low float64 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 2^-28 of maximum relative error. The result is written into the low float64 element of the destination
operand according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the
first source operand (the second operand).
A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SD ((EVEX encoded versions)
IF k1[0] OR *no writemask* THEN

DEST[63: 0] RCP_28_DP(1.0/SRC2[63: 0]);
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[63: 0] 0
FI;

FI;
ENDFOR;
DEST[127:64] SRC1[127: 64]
DEST[MAXVL-1:128] 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.LIG.66.0F38.W1 CB /r
VRCP28SD xmm1 {k1}{z}, xmm2,
xmm3/m64 {sae}

A V/V AVX512ER Computes the approximate reciprocal (< 2^-28 relative
error) of the scalar double-precision floating-point value
in xmm3/m64 and stores the results in xmm1. Under
writemask. Also, upper double-precision floating-point
value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-15

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SD __m128d _mm_rcp28_round_sd (__m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_mask_rcp28_round_sd(__m128d s, __mmask8 m, __m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_maskz_rcp28_round_sd(__mmask8 m, __m128d a, __m128d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

Table 6-4. VRCP28SD Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-1022 INF Positive input denormal or zero; #Z

-2-1022 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-16 Vol. 2D

VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values
with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand) using the writemask k1. The approximate reciprocal is
evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final results are rounded to
< 2^-23 relative error before written to the destination.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PS (EVEX encoded versions)
(KL, VL) = (16, 512)

FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] RCP_28_SP(1.0/SRC[31:0]);
ELSE DEST[i+31:i] RCP_28_SP(1.0/SRC[i+31:i]);

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 CA /r
VRCP28PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes the approximate reciprocals (< 2^-28 relative
error) of the packed single-precision floating-point values in
zmm2/m512/m32bcst and stores the results in zmm1. Under
writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-17

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PS _mm512_rcp28_round_ps (__m512 a, int sae);
VRCP28PS __m512 _mm512_mask_rcp28_round_ps(__m512 s, __mmask16 m, __m512 a, int sae);
VRCP28PS __m512 _mm512_maskz_rcp28_round_ps(__mmask16 m, __m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

Table 6-5. VRCP28PS Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-126 INF Positive input denormal or zero; #Z

-2-126 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -2126 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-18 Vol. 2D

VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value
with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the low float32 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 relative
error before written into the low float32 element of the destination according to writemask k1. Bits 127:32 of the
destination is copied from the corresponding bits of the first source operand (the second operand).

A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SS ((EVEX encoded versions)
IF k1[0] OR *no writemask* THEN

DEST[31: 0] RCP_28_SP(1.0/SRC2[31: 0]);
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[31: 0] 0
FI;

FI;
ENDFOR;
DEST[127:32] SRC1[127: 32]
DEST[MAXVL-1:128] 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.LIG.66.0F38.W0 CB /r
VRCP28SS xmm1 {k1}{z},
xmm2, xmm3/m32 {sae}

A V/V AVX512ER Computes the approximate reciprocal (< 2^-28 relative
error) of the scalar single-precision floating-point value in
xmm3/m32 and stores the results in xmm1. Under
writemask. Also, upper 3 single-precision floating-point
values (bits[127:32]) from xmm2 is copied to
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-19

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SS __m128 _mm_rcp28_round_ss (__m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_mask_rcp28_round_ss(__m128 s, __mmask8 m, __m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_maskz_rcp28_round_ss(__mmask8 m, __m128 a, __m128 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

Table 6-6. VRCP28SS Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-126 INF Positive input denormal or zero; #Z

-2-126 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -2126 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision Floating-Point Values with Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-20 Vol. 2D

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision
Floating-Point Values with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error.
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28PD (EVEX encoded versions)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] (1.0/ SQRT(SRC[63:0]));
ELSE DEST[i+63:i] (1.0/ SQRT(SRC[i+63:i]));

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W1 CC /r
VRSQRT28PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes approximations to the Reciprocal square root (<2^-
28 relative error) of the packed double-precision floating-point
values from zmm2/m512/m64bcst and stores result in
zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision Floating-Point Values with Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-21

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PD __m512d _mm512_rsqrt28_round_pd(__m512d a, int sae);
VRSQRT28PD __m512d _mm512_mask_rsqrt28_round_pd(__m512d s, __mmask8 m,__m512d a, int sae);
VRSQRT28PD __m512d _mm512_maskz_rsqrt28_round_pd(__mmask8 m,__m512d a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

Table 6-7. VRSQRT28PD Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-22 Vol. 2D

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision
Floating-Point Value with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float64 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error. The result is written into the low float64 element of xmm1
according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand (the
second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SD (EVEX encoded versions)
IF k1[0] OR *no writemask* THEN

 DEST[63: 0] (1.0/ SQRT(SRC[63: 0]));
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[63: 0] 0
FI;

FI;
ENDFOR;
DEST[127:64] SRC1[127: 64]
DEST[MAXVL-1:128] 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.LIG.66.0F38.W1 CD /r
VRSQRT28SD xmm1 {k1}{z},
xmm2, xmm3/m64 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar double-precision floating-point
value from xmm3/m64 and stores result in xmm1with
writemask k1. Also, upper double-precision floating-point
value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-23

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SD __m128d _mm_rsqrt28_round_sd(__m128d a, __m128b b, int sae);
VRSQRT28SD __m128d _mm_mask_rsqrt28_round_pd(__m128d s, __mmask8 m,__m128d a, __m128d b, int sae);
VRSQRT28SD __m128d _mm_maskz_rsqrt28_round_pd(__mmask8 m,__m128d a, __m128d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

Table 6-8. VRSQRT28SD Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision Floating-Point Values with Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-24 Vol. 2D

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision
Floating-Point Values with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error prior to final rounding. The final results is rounded to < 2^-23 relative error
before written to the destination.
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28PS (EVEX encoded versions)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] (1.0/ SQRT(SRC[31:0]));
ELSE DEST[i+31:i] (1.0/ SQRT(SRC[i+31:i]));

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 CC /r
VRSQRT28PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes approximations to the Reciprocal square root
(<2^-28 relative error) of the packed single-precision
floating-point values from zmm2/m512/m32bcst and stores
result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision Floating-Point Values with Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-25

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PS __m512 _mm512_rsqrt28_round_ps(__m512 a, int sae);
VRSQRT28PS __m512 _mm512_mask_rsqrt28_round_ps(__m512 s, __mmask16 m,__m512 a, int sae);
VRSQRT28PS __m512 _mm512_maskz_rsqrt28_round_ps(__mmask16 m,__m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

Table 6-9. VRSQRT28PS Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Rel-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-26 Vol. 2D

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-
Point Value with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float32 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 rela-
tive error before written to the low float32 element of the destination according to the writemask k1. Bits 127:32 of
the destination is copied from the corresponding bits of the first source operand (the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SS (EVEX encoded versions)
IF k1[0] OR *no writemask* THEN

 DEST[31: 0] (1.0/ SQRT(SRC[31: 0]));
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[31: 0] 0
FI;

FI;
ENDFOR;
DEST[127:32] SRC1[127: 32]
DEST[MAXVL-1:128] 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.LIG.66.0F38.W0 CD /r
VRSQRT28SS xmm1 {k1}{z},
xmm2, xmm3/m32 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar single-precision floating-point
value from xmm3/m32 and stores result in xmm1with
writemask k1. Also, upper 3 single-precision floating-point
value (bits[127:32]) from xmm2 is copied to
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Rel-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-27

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SS __m128 _mm_rsqrt28_round_ss(__m128 a, __m128 b, int sae);
VRSQRT28SS __m128 _mm512_mask_rsqrt28_round_ss(__m128 s, __mmask8 m,__m128 a,__m128 b, int sae);
VRSQRT28SS __m128 _mm512_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

Table 6-10. VRSQRT28SS Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-28 Vol. 2D

VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint with Intent
to Write

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /5 /vsib
VSCATTERPF0DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single-precision data using
writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W0 C7 /5 /vsib
VSCATTERPF0QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single-precision data using
writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W1 C6 /5 /vsib
VSCATTERPF0DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double-precision data
using writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W1 C7 /5 /vsib
VSCATTERPF0QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double-precision data
using writemask k1 and T0 hint with intent to write.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

NA NA NA

VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-29

VSCATTERPF0DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0QPS (EVEX encoded version)
(KL, VL) = (8, 256)
FOR j 0 TO KL-1

i j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPF0DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF0DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_prefetch_i64scatter_ps(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_mask_prefetch_i64scatter_ps(void * base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-30 Vol. 2D

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint with Intent
to Write

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /6 /vsib
VSCATTERPF1DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte memory
locations containing single-precision data using writemask
k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W0 C7 /6 /vsib
VSCATTERPF1QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte memory
locations containing single-precision data using writemask
k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W1 C6 /6 /vsib
VSCATTERPF1DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte memory
locations containing double-precision data using
writemask k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W1 C7 /6 /vsib
VSCATTERPF1QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte memory
locations containing double-precision data using
writemask k1 and T1 hint with intent to write.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

NA NA NA

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 7-31

VSCATTERPF1DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1QPS (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1

i j * 64
k j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPF1DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF1DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_prefetch_i64scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_mask_prefetch_i64scatter_ps(void *base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

7-32 Vol. 2D

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

9. Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

Changes to this chapter: Update in naming flags in control registers.

Vol. 3A 2-1

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system
and system-development software. This support offers multiple modes of operation, which include:
• Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes

referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in IA-32 architecture and
extends them to a new operating mode (IA-32e mode) that supports a 64-bit programming environment. IA-32e
mode allows software to operate in one of two sub-modes:
• 64-bit mode supports 64-bit OS and 64-bit applications
• Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.

The IA-32 system-level architecture includes features to assist in the following operations:
• Memory management
• Protection of software modules
• Multitasking
• Exception and interrupt handling
• Multiprocessing
• Cache management
• Hardware resource and power management
• Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes the system registers that are
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architecture are used only by system programmers. However, application
programmers may need to read this chapter and the following chapters in order to create a reliable and secure
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the IA-32 architec-
ture. IA-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also
described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or reset (see Chapter 9, “Processor
Management and Initialization”). Software then initiates the switch from real-address mode to protected mode. If
IA-32e mode operation is desired, software also initiates a switch from protected mode to IA-32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instructions designed to support basic
system-level operations such as memory management, interrupt and exception handling, task management, and
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to IA-32e mode are shown in Figure 2-2.

2-2 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Figure 2-1. IA-32 System-Level Registers and Data Structures

Local Descriptor
Table (LDT)

EFLAGS Register

Control Registers

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Task-State
Segment (TSS)

Code
Data

Stack

Task

Interrupt Handler

Exception Handler

Protected Procedure

TSS Seg. Sel.

Call-Gate
Segment Selector

Dir Table Offset
Linear Address

Page Directory

Pg. Dir. Entry

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or
Stack Segment

Interrupt
Vector

TSS Desc.

Seg. Desc.

Task Gate

Current
TSS

Call Gate

Task-State
Segment (TSS)

Code
Data

Stack

Task

Seg. Desc.

Current
TSS

Current
TSS

Segment Selector

Linear Address

Task Register

CR3*

Page Table

Pg. Tbl. Entry

Page

Physical Addr.

LDTR

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Register

*Physical Address

Physical Address

XCR0 (XFEM)

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

PKRU

2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor
obtains the base address of the segment in the linear address space. The offset then provides the location of the
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment,
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector,
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is
contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode
GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility
mode). For more information: see Section 3.5.2, “Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not
expanded.

2.1.2 System Segments, Segment Descriptors, and Gates
Besides code, data, and stack segments that make up the execution environment of a program or procedure, the
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and
task gates). These provide protected gateways to system procedures and handlers that may operate at a different
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged)
than the current code segment. To access a procedure through a call gate, the calling procedure1 supplies the
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL
with the privilege level of the call gate and the destination code segment pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment selector for the destination
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and
32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode
In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in IA-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine).

Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

2.1.3 Task-State Segments and Task Gates
The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector
for the LDT associated with the task and the base address of the paging-structure hierarchy.

All program execution in protected mode happens within the context of a task (called the current task). The
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers,
the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access
(through a segment selector) to a TSS rather than a code segment.

2.1.3.1 Task-State Segments in IA-32e Mode
Hardware task switches are not supported in IA-32e mode. However, TSSs continue to exist. The base address of
a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
• Stack pointer addresses for each privilege level
• Pointer addresses for the interrupt stack table
• Offset address of the IO-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See also: Section 7.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling
External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT).
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception
handler, the processor first receives an interrupt vector from internal hardware, an external interrupt controller, or
from software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt vector provides an index into
the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated handler procedure is
accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a task gate, the handler
is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode
In IA-32e mode, interrupt gate descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true
for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.5 Memory Management
System architecture supports either direct physical addressing of memory or virtual memory (through paging).
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code,
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures.
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For
example, each task can have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode
In IA-32e mode, physical memory pages are managed by a set of system data structures. In compatibility mode
and 64-bit mode, four levels of system data structures are used. These include:
• The page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page

directory pointer table, access rights, and memory management information. The base physical address of the
PML4 is stored in CR3.

• A set of page directory pointer tables — An entry in a page directory pointer table contains the physical
address of the base of a page directory table, access rights, and memory management information.

• Sets of page directories — An entry in a page directory table contains the physical address of the base of a
page table, access rights, and memory management information.

• Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights,
and memory management information.

2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system architecture provides system
flags in the EFLAGS register and several system registers:
• The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling,

instruction tracing, and access rights. See also: Section 2.3, “System Flags and Fields in the EFLAGS Register.”
• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-

level operations. Other flags in these registers are used to indicate support for specific processor capabilities
within the operating system or executive. See also: Section 2.5, “Control Registers” and Section 2.6, “Extended
Control Registers (Including XCR0).”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs
and systems software. See also: Chapter 17, “Debug, Branch Profile, TSC, and Resource Monitoring Features.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables.
See also: Section 2.4, “Memory-Management Registers.”

• The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4,
“Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions,
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs).

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor
families. See also: Section 9.4, “Model-Specific Registers (MSRs),” and Chapter 2, “Model-Specific Registers
(MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

Most systems restrict access to system registers (other than the EFLAGS register) by application programs.
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CR0–CR4 are expanded to 64 bits.
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating
system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode, address-matching in DR0–DR3 is
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there are
several model-specific registers that govern IA-32e mode instructions:
• IA32_KERNEL_GS_BASE — Used by SWAPGS instruction.
• IA32_LSTAR — Used by SYSCALL instruction.
• IA32_FMASK — Used by SYSCALL instruction.
• IA32_STAR — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources
Besides the system registers and data structures described in the previous sections, system architecture provides
the following additional resources:
• Operating system instructions (see also: Section 2.8, “System Instruction Summary”).
• Performance-monitoring counters (not shown in Figure 2-1).
• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as
the number of instructions decoded, the number of interrupts received, or the number of cache loads. See also:
Chapter 19, “Performance Monitoring Events.”

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write
operations waiting to be performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION
The IA-32 architecture supports three operating modes and one quasi-operating mode:
• Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural

features, flexibility, high performance and backward compatibility to existing software base.
• Real-address mode — This operating mode provides the programming environment of the Intel 8086

processor, with a few extensions (such as the ability to switch to protected or system management mode).
• System management mode (SMM) — SMM is a standard architectural feature in all IA-32 processors,

beginning with the Intel386 SL processor. This mode provides an operating system or executive with a
transparent mechanism for implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which generates a system management
interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the
currently running program or task. SMM-specific code may then be executed transparently. Upon returning
from SMM, the processor is placed back into its state prior to the SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

2-8 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit

mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CR0 then
controls whether the processor is operating in real-address or protected mode. See also: Section 9.9, “Mode
Switching.” and Section 4.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task
switch or a return from an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment.
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected,
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode
it was in when the SMI occurred.

Figure 2-3. Transitions Among the Processor’s Operating Modes

Real-Address

Protected Mode

Virtual-8086
Mode

System
Management

Mode

PE=1Reset or

VM=1VM=0

PE=0

Reset
or

RSM

SMI#

RSM

SMI#

RSM

SMI#
Reset

 Mode

IA-32e
Mode RSM

SMI#LME=1, CR0.PG=1*

See**

* See Section 9.8.5
** See Section 9.8.5.4

Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

2.2.1 Extended Feature Enable Register
The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 4.6, “Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER
The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging, task
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution
state of a program to be inspected after each instruction. If an application program sets the TF flag using a

Figure 2-4. IA32_EFER MSR Layout

Table 2-1. IA32_EFER MSR Information
Bit Description

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)

Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).

63:12 Reserved.

Reserved

IA-32e Mode Active

0178910111263

IA32_EFER

IA-32e Mode Enable

Execute Disable Bit Enable

SYSCALL Enable

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the
POPF, POPFD, or IRET.

IF Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “Maskable Hardware Interrupts”). The flag is set to respond to maskable
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD,
and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also:
Chapter 18, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected
exceptions in application programs.

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

Figure 2-5. System Flags in the EFLAGS Register

31 22 21 20 19 18 17 16

R
F

I
D

A
C

V
M

VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag

AC — Alignment Check / Access Control

ID — Identification Flag
VIP — Virtual Interrupt Pending

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 00

V
I
P

V
I
F

O
F

I
O
P
L

VIF — Virtual Interrupt Flag

TF — Trap Flag

Reserved

Reserved (set to 0)

Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check or access control (bit 18) — If the AM bit is set in the CR0 register, alignment
checking of user-mode data accesses is enabled if and only if this flag is 1. An alignment-check exception
is generated when reference is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check exceptions are gener-
ated only in user mode (privilege level 3). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate this exception even when caused by instructions executed in
user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode pages are
allowed if and only if this bit is 1. See Section 4.6, “Access Rights.”

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086
mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode Virtual
Interrupts.”

ID Identification (bit 21) — The ability of a program or procedure to set or clear this flag indicates support
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode
In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS
The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are
provided for loading and storing these registers.

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.4.1 Global Descriptor Table Register (GDTR)
The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table
limit for the GDT. The base address specifies the linear address of byte 0 of the GDT; the table limit specifies the
number of bytes in the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the
processor, the base address is set to the default value of 0 and the limit is set to 0FFFFH. A new base address must
be loaded into the GDTR as part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)
The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte
0 of the LDT segment; the segment limit specifies the number of bytes in the segment. See also: Section 3.5.1,
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and
the limit is set to 0FFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register
The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit
for the IDT. The base address specifies the linear address of byte 0 of the IDT; the table limit specifies the number
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or
reset of the processor, the base address is set to the default value of 0 and the limit is set to 0FFFFH. The base
address and limit in the register can then be changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

Figure 2-6. Memory Management Registers

047(79)

GDTR
IDTR

System Table Registers

32(64)-bit Linear Base Address 16-Bit Table Limit
1516

32(64)-bit Linear Base Address

0
Task

LDTR

System Segment

Seg. Sel.

15

Seg. Sel.

Segment Descriptor Registers (Automatically Loaded)

32(64)-bit Linear Base Address Segment Limit

Attributes
Registers

32(64)-bit Linear Base Address Segment Limit
Register

16-Bit Table Limit

Vol. 3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

2.4.4 Task Register (TR)
The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base
address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS
information into the register.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility
mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:
• The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms

of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or loaded
(at privilege level 0 only). This restriction means that application programs or operating-system procedures
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the
upper 32 bits results in a general-protection exception, #GP(0).

• All 64 bits of CR2 are writable by software.
• Bits 51:40 of CR3 are reserved and must be 0.
• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address or

physical-address limitations of the implementation.
• Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control registers
is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except
for CR0).
• CR0 — Contains system control flags that control operating mode and states of the processor.
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a page fault).
• CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and

PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or

executive support for specific processor capabilities.

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

CR0.PG

Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CR0.CD

Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

CR0.NW
Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

Figure 2-7. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

S
M
A
P

22 21

P
K
E

U
M
I
P

Vol. 3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

CR0.AM
Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

CR0.WP
Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the
U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX.

CR0.NE
Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR#
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits
newer processors to operate with one logical processor active.

See also: Section 8.7, “Handling x87 FPU Exceptions in Software” in Chapter 8, “Programming with the x87
FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

CR0.ET
Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

CR0.TS
Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.
See the paragraph below for the special case of the WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no effect on the execution of x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever
it encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context is never saved.

2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CR0.EM
Emulation (bit 2 of CR0) — Indicates that the processor does not have an internal or external x87 FPU
when set; indicates an x87 FPU is present when clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 9-3 shows the recommended setting of this flag, depending on the IA-32 processor
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, the
EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI,
CLFLUSH, CRC32, and POPCNT.

CR0.MP
Monitor Coprocessor (bit 1 of CR0) — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CR0). If the MP flag is set, a WAIT instruction generates a device-not-available exception
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag.
Table 9-3 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU or
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

CR0.PE
Protection Enable (bit 0 of CR0) — Enables protected mode when set; enables real-address mode when
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging,
both the PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

CR3.PCD
Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging2 if CR4.PCIDE=1.

Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

2. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Vol. 3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

CR3.PWT
Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging if CR4.PCIDE=1.

CR4.VME
Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling extensions
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and,
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

CR4.PVI
Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

CR4.TSD
Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

CR4.DE
Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

CR4.PSE
Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages of 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

CR4.PAE
Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering
IA-32e mode.

See also: Chapter 4, “Paging.”

CR4.MCE
Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

CR4.PGE
Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CR0) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 4.10, “Caching Translation Information.”

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CR4.PCE
Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

CR4.OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU
and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers. Also,
the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore
the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit indicates that
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

CR4.OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-
tion.

CR4.UMIP
User-Mode Instruction Prevention (bit 11 of CR4) — When set, the following instructions cannot be
executed if CPL > 0: SGDT, SIDT, SLDT, SMSW, and STR. An attempt at such execution causes a general-
protection exception (#GP).

CR4.VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to
Virtual Machine Extensions.”

CR4.SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 6, “Safer Mode Exten-
sions Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

CR4.FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

CR4.PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

Vol. 3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

CR4.OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV,
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCR0; (3) enables the processor to execute XGETBV
and XSETBV instructions in order to read and write XCR0. See Section 2.6 and Chapter 13, “System
Programming for Instruction Set Extensions and Processor Extended States”.

CR4.SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights”.

CR4.SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 4.6, “Access Rights.”

CR4.PKE
Protection-Key-Enable Bit (bit 22 of CR4) — Enables 4-level paging to associate each linear address
with a protection key. The PKRU register specifies, for each protection key, whether user-mode linear
addresses with that protection key can be read or written. This bit also enables access to the PKRU register
using the RDPKRU and WRPKRU instructions.

CR8.TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags
Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are
used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs).
Currently, the only such register defined is XCR0. This register specifies the set of processor state components for
which the operating system provides context management, e.g. x87 FPU state, SSE state, AVX state. The OS
programs XCR0 to reflect the features for which it provides context management.

2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.OSXSAVE[bit 27].) Software can use CPUID leaf function 0DH to enumerate the bits in XCR0 that
the processor supports (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0. System software enables state
components by loading an appropriate bit mask value into XCR0 using the XSETBV instruction.
As each bit in XCR0 (except bit 63) corresponds to a processor state component, XCR0 thus provides support for
up to 63 sets of processor state components. Bit 63 of XCR0 is reserved for future expansion and will not represent
a processor state component.

Currently, XCR0 defines support for the following state components:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.
• XCR0.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMM0-

XMM15 in 64-bit mode; otherwise XMM0-XMM7).
• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and the XSAVE feature set can be used to manage the

upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).
• XCR0.BNDREG (bit 3): If 1, MPX instructions can be executed and the XSAVE feature set can be used to

manage the bounds registers BND0–BND3.
• XCR0.BNDCSR (bit 4): If 1, MPX instructions can be executed and the XSAVE feature set can be used to

manage the BNDCFGU and BNDSTATUS registers.
• XCR0.opmask (bit 5): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to

manage the opmask registers k0–k7.
• XCR0.ZMM_Hi256 (bit 6): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to

manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMM0-ZMM7).
• XCR0.Hi16_ZMM (bit 7): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to

manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).
• XCR0.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

Figure 2-8. XCR0

63

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

AVX state

1Reserved (must be 0)

x87 FPU/MMX state (must be 1)
SSE state

9

PKRU state

567

Hi16_ZMM state
ZMM_Hi256 state
Opmask state

4 3

BNDCSR state
BNDREG state

Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW

An attempt to use XSETBV to write to XCR0 results in general-protection exceptions (#GP) if it would do any of the
following:
• Set a bit reserved in XCR0 for a given processor (as determined by the contents of EAX and EDX after executing

CPUID with EAX=0DH, ECX= 0H).
• Clear XCR0.x87.
• Clear XCR0.SSE and set XCR0.AVX.
• Clear XCR0.AVX and set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM.
• Set either XCR0.BNDREG and XCR0.BNDCSR while not setting the other.
• Set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1.

2.7 PROTECTION KEY RIGHTS REGISTER (PKRU)
If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, the processor supports the protection-key feature for 4-level
paging. The feature allows selective protection of user-mode pages depending on the 4-bit protection key assigned
to each page. The protection key rights register for user pages (PKRU) allows software to specify the access
rights for each protection key.

The layout of the PKRU register is shown in Figure 2-9. It contains 16 pairs of disable controls to prevent data
accesses to user-mode linear addresses based on their protection keys. Each protection key i is associated with
two bits in the PKRU register:
• Bit 2i, shown as “ADi” (access disable): if set, the processor prevents any data accesses to user-mode linear

addresses with protection key i.
• Bit 2i+1, shown as “WDi” (write disable): if set, the processor prevents write accesses to user-mode linear

addresses with protection key i.

See Section 4.6.2, “Protection Keys,” for details of how the processor uses the PKRU register to control accesses to
user-mode linear addresses.

2.8 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers, managing the cache,
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-
ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-3 lists the system instructions and indicates whether they are available and useful for application
programs. These instructions are described in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B, 2C & 2D.

Figure 2-9. Protection Key Rights Register for User Pages (PKRU)

A

31 9 8 7 6 5 4 3 2 1 01418 1720 16 1522 21 1930 29 28 27 25 24 2326 Bit Position10111213

D
W
D
0

A
D
1

W
D
1 0

A
D

W
D
2

A
D
3

W
D
3 2

A
D

W
D
4

A
D
5

W
D
5 4

A
D

W
D
6

A
D
7

W
D
7 6

A
D

W
D
8

A
D
9

W
D
9 8

A
D

W
D
10

A
D
11

W
D
11 10

A
D

W
D
12

A
D
13

W
D
13 12

A
D

W
D
14

A
D
15

W
D

1415

2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Table 2-3. Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No If CR4.UMIP = 1

LGDT Load GDT Register No Yes

SGDT Store GDT Register No If CR4.UMIP = 1

LTR Load Task Register No Yes

STR Store Task Register No If CR4.UMIP = 1

LIDT Load IDT Register No Yes

SIDT Store IDT Register No If CR4.UMIP = 1

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes If CR4.UMIP = 1

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring Counter Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW

2.8.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing
data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.
• SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.
• LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into

the LDTR. (The segment selector operand can also be located in a general-purpose register.)
• SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a

general-purpose register.
• LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the

task register. (The segment selector operand can also be located in a general-purpose register.)
• STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into

memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0
through 15 of control register CR0. These instructions are provided for compatibility with the 16-bit Intel 286
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CR0 using the MOV CR instruction.

The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-not-available exception (#NM)
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.8.2 Verifying of Access Privileges
The processor provides several instructions for examining segment selectors and segment descriptors to deter-
mine if access to their associated segments is allowed. These instructions duplicate some of the automatic access
rights and type checking done by the processor, thus allowing operating-system or executive software to prevent
exceptions from being generated.

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor extended states No6 Yes

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX technol-

ogy.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-3. Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?

2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that of
the program or procedure that supplied the segment selector. See Section 5.10.4, “Checking Caller Access Privi-
leges (ARPL Instruction)” for a detailed explanation of the function and use of this instruction. Note that ARPL is not
supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights
information from the segment’s segment descriptor into a general-purpose register. Software can then examine
the access rights to determine if the segment type is compatible with its intended use. See Section 5.10.1,
“Checking Access Rights (LAR Instruction)” for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the offset lies within the segment. See Section
5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction)” for a detailed explanation of the func-
tion and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or
writable, respectively, at a given CPL. See Section 5.10.2, “Checking Read/Write Rights (VERR and VERW Instruc-
tions)” for a detailed explanation of the function and use of these instructions.

2.8.3 Loading and Storing Debug Registers
Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0-DR7). The MOV
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64 bits. In 32-bit modes and
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are
ignored). All 64 bits of DR0-DR3 are writable by software. However, MOV DRn instructions do not check that
addresses written to DR0-DR3 are in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.8.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches
and sends a signal to the external caches indicating that they should also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction,
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higher in
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have
in modified state at the time of instruction execution and to invalidate their contents.

Note, non-shared caches may not be written back nor invalidated. In Figure 2-10 below, if code executing on either
LP0 or LP1 were to execute a WBINVD, the shared L1 and L2 for LP0/LP1 will be written back and invalidated as will
the shared L3. However, the L1 and L2 caches not shared with LP0 and LP1 will not be written back nor invalidated.

Vol. 3A 2-25

SYSTEM ARCHITECTURE OVERVIEW

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.8.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The
processor generates a special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note
that the BINIT# pin was introduced with the Pentium Pro processor). If any non-wake events are pending during
shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described
below:
• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the processor to assert the

LOCK# signal during the instruction. This always causes an explicit bus lock to occur.
• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock

or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and
the system bus and the actual memory location in system memory are not locked during the operation. Here,
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted and the processor does not
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to
a system management mode (SMM) interrupt.

2.8.6 Reading Performance-Monitoring and Time-Stamp Counters
The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively.
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6
family processors have two 40-bit counters. Intel® Atom™ processors and most of the processors based on the
Intel Core microarchitecture support two types of performance monitoring counters: programmable performance
counters similar to those available in the P6 family, and three fixed-function performance monitoring counters.

Figure 2-10. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy

Logical Processors
L1 & L2 Cache

LP0 LP5

QPI

LP1 LP2 LP3 LP4 LP6 LP7

Execution Engine

L3 Cache

Uncore

DDR3

Written back

Written back and Invalidated

Not Written back and
not Invalidated

& Invalidated

2-26 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Details of programmable and fixed-function performance monitoring counters for each processor generation are
described in Chapter 18, “Performance Monitoring”.

The programmable performance counters can support counting either the occurrence or duration of events. Events
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the
system instruction WRMSR to set up values in one of the IA32_PERFEVTSELx MSR, in one of the 45 ESCRs and one
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR (for
the P6 family processors). The RDPMC instruction loads the current count from the selected counter into the
EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in Chapter 19, “Performance
Monitoring Events”, and the width/number of fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If
not reset, the counter will increment ~9.5 x 1016 times per year when the processor is operating at a clock rate
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.17, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor with
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only
with the RDMSR instruction, and only at privilege level 0.

2.8.6.1 Reading Counters in 64-Bit Mode
In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.8.7 Reading and Writing Model-Specific Registers
The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX
registers to the specified MSR. RDMSR and WRMSR were introduced into the IA-32 architecture with the Pentium
processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

2.8.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode
RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is
specified using ECX.

2.8.8 Enabling Processor Extended States
The XSETBV instruction is required to enable OS support of individual processor extended states in XCR0 (see
Section 2.6).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

10.Updates to Chapter 3, Volume 3A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--
Change to this chapter: Update to Table 3-2 “System-Segment and Gate-Descriptor Types”.

Vol. 3A 3-1

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection mechanism) and Chapter 20,
“8086 Emulation” (for a description of memory addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW
The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging.
Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple
programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech-
anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s
execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is
no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-
task) systems, multitasking systems, or multiple-processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory
space (called the linear address space) into smaller protected address spaces called segments. Segments can
be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT).
If more than one program (or task) is running on a processor, each program can be assigned its own set of
segments. The processor then enforces the boundaries between these segments and insures that one program
does not interfere with the execution of another program by writing into the other program’s segments. The
segmentation mechanism also allows typing of segments so that the operations that may be performed on a partic-
ular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a byte in a particular
segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment
selector and an offset. The segment selector is a unique identifier for a segment. Among other things it provides an
offset into a descriptor table (such as the global descriptor table, GDT) to a data structure called a segment
descriptor. Each segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear
address space (called the base address of the segment). The offset part of the logical address is added to the base
address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear
address in the processor’s linear address space.

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the linear address space of the processor is mapped directly into the physical address space
of processor. The physical address space is defined as the range of addresses that the processor can generate on
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a
program (or task) attempts to access an address location in the linear address space, the processor uses the page
directory and page tables to translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program
(by generating a page-fault exception). The operating system or executive then reads the page into physical
memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of
system designs. These designs range from flat models that make only minimal use of segmentation to protect

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page

Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT

programs to multi-segmented models that employ segmentation to create a robust operating environment in
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve
memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the operating system and application
programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat
model hides the segmentation mechanism of the architecture from both the system designer and the application
programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment descriptors must be
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment limit to 4
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical
address space, because the processor begins execution at FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the
address space because the initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits are set to include only the
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Figure 3-2. Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAccess
Base Address

Registers
CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

More complexity can be added to this protected flat model to provide more protection. For example, for the paging
mechanism to provide isolation between user and supervisor code and data, four segments need to be defined:
code and data segments at privilege level 3 for the user, and code and data segments at privilege level 0 for the
supervisor. Usually these segments all overlay each other and start at address 0 in the linear address space. This
flat segmentation model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applications from each other.
Similar designs are used by several popular multitasking operating systems.

3.2.3 Multi-Segment Model
A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the segmentation mech-
anism to provide hardware enforced protection of code, data structures, and programs and tasks. Here, each
program (or task) is given its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to all segments and to the
execution environments of individual programs running on the system is controlled by hardware.

Figure 3-3. Protected Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFH
Segment

LimitAccess
Base Address

Registers

CS

ES

SS

DS

FS

GS

Code

0

Segment
Descriptors

LimitAccess
Base Address

Memory I/O

Stack

Not Present

Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT

Access checks can be used to protect not only against referencing an address outside the limit of a segment, but
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to
protect operating-system procedures from unauthorized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as additional base registers in linear address calculations. They facilitate addressing local data
and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS LimitAccess
Base Address

DS LimitAccess
Base Address

ES LimitAccess
Base Address

FS LimitAccess
Base Address

GS LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

protection facilities. For example, it lets read-write protection be enforced on a page-by-page basis. The paging
mechanism also provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes (232

 bytes). This
is the address space that the processor can address on its address bus. This address space is flat (unsegmented),
with addresses ranging continuously from 0 to FFFFFFFFH. This physical address space can be mapped to read-
write memory, read-only memory, and memory mapped I/O. The memory mapping facilities described in this
chapter can be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an extension of the physical address
space to 236 bytes (64 GBytes); with a maximum physical address of FFFFFFFFFH. This extension is invoked in
either of two ways:
• Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.
• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium III processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4, “Paging” for more information
about 36-bit physical addressing.

3.3.1 Intel® 64 Processors and Physical Address Space
On processors that support Intel 64 architecture (CPUID.80000001H:EDX[29] = 1), the size of the physical
address range is implementation-specific and indicated by CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see “CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES
At the system-architecture level in protected mode, the processor uses two stages of address translation to arrive
at a physical address: logical-address translation and linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed with a logical
address. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). The segment
selector identifies the segment the byte is located in and the offset specifies the location of the byte in the segment
relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit address in the
processor’s linear address space. Like the physical address space, the linear address space is a flat (unsegmented),
232-byte address space, with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all the
segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in the GDT or LDT and
reads it into the processor. (This step is needed only when a new segment selector is loaded into a segment
register.)

2. Examines the segment descriptor to check the access rights and range of the segment to insure that the
segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a linear address.

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

Figure 3-5. Logical Address to Linear Address Translation

Figure 3-6. Segment Selector

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)

15 3 2 1 0
T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

Figure 3-7. Segment Registers

CS
SS
DS
ES
FS
GS

Segment Selector Base Address, Limit, Access Information
Visible Part Hidden Part

Vol. 3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER
and SYSEXIT instructions, and the IRET, INTn, INTO and INT3 instructions. These instructions change the
contents of the CS register (and sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store the visible part of a segment register in a general-purpose register.

3.4.4 Segment Loading Instructions in IA-32e Mode
Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit, and attribute) in
segment descriptor registers are ignored. Some forms of segment load instructions are also invalid (for example,
LDS, POP ES). Address calculations that reference the ES, DS, or SS segments are treated as if the segment base
is zero.

The processor checks that all linear-address references are in canonical form instead of performing limit checks.
Mode switching does not change the contents of the segment registers or the associated descriptor registers.
These registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg) work
normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded in the hidden
portion of the segment register. The descriptor-register base, limit, and attribute fields are all loaded. However, the
contents of the data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are used in the linear
address calculation: (FS or GS).base + index + displacement. FS.base and GS.base are then expanded to the full
linear-address size supported by the implementation. The resulting effective address calculation can wrap across
positive and negative addresses; the resulting linear address must be canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for a runtime limit
nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS load a
standard 32-bit base value in the hidden portion of the segment register. The base address bits above the standard
32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs in order to load all
address bits supported by a 64-bit implementation. Software with CPL = 0 (privileged software) can load all
supported linear-address bits into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base
and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-canonical
address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior regardless of the
value loaded into the upper 32 linear-address bits of the hidden descriptor register base field. Compatibility mode
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges the kernel data struc-
ture pointer from the IA32_KERNEL_GS_BASE MSR with the GS base register. The kernel can then use the GS
prefix on normal memory references to access the kernel data structures. An attempt to write a non-canonical
value (using WRMSR) to the IA32_KERNEL_GS_BASE MSR causes a #GP fault.

3.4.5 Segment Descriptors
A segment descriptor is a data structure in a GDT or LDT that provides the processor with the size and location of
a segment, as well as access control and status information. Segment descriptors are typically created by
compilers, linkers, loaders, or the operating system or executive, but not application programs. Figure 3-8 illus-
trates the general descriptor format for all types of segment descriptors.

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data
segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being
the most privileged level. The DPL is used to control access to the segment. See Section 5.5, “Priv-
ilege Levels”, for a description of the relationship of the DPL to the CPL of the executing code
segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear). If this flag is clear,
the processor generates a segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register. Memory management software
can use this flag to control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present flag is clear. When
this flag is clear, the operating system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is an executable code
segment, an expand-down data segment, or a stack segment. (This flag should always be set to 1
for 32-bit code and data segments and to 0 for 16-bit code and data segments.)

• Executable code segment. The flag is called the D flag and it indicates the default length for
effective addresses and operands referenced by instructions in the segment. If the flag is set,
32-bit addresses and 32-bit or 8-bit operands are assumed; if it is clear, 16-bit addresses and
16-bit or 8-bit operands are assumed.
The instruction prefix 66H can be used to select an operand size other than the default, and the
prefix 67H can be used select an address size other than the default.

• Stack segment (data segment pointed to by the SS register). The flag is called the B (big)
flag and it specifies the size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is used, which is stored in the
32-bit ESP register; if the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-
bit SP register. If the stack segment is set up to be an expand-down data segment (described in
the next paragraph), the B flag also specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it specifies the upper bound of
the segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is clear, the segment
limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units.
(This flag does not affect the granularity of the base address; it is always byte granular.) When the
granularity flag is set, the twelve least significant bits of an offset are not tested when checking the

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

31 16 15 1314 12 11 8 7 0

0Available
D
P
L

TypeS 4

31 0

Available 0

Available

3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

offset against the segment limit. For example, when the granularity flag is set, a limit of 0 results in
valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a
code segment contains native 64-bit code. A value of 1 indicates instructions in this code segment
are executed in 64-bit mode. A value of 0 indicates the instructions in this code segment are
executed in compatibility mode. If L-bit is set, then D-bit must be cleared. When not in IA-32e mode
or for non-code segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types
When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code or a data
segment. The highest order bit of the type field (bit 11 of the second double word of the segment descriptor) then
determines whether the descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as accessed (A),
write-enable (W), and expansion-direction (E). See Table 3-1 for a description of the encoding of the bits in the
type field for code and data segments. Data segments can be read-only or read/write segments, depending on the
setting of the write-enable bit.

Stack segments are data segments which must be read/write segments. Loading the SS register with a segment
selector for a nonwritable data segment generates a general-protection exception (#GP). If the size of a stack
segment needs to be changed dynamically, the stack segment can be an expand-down data segment (expansion-
direction flag set). Here, dynamically changing the segment limit causes stack space to be added to the bottom of

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0 0 0 0 0 Data Read-Only

1 0 0 0 1 Data Read-Only, accessed

2 0 0 1 0 Data Read/Write

3 0 0 1 1 Data Read/Write, accessed

4 0 1 0 0 Data Read-Only, expand-down

5 0 1 0 1 Data Read-Only, expand-down, accessed

6 0 1 1 0 Data Read/Write, expand-down

7 0 1 1 1 Data Read/Write, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only

9 1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read

11 1 0 1 1 Code Execute/Read, accessed

12 1 1 0 0 Code Execute-Only, conforming

13 1 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 1 0 Code Execute/Read, conforming

15 1 1 1 1 Code Execute/Read, conforming, accessed

Vol. 3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT

the stack. If the size of a stack segment is intended to remain static, the stack segment may be either an expand-
up or expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the operating-system or
executive cleared the bit. The processor sets this bit whenever it loads a segment selector for the segment into a
segment register, assuming that the type of memory that contains the segment descriptor supports processor
writes. The bit remains set until explicitly cleared. This bit can be used both for virtual memory management and
for debugging.

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read enable (R), and
conforming (C). Code segments can be execute-only or execute/read, depending on the setting of the read-enable
bit. An execute/read segment might be used when constants or other static data have been placed with instruction
code in a ROM. Here, data can be read from the code segment either by using an instruction with a CS override
prefix or by loading a segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-privileged
conforming segment allows execution to continue at the current privilege level. A transfer into a nonconforming
segment at a different privilege level results in a general-protection exception (#GP), unless a call gate or task gate
is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more information on conforming and
nonconforming code segments). System utilities that do not access protected facilities and handlers for some types
of exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Utilities that need to
be protected from less privileged programs and procedures should be placed in nonconforming code segments.

NOTE
Execution cannot be transferred by a call or a jump to a less-privileged (numerically higher
privilege level) code segment, regardless of whether the target segment is a conforming or
nonconforming code segment. Attempting such an execution transfer will result in a general-
protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged programs or proce-
dures (code executing at numerically higher privilege levels). Unlike code segments, however, data segments can
be accessed by more privileged programs or procedures (code executing at numerically lower privilege levels)
without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an indefinite loop if
software or the processor attempts to update (write to) the ROM-based segment descriptors. To prevent this
problem, set the accessed bits for all segment descriptors placed in a ROM. Also, remove operating-system or
executive code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system descriptor. The
processor recognizes the following types of system descriptors:
• Local descriptor-table (LDT) segment descriptor.
• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors. System-
segment descriptors point to system segments (LDT and TSS segments). Gate descriptors are in themselves
“gates,” which hold pointers to procedure entry points in code segments (call, interrupt, and trap gates) or which
hold segment selectors for TSS’s (task gates).

3-14 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descriptors. Note that
system descriptors in IA-32e mode are 16 bytes instead of 8 bytes.

See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS Descriptor” (for more information
on the system-segment descriptors); see Section 5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section
7.2.5, “Task-Gate Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor table is variable in
length and can contain up to 8192 (213) 8-byte descriptors. There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Reserved

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate

Vol. 3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally,
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and
limit of the GDT must be loaded into the GDTR register (see Section 2.4, “Memory-Management Registers”). The
base address of the GDT should be aligned on an eight-byte boundary to yield the best processor performance. The
limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to get
the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descriptors
are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, for information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see
Section 2.4, “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-
descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the

Figure 3-10. Global and Local Descriptor Tables

Segment
Selector

Global
Descriptor

T

First Descriptor in
GDT is Not Used

TI = 0I

56

40

48

32

24

16

8

0

TI = 1

56

40

48

32

24

16

8

0

Table (GDT)

Local
Descriptor

Table (LDT)

Base Address
Limit

GDTR Register LDTR Register

Base Address
Seg. Sel.

Limit

3-16 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

processor to store an aligned word, followed by an aligned doubleword. User-mode programs normally do not store
pseudo-descriptors, but the possibility of generating an alignment check fault can be avoided by aligning pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLDT or STR instruction, respectively), the pseudo-
descriptor should be located at a doubleword address (that is, address MOD 4 is equal to 0).

3.5.2 Segment Descriptor Tables in IA-32e Mode
In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An entry in the
segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes (occupying the space of two
entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding pseudo-descriptor is 80
bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”)

— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit mode”).

Figure 3-11. Pseudo-Descriptor Formats

0
32-bit Base Address Limit

47 1516

0
64-bit Base Address Limit

79 1516

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

11.Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--
Changes to this chapter: Corrected minor typos and updated text for clarity in various sections throughout
chapter.

Vol. 3A 10-1

CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections as the local APIC,
was introduced into the IA-32 processors with the Pentium processor (see Section 22.27, “Advanced Program-
mable Interrupt Controller (APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of the Local APIC”). The local
APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources and from an external I/O APIC

(or other external interrupt controller). It sends these to the processor core for handling.
• In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI) messages to and from

other logical processors on the system bus. IPI messages can be used to distribute interrupts among the
processors in the system or to execute system wide functions (such as, booting up processors or distributing
work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to receive external interrupt events
from the system and its associated I/O devices and relay them to the local APIC as interrupt messages. In MP
systems, the I/O APIC also provides a mechanism for distributing external interrupts to the local APICs of selected
processors or groups of processors on the system bus.

This chapter provides a description of the local APIC and its programming interface. It also provides an overview of
the interface between the local APIC and the I/O APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the processor uses the interrupt and
exception handling mechanism described in Chapter 6, “Interrupt and Exception Handling.” See Section 6.1, “Inter-
rupt and Exception Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated hardware that control the
delivery of interrupts to the processor core and the generation of IPI messages. The APIC registers are memory
mapped and can be read and written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O device

that is connected directly to the processor’s local interrupt pins (LINT0 and LINT1). The I/O devices may also
be connected to an 8259-type interrupt controller that is in turn connected to the processor through one of the
local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O
device that is connected to the interrupt input pins of an I/O APIC. Interrupts are sent as I/O interrupt
messages from the I/O APIC to one or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use the IPI mechanism to interrupt
another processor or group of processors on the system bus. IPIs are used for software self-interrupts,
interrupt forwarding, or preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed to send a local interrupt to its
associated processor when a programmed count is reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and Intel Xeon processors provide the
ability to send an interrupt to its associated processor when a performance-monitoring counter overflows (see
Section 18.6.3.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the ability to send an interrupt to
themselves when the internal thermal sensor has been tripped (see Section 14.7.2, “Thermal Monitor”).

10-2 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• APIC internal error interrupts — When an error condition is recognized within the local APIC (such as an
attempt to access an unimplemented register), the APIC can be programmed to send an interrupt to its
associated processor (see Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring
counters, the thermal sensor, and the internal APIC error detector are referred to as local interrupt sources.
Upon receiving a signal from a local interrupt source, the local APIC delivers the interrupt to the processor core
using an interrupt delivery protocol that has been set up through a group of APIC registers called the local vector
table or LVT (see Section 10.5.1, “Local Vector Table”). A separate entry is provided in the local vector table for
each local interrupt source, which allows a specific interrupt delivery protocol to be set up for each source. For
example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local vector table can be set up
to deliver an interrupt with vector number 2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected I/O devices and IPIs)
through its IPI message handling facilities.

A processor can generate IPIs by programming the interrupt command register (ICR) in its local APIC (see Section
10.6.1, “Interrupt Command Register (ICR)”). The act of writing to the ICR causes an IPI message to be generated
and issued on the system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for Pentium and P6
family processors). See Section 10.2, “System Bus Vs. APIC Bus.”

IPIs can be sent to other processors in the system or to the originating processor (self-interrupts). When the target
processor receives an IPI message, its local APIC handles the message automatically (using information included
in the message such as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor Interrupts,”
for a detailed explanation of the local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O APIC (see
Figure 10-1). The I/O APIC is responsible for receiving interrupts generated by system hardware and I/O devices
and forwarding them to the local APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when asserted. The I/O
APIC also has a “virtual wire mode” that allows it to communicate with a standard 8259A-style external interrupt
controller. Note that the local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local APIC”).
This allows an associated processor core to receive interrupts directly from an 8259A interrupt controller.

Figure 10-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

I/O APIC External
Interrupts

System Chip Set

System Bus

Processor Core

Local APIC

Pentium 4 and

Local
Interrupts

Bridge

PCI

Intel Xeon Processors

I/O APIC External
Interrupts

System Chip Set

3-Wire APIC Bus

Processor Core

Local APIC

Pentium and P6

Local
Interrupts

Family Processors

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Vol. 3A 10-3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 10-2 and 10-3). Each
local APIC handles interrupts from the I/O APIC, IPIs from processors on the system bus, and self-generated inter-
rupts. Interrupts can also be delivered to the individual processors through the local interrupt pins; however, this
mechanism is commonly not used in MP systems.

The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a specific vector number)
and special-purpose interrupts to processors on the system bus. For example, a local APIC can use an IPI to
forward a fixed interrupt to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI and
SIPI IPIs) allow one or more processors on the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the Pentium 4, Intel Xeon, and P6 family
processors. In these sections, the terms “local APIC” and “I/O APIC” refer to local and I/O APICs used with the P6
family processors and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see Section
10.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC”).

Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

Figure 10-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-Processor Systems

I/O APIC External
Interrupts

System Chip Set

Processor System Bus

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

CPU

Local APIC

Processor #3

Bridge

PCI

IPIs IPIs IPIs

Interrupt
Messages

IPIsInterrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

Interrupt
Messages

I/O APICExternal
Interrupts

System Chip Set

3-wire APIC Bus

CPU

Local APIC

Processor #4

IPIsIPIsIPIsIPIs Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

10-4 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through the 3-wire inter-
APIC bus (see Figure 10-3). Local APICs also use the APIC bus to send and receive IPIs. The APIC bus and its
messages are invisible to software and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local APICs (using the xAPIC architec-
ture) communicate through the system bus (see Figure 10-2). The I/O APIC sends interrupt requests to the
processors on the system bus through bridge hardware that is part of the Intel chip set. The bridge hardware
generates the interrupt messages that go to the local APICs. IPIs between local APICs are transmitted directly on
the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE
X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel® 82489DX external
APIC. See Section 22.27.1, “Software Visible Differences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the xAPIC architecture) is an exten-
sion of the APIC architecture found in the P6 family processors. The primary difference between the APIC and
xAPIC architectures is that with the xAPIC architecture, the local APICs and the I/O APIC communicate through the
system bus. With the APIC architecture, they communication through the APIC bus (see Section 10.2, “System Bus
Vs. APIC Bus”). Also, some APIC architectural features have been extended and/or modified in the xAPIC architec-
ture. These extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is an extension of the xAPIC
architecture, primarily to increase processor addressability. The x2APIC architecture provides backward compati-
bility to the xAPIC architecture and forward extendability for future Intel platform innovations. These extensions
and modifications are supported by a new mode of execution (x2APIC mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect it, identify it, and determine its
status. Descriptions of how to program the local APIC are given in Section 10.5.1, “Local Vector Table,” and Section
10.6.1, “Interrupt Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts with the local APIC by reading
and writing its registers. APIC registers are memory-mapped to a 4-KByte region of the processor’s physical
address space with an initial starting address of FEE00000H. For correct APIC operation, this address space must
be mapped to an area of memory that has been designated as strong uncacheable (UC). See Section 11.3,
“Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on the system bus are initially
mapped to the same 4-KByte region of the physical address space. Software has the option of changing initial
mapping to a different 4-KByte region for all the local APICs or of mapping the APIC registers for each local APIC to
its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Registers,” describes how to relocate the base
address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 1), the local APIC supports
operation both in xAPIC mode and (if enabled by software) in x2APIC mode. x2APIC mode provides extended
processor addressability (see Section 10.12).

Vol. 3A 10-5

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all memory accesses to
addresses within the 4-KByte APIC register space internally and no external bus cycles are
produced. For the Pentium processors with an on-chip APIC, bus cycles are produced for accesses
to the APIC register space. Thus, for software intended to run on Pentium processors, system
software should explicitly not map the APIC register space to regular system memory. Doing so can
result in an invalid opcode exception (#UD) being generated or unpredictable execution.

Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. Registers are 32 bits,
64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All 32-bit registers should be accessed using
128-bit aligned 32-bit loads or stores. Some processors may support loads and stores of less than 32 bits to some
of the APIC registers. This is model specific behavior and is not guaranteed to work on all processors. Any

Figure 10-4. Local APIC Structure

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Error Status
Register

In-Service Register (ISR)

Vector
Decode

Interrupt Command
Register (ICR)

Acceptance
Logic

Vec[3:0]
& TMR Bit

Register
Select

INIT
NMI
SMI

Protocol
Translation Logic

Dest. Mode
& Vector

Processor System Bus3

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters1

Error

Timer

Local Vector Table

DATA/ADDR

Prioritizer

Task Priority Register

EOI Register

INTR

EXTINT

INTA

LINT0/1

1. Introduced in P6 family processors.

Thermal Sensor2

2. Introduced in the Pentium 4 and Intel Xeon processors.

Perf. Mon.

Thermal

(Internal
Interrupt)

Sensor
(Internal
Interrupt)

Spurious Vector
Register

Local
Interrupts

3. Three-wire APIC bus in P6 family and Pentium processors.

To
CPU
Core

From
CPU
Core

Interrupt Request Register (IRR)

Trigger Mode Register (TMR)

To
CPU
Core

Processor Priority
Register

4. Not implemented in Pentium 4 and Intel Xeon processors.

Arb. ID
Register4

10-6 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

FP/MMX/SSE access to an APIC register, or any access that touches bytes 4 through 15 of an APIC register may
cause undefined behavior and must not be executed. This undefined behavior could include hangs, incorrect results
or unexpected exceptions, including machine checks, and may vary between implementations. Wider registers
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with all accesses being 128-bit aligned.

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated with the programming of the
local APIC is the IA32_APIC_BASE MSR (see Section 10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem1 the Local APIC ID Register is
no longer Read/Write; it is Read Only.

1. See Table 2-1, “CPUID Signature Values of DisplayFamily_DisplayModel,” on page 1, and Section 2.7, “MSRs In the Intel® Microarchi-
tecture Code Name Nehalem” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 to determine which
processors are based on Nehalem microarchitecture.

Table 10-1 Local APIC Register Address Map

Address Register Name Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see Section
10.6.2.2).

FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

Vol. 3A 10-7

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128 Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT Corrected Machine Check Interrupt (CMCI) Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters Register3 Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of the ESR will not be set when writ-

ing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are implementation depen-

dent and may not be present in future IA-32 or Intel 64 processors.
3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementation dependent and may not

be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write

10-8 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can be detected using
the CPUID instruction. When the CPUID instruction is executed with a source operand of 1 in the EAX register, bit 9
of the CPUID feature flags returned in the EDX register indicates the presence (set) or absence (clear) of a local
APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32 processor without an
on-chip APIC. The CPUID feature flag for the APIC (see Section 10.4.2, “Presence of the Local APIC”) is also
set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus cannot be generally
re-enabled until a system hardware reset. The 3-wire bus loses track of arbitration that would be necessary
for complete re-enabling. Certain APIC functionality can be enabled (for example: performance and
thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software may disable or enable the
APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC
functionality, if software guarantees no interrupt will be sent to the APIC as IA32_APIC_BASE[11] is
cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost and the APIC may return
to the state described in Section 10.4.7.1, “Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time by clearing the APIC
software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23). The state of the
local APIC when in this software-disabled state is described in Section 10.4.7.2, “Local APIC State After It
Has Been Software Disabled.”

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by setting the APIC
software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during power-up or reset
to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being delivered to the
processor from selected local interrupt sources (the LINT0 and LINT1 pins, the APIC timer, the performance-moni-
toring counters, the thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (see Figure 10-5). MSR bit
functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). See Section 8.4, “Multiple-

Processor (MP) Initialization.” Following a power-up or reset, this flag is set to 1 for the processor selected as
the BSP and set to 0 for the remaining processors (APs).

• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see Section 10.4.3, “Enabling or
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon, and P6 family processors. It is not
guaranteed to be available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC registers. This 24-bit value is
extended by 12 bits at the low end to form the base address. This automatically aligns the address on a 4-KByte
boundary. Following a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR1 through 63 in the IA32_APIC_BASE MSR are reserved.

Vol. 3A 10-9

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC registers to be relo-
cated from FEE00000H to another physical address by modifying the value in the base address field of the
IA32_APIC_BASE MSR. This extension of the APIC architecture is provided to help resolve conflicts with memory
maps of existing systems and to allow individual processors in an MP system to map their APIC registers to
different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for Pentium 4 and
Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors). The hardware assigned APIC ID
is based on system topology and includes encoding for socket position and cluster information (see Figure 8-2 and
Section 8.9.1, “Hierarchical Mapping of Shared Resources”).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating system. Some
processors permit software to modify the APIC ID. However, the ability of software to modify the APIC ID is
processor model specific. Because of this, operating system software should avoid writing to the local APIC ID
register. The value returned by bits 31-24 of the EBX register (when the CPUID instruction is executed with a
source operand value of 1 in the EAX register) is always the Initial APIC ID (determined by the platform initializa-
tion). This is true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins A11# and A12# and
pins BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0# through BE3#
(for the Pentium processor). The APIC ID latched from these pins is stored in the APIC ID field of the local APIC ID
register (see Figure 10-6), and is used as the Initial APIC ID for the processor.

1. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indicated by
CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP
APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved

10-10 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is 4 bits. Encodings
0H through EH can be used to uniquely identify 15 different processors connected to the APIC bus. For the Pentium
4 and Intel Xeon processors, the xAPIC specification extends the local APIC ID field to 8 bits. These can be used to
identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following a power-up or reset, after the
local APIC has been software disabled, following an INIT reset, and following an INIT-deassert message.

x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1 Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its registers are as follows:
• The following registers are reset to all 0s.

• IRR, ISR, TMR, ICR, LDR, and TPR.

• Timer initial count and timer current count registers.

• Divide configuration register.
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors only). The Arb ID

register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 to 0, software disables the

local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP system (see Section 8.4.1, “BSP

and AP Processors”); the local APIC will respond normally to INIT and NMI messages, to INIT# signals and to
STPCLK# signals. If the processor is in an MP system and has been designated as an AP; the local APIC will
respond the same as for the BSP. In addition, it will respond to SIPI messages. For P6 family processors only,
an AP will not respond to a STPCLK# signal.

Figure 10-6. Local APIC ID Register

31 27 24 0

ReservedAPIC ID
Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H
31 0

x2APIC ID

x2APIC Mode

xAPIC Mode

Vol. 3A 10-11

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.7.2 Local APIC State After It Has Been Software Disabled
When the APIC software enable/disable flag in the spurious interrupt vector register has been explicitly cleared (as
opposed to being cleared during a power up or reset), the local APIC is temporarily disabled (see Section 10.4.3,
“Enabling or Disabling the Local APIC”). The operation and response of a local APIC while in this software-disabled
state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs through the IPI mechanism

and the ICR register if sending interrupts through this mechanism is not desired.
• The reception of any interrupt or transmission of any IPIs that are in progress when the local APIC is disabled

are completed before the local APIC enters the software-disabled state.
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.
• (For Pentium and P6 family processors) The local APIC continues to listen to all bus messages in order to keep

its arbitration ID synchronized with the rest of the system.

10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds by beginning the initialization
process of the processor core and the local APIC. The state of the local APIC following an INIT reset is the same as
it is after a power-up or hardware reset, except that the APIC ID and arbitration ID registers are not affected. This
state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP Initialization Protocol Require-
ments and Restrictions”).

10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-deassert IPI has no affect on the
state of the APIC, other than to reload the arbitration ID register with the value in the APIC ID register.

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to identify the APIC version
(see Figure 10-7). In addition, the register specifies the number of entries in the local vector table (LVT) for a
specific implementation.

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel Xeon processors (which

have 6 LVT entries), the value returned in the Max LVT field is 5; for the P6 family processors
(which have 5 LVT entries), the value returned is 4; for the Pentium processor (which has 4 LVT
entries), the value returned is 3. For processors based on the Intel microarchitecture code
name Nehalem (which has 7 LVT entries) and onward, the value returned is 6.

Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI message by setting bit 12 of the
Spurious Interrupt Vector Register; see Section 10.8.5 and Section 10.9.

10-12 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for handling local interrupts. These
include: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the thermal
sensor, and the internal APIC error detector. Local interrupt handling facilities include: the LVT, the error status
register (ESR), the divide configuration register (DCR), and the initial count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local interrupts are delivered to the
processor core. It consists of the following 32-bit APIC registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow condition of corrected

machine check error count reaching a threshold value occurred in a machine check bank supporting CMCI (see
Section 15.5.1, “CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC timer signals an interrupt
(see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery when the thermal sensor
generates an interrupt (see Section 14.7.2, “Thermal Monitor”). This LVT entry is implementation specific, not
architectural. If implemented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt delivery when a performance
counter generates an interrupt on overflow (see Section 18.6.3.5.8, “Generating an Interrupt on Overflow”).
This LVT entry is implementation specific, not architectural. If implemented, it is not guaranteed to be at base
address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an interrupt is signaled at the LINT0
pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an interrupt is signaled at the LINT1
pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC detects an internal error
(see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6 processors and are
also present in the Pentium 4 and Intel Xeon processors. The LVT thermal monitor register and its associated inter-
rupt were introduced in the Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.

Figure 10-7. Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 00BN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported

Vol. 3A 10-13

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Delivery Mode Specifies the type of interrupt to be sent to the processor. Some delivery modes will only
operate as intended when used in conjunction with a specific trigger mode. The allowable
delivery modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core through the processor’s lo-
cal SMI signal path. When using this delivery mode, the vector field should
be set to 00H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The vector information is ig-
nored.

101 (INIT) Delivers an INIT request to the processor core, which causes the processor
to perform an INIT. When using this delivery mode, the vector field should

Figure 10-8. Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†
0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a

performance monitoring counters interrupt is generated,
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H

10-14 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

be set to 00H for future compatibility. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or the LVT performance counter
register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the interrupt as if the interrupt origi-
nated in an externally connected (8259A-compatible) interrupt controller.
A special INTA bus cycle corresponding to ExtINT, is routed to the external
controller. The external controller is expected to supply the vector informa-
tion. The APIC architecture supports only one ExtINT source in a system,
usually contained in the compatibility bridge. Only one processor in the
system should have an LVT entry configured to use the ExtINT delivery
mode. Not supported for the LVT CMCI register, the LVT thermal monitor
register, or the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt source, or the previous in-
terrupt from this source was delivered to the processor core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source has been delivered to the pro-
cessor core but has not yet been accepted (see Section 10.5.5, “Local In-
terrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or (1) active low.

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the local APIC accepts the
interrupt for servicing and is reset when an EOI command is received from the processor. The
meaning of this flag is undefined for edge-triggered interrupts and other delivery modes.

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) edge sensitive and (1) level
sensitive. This flag is only used when the delivery mode is Fixed. When the delivery mode is
NMI, SMI, or INIT, the trigger mode is always edge sensitive. When the delivery mode is
ExtINT, the trigger mode is always level sensitive. The timer and error interrupts are always
treated as edge sensitive.
If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is
selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive
triggering, regardless if edge-sensitive triggering is selected.
Software should always set the trigger mode in the LVT LINT1 register to 0 (edge sensitive).
Level-sensitive interrupts are not supported for LINT1.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits reception of the inter-
rupt. When the local APIC handles a performance-monitoring counters interrupt, it automati-
cally sets the mask flag in the LVT performance counter register. This flag is set to 1 on reset.
It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in IA32_TSC_DEADLINE MSR (see
Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 through 255 (see Section 6.2,
“Exception and Interrupt Vectors”). Local and I/O APICs support 240 of these vectors (in the range of 16 to 255) as
valid interrupts.

Vol. 3A 10-15

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the APIC indicates an
illegal vector in its Error Status Register (see Section 10.5.3, “Error Handling”). The Intel 64 and IA-32 architec-
tures reserve vectors 16 through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see Table
6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed (bits 8-11 equal 0),
the APIC may signal an illegal vector error, without regard to whether the mask bit is set or whether an interrupt is
actually seen on the input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status register (ESR). The format of
the ESR is given in Figure 10-9; it contains the following flags:

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the APIC bus. Used only on P6
family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on the APIC bus. Used only on
P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC on the APIC bus. Used
only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by any APIC on the APIC bus,
including itself. Used only on P6 family and Pentium processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority delivery mode and the local
APIC does not support the sending of such IPIs. This bit is used on some Intel Core and Intel Xeon processors.
As noted in Section 10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific and should
be avoided.

Figure 10-9. Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved
78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2
Receive Accept Error3
Send Accept Error3
Receive Checksum Error3
Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.

10-16 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the message that it is sending.
This occurs as the result of a write to the ICR (in both xAPIC and x2APIC modes) or to SELF IPI register (x2APIC
mode only) with an illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software writes the ICR to send a
lowest-priority IPI with an illegal vector, the local APIC sets only the “redirectable IPI” error bit. The interrupt is
not processed and hence the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an interrupt message it receives
or in an interrupt generated locally from the local vector table or via a self IPI. Such interrupts are not delivered
to the processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register that is reserved in the
processor's local-APIC register-address space; see Table 10-1. (The local-APIC register-address space
comprises the 4 KBytes at the physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR instructions. Use of one
of these instructions to access a reserved register cause a general-protection exception (see Section
10.12.1.3). They do not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should first write to it. (The value
written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears
any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This
write also rearms the APIC error interrupt triggering mechanism.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the interrupt to be delivered to the
processor core when APIC error is detected. The register also provides a means of masking an APIC-error interrupt.
This masking only prevents delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to time events or operations.
This timer is set up by programming four registers: the divide configuration register (see Figure 10-10), the initial-
count and current-count registers (see Figure 10-11), and the LVT timer register (see Figure 10-8).

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate regardless of P-state transi-
tions and it continues to run at the same rate in deep C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may temporarily stop while the
processor is in deep C-states or during transitions caused by Enhanced Intel SpeedStep® Technology.

The APIC timer frequency will be the processor’s bus clock or core crystal clock frequency (when TSC/core crystal
clock ratio is enumerated in CPUID leaf 0x15) divided by the value specified in the divide configuration register.

Figure 10-10. Divide Configuration Register

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234

Vol. 3A 10-17

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The timer can be configured through the timer LVT entry for one-shot or periodic operation. In one-shot mode, the
timer is started by programming its initial-count register. The initial count value is then copied into the current-
count register and count-down begins. After the timer reaches zero, an timer interrupt is generated and the timer
remains at its 0 value until reprogrammed.

In periodic mode, the current-count register is automatically reloaded from the initial-count register when the
count reaches 0 and a timer interrupt is generated, and the count-down is repeated. If during the count-down
process the initial-count register is set, counting will restart, using the new initial-count value. The initial-count
register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor with the timer interrupt that
is generated when the timer count reaches zero. The mask flag in the LVT timer register can be used to mask the
timer interrupt.

10.5.4.1 TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically:
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register.
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 10-8. (If

CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.)

A write to the LVT Timer Register that changes the timer mode disarms the local APIC timer. The supported timer
modes are given in Table 10-2. The three modes of the local APIC timer are mutually exclusive.

TSC-deadline mode allows software to use the local APIC timer to signal an interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0. Instead,
timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that specifies the time at which
a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer. An inter-
rupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in the
IA32_TSC_DEADLINE MSR.1 When the timer generates an interrupt, it disarms itself and clears the
IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning
between TSC-deadline mode and other timer modes also disarms the timer.

Figure 10-11. Initial Count and Current Count Registers

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H

10-18 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This
causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to that
of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-
stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use WRMSR

to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the
IA32_TSC_DEADLINE and other MSR registers will occur in program order.

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR.
• If timer is armed, software can change the deadline (forward or backward) by writing a new value to the

IA32_TSC_DEADLINE MSR.
• If software disarms the timer or postpones the deadline, race conditions may result in the delivery of a spurious

timer interrupt. Software is expected to detect such spurious interrupts by checking the current value of the
time-stamp counter to confirm that the interrupt was desired.1

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software must order the memory-
mapped write to the LVT entry that enables TSC-deadline mode and any subsequent WRMSR to the
IA32_TSC_DEADLINE MSR. Software can assure proper ordering by executing the MFENCE instruction after the
memory-mapped write and before any WRMSR. (In x2APIC mode, the WRMSR instruction is used to write to
the LVT entry. The processor ensures the ordering of this write and any subsequent WRMSR to the deadline; no
fencing is required.)

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance criteria specified in the interrupt
acceptance flow chart in Figure 10-17. If the interrupt is accepted, it is logged into the IRR register and handled by
the processor according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Interrupts”). If the
interrupt is not accepted, it is sent back to the local APIC and retried.

10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing interprocessor interrupts (IPIs)
from software. The primary local APIC facility for issuing IPIs is the interrupt command register (ICR). The ICR can
be used for the following functions:

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may
not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the
time-stamp counter and the IA32_TSC_DEADLINE MSR.

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may
not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the
time-stamp counter and the IA32_TSC_DEADLINE MSR.

Vol. 3A 10-19

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to another processor for

servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors.

Interrupts generated with this facility are delivered to the other processors in the system through the system bus
(for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium processors). The ability for a
processor to send a lowest priority IPI is model specific and should be avoided by BIOS and operating system soft-
ware.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit1 local APIC register (see Figure 10-12) that allows software
running on the processor to specify and send interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the destination
processor or processors. (All fields of the ICR are read-write by software with the exception of the delivery status
field, which is read-only.) The act of writing to the low doubleword of the ICR causes the IPI to be sent.

1. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and ICR_HIGH (FFE0 0310H). In x2APIC mode,
the ICR uses MSR 830H.

Figure 10-12. Interrupt Command Register (ICR)

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.

10-20 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The ICR consists of the following fields.
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to the target processor or
processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is delivered to the processor
executing at the lowest priority among the set of processors specified in
the destination field. The ability for a processor to send a lowest priority
IPI is model specific and should be avoided by BIOS and operating system
software.

010 (SMI) Delivers an SMI interrupt to the target processor or processors. The vector
field must be programmed to 00H for future compatibility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or processors. The vector
information is ignored.

101 (INIT) Delivers an INIT request to the target processor or processors, which
causes them to perform an INIT. As a result of this IPI message, all the tar-
get processors perform an INIT. The vector field must be programmed to
00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon processors.) Sends a syn-
chronization message to all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the values of their APIC IDs
(see Section 10.7, “System and APIC Bus Arbitration”). For this delivery
mode, the level flag must be set to 0 and trigger mode flag to 1. This IPI is
sent to all processors, regardless of the value in the destination field or the
destination shorthand field; however, software should specify the “all in-
cluding self” shorthand.

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) to the target processor or
processors. The vector typically points to a start-up routine that is part of
the BIOS boot-strap code (see Section 8.4, “Multiple-Processor (MP) Ini-
tialization”). IPIs sent with this delivery mode are not automatically retried
if the source APIC is unable to deliver it. It is up to the software to deter-
mine if the SIPI was not successfully delivered and to reissue the SIPI if
necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section 10.6.2, “Determining
IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not completed sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for all other delivery
modes it must be set to 1. (This flag has no meaning in Pentium 4 and Intel Xeon processors,
and will always be issued as a 1.)

Vol. 3A 10-21

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery mode: edge (0) or level
(1). It is ignored for all other delivery modes. (This flag has no meaning in Pentium 4 and Intel
Xeon processors, and will always be issued as a 0.)

Destination Shorthand
Indicates whether a shorthand notation is used to specify the destination of the interrupt and,
if so, which shorthand is used. Destination shorthands are used in place of the 8-bit destina-
tion field, and can be sent by software using a single write to the low doubleword of the ICR.
Shorthands are defined for the following cases: software self interrupt, IPIs to all processors
in the system including the sender, IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of the IPI. This destination
shorthand allows software to interrupt the processor on which it is execut-
ing. An APIC implementation is free to deliver the self-interrupt message
internally or to issue the message to the bus and “snoop” it as with any
other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system including the processor send-
ing the IPI. The APIC will broadcast an IPI message with the destination
field set to FH for Pentium and P6 family processors and to FFH for Pentium
4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the exception of the pro-
cessor sending the IPI. The APIC broadcasts a message with the physical
destination mode and destination field set to FH for Pentium and P6 family
processors and to FFH for Pentium 4 and Intel Xeon processors. Support
for this destination shorthand in conjunction with the lowest-priority deliv-
ery mode is model specific. For Pentium 4 and Intel Xeon processors, when
this shorthand is used together with lowest priority delivery mode, the IPI
may be redirected back to the issuing processor.

Destination Specifies the target processor or processors. This field is only used when the destination
shorthand field is set to 00B. If the destination mode is set to physical, then bits 56 through 59
contain the APIC ID of the target processor for Pentium and P6 family processors and bits 56
through 63 contain the APIC ID of the target processor the for Pentium 4 and Intel Xeon
processors. If the destination mode is set to logical, the interpretation of the 8-bit destination
field depends on the settings of the DFR and LDR registers of the local APICs in all the proces-
sors in the system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid combinations for the fields in the
ICR for the Pentium 4 and Intel Xeon processors; Table 10-4 shows the valid combinations for the fields in the ICR
for the P6 family processors. Also note that the lower half of the ICR may not be preserved over transitions to the
deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

10-22 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register

Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, SMI, Start-Up X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and issue the interrupt as an

edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redirected back to the issuing

APIC, which is essentially the same as the “all including self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’ Local APIC Interrupt Command Register
Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self Valid2 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit is set to 0 (deassert).

Only INIT level deassert messages are allowed to have the level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Vol. 3A 10-23

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.6.2 Determining IPI Destination
The destination of an IPI1 can be one, all, or a subset (group) of the processors on the system bus. The sender of
the IPI specifies the destination of an IPI with the following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the destination of an IPI.

— Destination Mode — Selects one of two destination modes (physical or logical).

— Destination Field — In physical destination mode, used to specify the APIC ID of the destination
processor; in logical destination mode, used to specify a message destination address (MDA) that can be
used to select specific processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all excluding self, or self as the
destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-priority arbitration mechanism
be used to select a destination processor from a specified group of processors. The ability of a processor to
send a lowest priority IPI is model specific and should be avoided by BIOS and operating system software.

• Local destination register (LDR) — Used in conjunction with the logical destination mode and MDAs to
select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical destination mode and MDAs to
select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination mode used: physical,
logical, broadcast/self, or lowest-priority delivery mode. These destination modes are described in the following
sections.

10.6.2.1 Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC ID (see Section 10.4.6, “Local
APIC ID”). For Pentium 4 and Intel Xeon processors, either a single destination (local APIC IDs 00H through FEH)
or a broadcast to all APICs (the APIC ID is FFH) may be specified in physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest priority delivery
mode is not supported in physical destination mode and must not be configured by software. Also, for any non-
broadcast IPI or I/O subsystem initiated interrupt with lowest priority delivery mode, software must ensure that
APICs defined in the interrupt address are present and enabled to receive interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical destination mode with a local
APIC ID of 0H through 0EH, allowing up to 15 local APICs to be addressed on the APIC bus. A broadcast to all local
APICs is specified with 0FH.

NOTE
The number of local APICs that can be addressed on the system bus may be restricted by
hardware.

10.6.2.2 Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message destination address (MDA), which
is entered in the destination field of the ICR. Upon receiving an IPI message that was sent using logical destination
mode, a local APIC compares the MDA in the message with the values in its LDR and DFR to determine if it should
accept and handle the IPI. For both configurations of logical destination mode, when combined with lowest priority
delivery mode, software is responsible for ensuring that all of the local APICs included in or addressed by the IPI or
I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC ID field in this
register is used to create an identifier that can be compared with the MDA.

1. Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

10-24 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

NOTE
The logical APIC ID should not be confused with the local APIC ID that is contained in the local APIC
ID register.

Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit model field in this register selects
one of two models (flat or cluster) that can be used to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following paragraphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 1111. Here, a unique logical
APIC ID can be established for up to 8 local APICs by setting a different bit in the logical APIC ID field of the LDR
for each local APIC. A group of local APICs can then be selected by setting one or more bits in the MDA.
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condition (non-zero) is
detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 to 0000. This model supports
two basic destination schemes: flat cluster and hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium processors. Using this model, all
APICs are assumed to be connected through the APIC bus. Bits 60 through 63 of the MDA contains the encoded
address of the destination cluster and bits 56 through 59 identify up to four local APICs within the cluster (each
bit is assigned to one local APIC in the cluster, as in the flat connection model). To identify one or more local
APICs, bits 60 through 63 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local
APIC is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 through 27 of the LDR to
identify a local APICs within the cluster.
Sets of processors within a cluster can be specified by writing the target cluster address in bits 60 through 63
of the MDA and setting selected bits in bits 56 through 59 of the MDA, corresponding to the chosen members
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 local APICs can
be specified in the message. For the P6 and Pentium processor’s local APICs, however, the APIC arbitration ID
supports only 15 APIC agents. Therefore, the total number of processors and their local APICs supported in
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one. This
guarantees a match on all clusters and selects all APICs in each cluster. A broadcast IPI or I/O subsystem
broadcast interrupt with lowest priority delivery mode is not supported in cluster mode and must not be
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or Pentium
processors. With this model, a hierarchical network can be created by connecting different flat clusters via

Figure 10-13. Logical Destination Register (LDR)

Figure 10-14. Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B

Vol. 3A 10-25

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

independent system or APIC buses. This scheme requires a cluster manager within each cluster, which is
responsible for handling message passing between system or APIC buses. One cluster contains up to 4 agents.
Thus 15 cluster managers, each with 4 agents, can form a network of up to 60 APIC agents. Note that hierar-
chical APIC networks requires a special cluster manager device, which is not part of the local or the I/O APIC
units.

NOTES
All processors that have their APIC software enabled (using the spurious vector enable/disable bit)
must have their DFRs (Destination Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, DFRs must be programmed
before the APIC is software enabled. Since some chipsets do not accurately track a system view of
the logical mode, program DFRs as soon as possible after starting the processor.

10.6.2.3 Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of broadcasting the IPI
to all the processors on the system bus and/or back to itself (see Section 10.6.1, “Interrupt Command Register
(ICR)”). Three destination shorthands are supported: self, all excluding self, and all including self. The destination
mode is ignored when a destination shorthand is used.

10.6.2.4 Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors on the system bus,
using the logical or shorthand destination mechanism for selecting the processor. The selected processors then
arbitrate with one another over the system bus or the APIC bus, with the lowest-priority processor accepting the
IPI.

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from the I/O APIC
agents in the system and directs interrupts to the processors on the system bus. When using the lowest priority
delivery mode, the chipset chooses a target processor to receive the interrupt out of the set of possible targets. The
Pentium 4 processor provides a special bus cycle on the system bus that informs the chipset of the current task
priority for each logical processor in the system. The chipset saves this information and uses it to choose the lowest
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbitration is contained in
the arbitration priority register (APR) in each local APIC. Figure 10-15 shows the layout of the APR.

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN

APR[7:0] ← TPR[7:0]
ELSE

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Figure 10-15. Arbitration Priority Register (APR)

31 078

Reserved

Address: FEE0 0090H
Value after reset: 0H

Arbitration Priority Sub-Class
Arbitration Priority Class

4 3

10-26 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV value is the vector number
for the highest priority bit that is set in the IRR (see Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value
is the vector number for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitration
among the destination processors, the processor with the lowest value in its APR handles the IPI and the other
processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may accept the interrupt,
regardless of its priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt
or if it has a pending request for that interrupt. For Intel Xeon processors, the concept of a focus processor is not
supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the TPR information
saved in the chipset will potentially cause the interrupt to be always delivered to the same processor from the
logical set. This behavior is functionally backward compatible with the P6 family processor but may result in unex-
pected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI message from the information
contained in the ICR and sends the message out on the system bus (Pentium 4 and Intel Xeon processors) or the
APIC bus (P6 family and Pentium processors). The manner in which these IPIs are handled after being issues in
described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages on the system bus (or APIC
bus), the order in which the messages are sent and handled is determined through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mechanism defined for the
system bus to determine the order in which IPIs are handled. This mechanism is non-architectural and cannot be
controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitration mechanism to
determine the order in which IPIs are handled. Here, each local APIC is given an arbitration priority of from 0 to 15,
which the I/O APIC uses during arbitration to determine which local APIC should be given access to the APIC bus.
The local APIC with the highest arbitration priority always wins bus access. Upon completion of an arbitration
round, the winning local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbitration ID (Arb ID)
register. During reset, this register is initialized to the APIC ID number (stored in the local APIC ID register). The
INIT level-deassert IPI, which is issued with and ICR command, can be used to resynchronize the arbitration prior-
ities of the local APICs by resetting Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and
Intel Xeon processors do not implement the Arb ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors),” describes the
APIC bus arbitration protocols and bus message formats, while Section 10.6.1, “Interrupt Command Register
(ICR),” describes the INIT level de-assert IPI message.

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register (ICR)”), all bus messages that
fail to be delivered to their specified destination or destinations are automatically retried. Software should avoid
situations in which IPIs are sent to disabled or nonexistent local APICs, causing the messages to be resent repeat-
edly. Additionally, interrupt sources that target the APIC should be masked or changed to no longer target the APIC.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message from an I/O APIC, or an IPI, the
manner in which it handles the message depends on processor implementation, as described in the following
sections.

Vol. 3A 10-27

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, interrupt messages, and
IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the specified destination, it
accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is
an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is
not one of the interrupts given in step 2, the local APIC sets the appropriate bit in the IRR.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time,
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI)
register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to
the EOI register causes the local APIC to delete the interrupt from its ISR queue and (for level-triggered
interrupts) send a message on the bus indicating that the interrupt handling has been completed. (A write to
the EOI register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt messages, and
IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) The local APIC examines the IPI message to determines if it is the specified destination for the IPI
as described in Section 10.6.2, “Determining IPI Destination.” If it is the specified destination, it continues its
acceptance procedure; if it is not the destination, it discards the IPI message. When the message specifies
lowest-priority delivery mode, the local APIC will arbitrate with the other processors that were designated as
recipients of the IPI message (see Section 10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is
an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and
SIPI), the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is
not one of the interrupts given in step 2, the local APIC looks for an open slot in one of its two pending interrupt
queues contained in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section 10.8.4,
“Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects
the interrupt request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time,
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI)

Figure 10-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)

Wait to Receive
Bus Message

Belong to
Destination?Discard

Message
No Accept

Message

Yes

10-28 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to
the EOI register causes the local APIC to delete the interrupt from its queue and (for level-triggered interrupts)
send a message on the bus indicating that the interrupt handling has been completed. (A write to the EOI
register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the local APIC and processor in
greater detail.

10.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based on its vector number. The local
APIC uses this priority to determine when to service the interrupt relative to the other activities of the processor,
including the servicing of other interrupts.

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of bits 7:4 of the interrupt vector.
The lowest interrupt-priority class is 1 and the highest is 15; interrupts with vectors in the range 0–15 (with inter-
rupt-priority class 0) are illegal and are never delivered. Because vectors 0–31 are reserved for dedicated uses by
the Intel 64 and IA-32 architectures, software should configure interrupt vectors to use interrupt-priority classes in
the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of interrupts within an interrupt-priority
class is determined by the value of bits 3:0 of the vector number. The higher the value of those bits, the higher the

Figure 10-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)

Wait to Receive
Bus Message

Belong
to

Destination?

Is it
NMI/SMI/INIT

/ExtINT?

Delivery

Am I
Focus?

Other
Focus?

Is Interrupt Slot
Available?

Is Status a
Retry?

Discard
Message

Accept
Message

Yes

Yes

Accept
Message

Is Interrupt
Slot Avail-

able?
Arbitrate

Yes

Am I Winner? Accept
Message

YesNo

Set Status
to Retry

No

No

Yes

Set Status
to Retry

No

Discard
Message

No

Accept
Message

Yes

Lowest
PriorityFixed

Yes No

No

Yes

No

P6 Family
Processor Specific

Vol. 3A 10-29

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

priority within that interrupt-priority class. Thus, each interrupt vector comprises two parts, with the high 4 bits
indicating its interrupt-priority class and the low 4 bits indicating its ranking within the interrupt-priority class.

10.8.3.1 Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine the order in which interrupts
are handled. The task-priority class is the value of bits 7:4 of the task-priority register (TPR), which can be
written by software (TPR is a read/write register); see Figure 10-18.

NOTE
In this discussion, the term “task” refers to a software defined task, process, thread, program, or
routine that is dispatched to run on the processor by the operating system. It does not refer to an
IA-32 architecture defined task as described in Chapter 7, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor. This mechanism enables
the operating system to temporarily block low priority interrupts from disturbing high-priority work that the
processor is doing. The ability to block such interrupts using task priority results from the way that the TPR controls
the value of the processor-priority register (PPR).1

The processor-priority class is a value in the range 0–15 that is maintained in bits 7:4 of the processor-priority
register (PPR); see Figure 10-19. The PPR is a read-only register. The processor-priority class represents the
current priority at which the processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the vector number of the highest
priority bit that is set in the ISR or 00H if no bit is set in the ISR. (See Section 10.8.4 for more details on the ISR.)
The value of PPR is determined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- priority class) and ISRV[7:4] (the

priority of the highest priority interrupt in service).
• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual behavior is model-specific.

Figure 10-18. Task-Priority Register (TPR)

1. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4, “Lowest Priority Delivery Mode.”

Figure 10-19. Processor-Priority Register (PPR)

31 078

Reserved

Address: FEE0 0080H
Value after reset: 0H

Task-Priority Sub-Class
Task-Priority Class

4 3

31 078

Reserved

Address: FEE0 00A0H
Value after reset: 0H

Processor-Priority Sub-Class
Processor-Priority Class

4 3

10-30 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The processor-priority class determines the priority threshold for interrupting the processor. The processor will
deliver only those interrupts that have an interrupt-priority class higher than the processor-priority class in the
PPR. If the processor-priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the processor
inhibits the delivery of all interrupts. (The processor-priority mechanism does not affect the delivery of interrupts
with the NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which interrupts to delivery and which to
inhibit. (The processor uses the processor-priority sub-class only to satisfy reads of the PPR.)

10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending registers: the interrupt
request register (IRR) or in-service register (ISR). These two 256-bit read-only registers are shown in
Figure 10-20. The 256 bits in these registers represent the 256 possible vectors; vectors 0 through 15 are reserved
by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert delivery mode bypass the
IRR and ISR registers and are sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched to the processor for
servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR that corresponds the vector of the
accepted interrupt. When the processor core is ready to handle the next interrupt, the local APIC clears the highest
priority IRR bit that is set and sets the corresponding ISR bit. The vector for the highest priority bit set in the ISR is
then dispatched to the processor core for servicing.

While the processor is servicing the highest priority interrupt, the local APIC can send additional fixed interrupts by
setting bits in the IRR. When the interrupt service routine issues a write to the EOI register (see Section 10.8.5,
“Signaling Interrupt Servicing Completion”), the local APIC responds by clearing the highest priority ISR bit that is
set. It then repeats the process of clearing the highest priority bit in the IRR and setting the corresponding bit in
the ISR. The processor core then begins executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the bit for the vector
both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon processors, the IRR and ISR can
queue two interrupts for each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts issued
for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than two interrupts per
interrupt vector and will reject other interrupts that are received within the same vector.

If the local APIC receives an interrupt with an interrupt-priority class higher than that of the interrupt currently in
service, and interrupts are enabled in the processor core, the local APIC dispatches the higher priority interrupt to
the processor immediately (without waiting for a write to the EOI register). The currently executing interrupt
handler is then interrupted so the higher-priority interrupt can be handled. When the handling of the higher-priority
interrupt has been completed, the servicing of the interrupted interrupt is resumed.

Figure 10-20. IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR FEE0 0180H - FEE0 01F0H

Vol. 3A 10-31

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 10-20). Upon acceptance
of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-triggered interrupts and set for level-
triggered interrupts. If a TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, an
EOI message is sent to all I/O APICs.

10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-Deassert delivery
mode, the interrupt handler must include a write to the end-of-interrupt (EOI) register (see Figure 10-21). This
write must occur at the end of the handler routine, sometime before the IRET instruction. This action indicates that
the servicing of the current interrupt is complete and the local APIC can issue the next interrupt from the ISR.

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and dispatches the next highest priority
interrupt to the processor. If the terminated interrupt was a level-triggered interrupt, the local APIC also sends an
end-of-interrupt message to all I/O APICs.
System software may prefer to direct EOIs to specific I/O APICs rather than having the local APIC send end-of-
interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious Interrupt Vector Register (see
Section 10.9). If this bit is set, a broadcast EOI is not generated on an EOI cycle even if the associated TMR bit indi-
cates that the current interrupt was level-triggered. The default value for the bit is 0, indicating that EOI broadcasts
are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does not support suppression of
EOI broadcasts. Support for EOI-broadcast suppression is reported in bit 24 in the Local APIC Version Register (see
Section 10.4.8); the feature is supported if that bit is set to 1. When supported, the feature is available in both
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts should set bit 12 of the Spurious
Interrupt Vector Register and follow each the EOI to the local xAPIC for a level triggered interrupt with a directed
EOI to the I/O APIC generating the interrupt (this is done by writing to the I/O APIC’s EOI register). System soft-
ware performing directed EOIs must retain a mapping associating level-triggered interrupts with the I/O APICs in
the system.

10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes (see Section 10.8.3, “Interrupt,
Task, and Processor Priority”) explicitly using the task priority register (TPR). Operating systems can use the TPR
to temporarily block specific (low-priority) interrupts from interrupting a high-priority task. This is done by loading
TPR with a value in which the task-priority class corresponds to the highest interrupt-priority class that is to be
blocked. For example:
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with an interrupt-priority class of

8 or less while allowing all interrupts with an interrupt-priority class of 9 or more to be recognized.
• Loading the TPR with a task-priority class of 0 enables all external interrupts.
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external interrupts.

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software can read and write the TPR
using an alternate interface, MOV CR8 instruction. The new task-priority class is established when the MOV CR8

Figure 10-21. EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H

10-32 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

instruction completes execution. Software does not need to force serialization after loading the TPR using MOV
CR8.

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at privilege level greater than 0
cannot read or write the TPR. An attempt to do so causes a general-protection exception. The TPR is abstracted
from the interrupt controller (IC), which prioritizes and manages external interrupt delivery to the processor. The
IC can be an external device, such as an APIC or 8259. Typically, the IC provides a priority mechanism similar or
identical to the TPR. The IC, however, is considered implementation-dependent with the under-lying priority mech-
anisms subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can depend on this defi-
nition remaining unchanged.

Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining 60 bits are reserved and must
be written with zeros. Failure to do this causes a general-protection exception.

10.8.6.1 Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced programmable interrupt controller
(APIC) that is similar to the APIC used with previous IA-32 processors. Some aspects of the local APIC affect the
operation of the architecturally defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are reflected into the APIC Task Priority

Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 returns a 64-bit value which is the

value of TPR[bits 7:4], zero extended to 64 bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. Operating software should
implement either direct APIC TPR updates or CR8 style TPR updates but not mix them. Software can use a serial-
izing instruction (for example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater than or equal to the level of the
interrupt for which the processor INTR signal is currently being asserted. If at the time the INTA cycle is issued, the
interrupt that was to be dispensed has become masked (programmed by software), the local APIC will deliver a
spurious-interrupt vector. Dispensing the spurious-interrupt vector does not affect the ISR, so the handler for this
vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector register (see
Figure 10-23). The functions of the fields in this register are as follows:
Spurious Vector Determines the vector number to be delivered to the processor when the local APIC generates

a spurious vector.
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field are programmable by
software.
(P6 family and Pentium processors). Bits 4 through 7 of the this field are programmable by
software, and bits 0 through 3 are hardwired to logical ones. Software writes to bits 0 through
3 have no effect.

APIC Software Enable/Disable

Figure 10-22. CR8 Register

63 0

Value after reset: 0H

34

Reserved

Vol. 3A 10-33

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Allows software to temporarily enable (1) or disable (0) the local APIC (see Section 10.4.3,
“Enabling or Disabling the Local APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or disabled (1) when using the lowest-
priority delivery mode. In Pentium 4 and Intel Xeon processors, this bit is reserved and should
be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt causes EOI messages to be broad-
cast to the I/O APICs (0) or not (1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 0 if the processor does not
support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if you set the mask bit. A
spurious vector ISR does not do an EOI. If for some reason an interrupt is generated by an LVT or
RTE entry, the bit in the in-service register will be left set for the spurious vector. This will mask all
interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the system bus, using
the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the serial APIC bus, as
follows. Because only one message can be sent at a time on the APIC bus, the I/O APIC and local APICs employ a
“rotating priority” arbitration protocol to gain permission to send a message on the APIC bus. One or more APICs
may start sending their messages simultaneously. At the beginning of every message, each APIC presents the type
of the message it is sending and its current arbitration priority on the APIC bus. This information is used for arbi-
tration. After each arbitration cycle (within an arbitration round), only the potential winners keep driving the bus.

Figure 10-23. Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled
Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors. See bit 24 of Local APIC Version Register.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Disabled
1: Enabled

10-34 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

By the time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once a winner is
selected, it is granted exclusive use of the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1. The previous winner
(that is, the one that has just successfully transmitted its message) assumes a priority of 0 (lowest). An agent
whose arbitration priority was 15 (highest) during arbitration, but did not send a message, adopts the previous
winner’s arbitration priority, incremented by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues a special End-Of-
Interrupt (EOI). This high-priority message is granted the bus regardless of its sender’s arbitration priority, unless
more than one APIC issues an EOI message simultaneously. In the latter case, the APICs sending the EOI
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4, “Lowest Priority Delivery Mode”)
and multiple APICs are currently executing at the lowest priority (the value in the APR register), the arbitration
priorities (unique values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for the lowest
priority arbitration.

10.10.1 Bus Message Formats
See Section 10.13, “APIC Bus Message Formats,” for a description of bus message formats used to transmit
messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message signalled interrupts.
As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI devices to request
service by writing a system-specified message to a system-specified address (PCI DWORD memory
write transaction). The transaction address specifies the message destination while the transaction
data specifies the message. System software is expected to initialize the message destination and
message during device configuration, allocating one or more non-shared messages to each MSI
capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and configure MSI
capable PCI devices. Among other fields, this structure contains a Message Data Register and a Message Address
Register. To request service, the PCI device function writes the contents of the Message Data Register to the
address contained in the Message Address Register (and the Message Upper Address register for 64-bit message
addresses).

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address Register and the Message Data
Register. The operation issued by the device is a PCI write command to the Message Address Register with the
Message Data Register contents. The operation follows semantic rules as defined for PCI write operations and is a
DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure 10-24.

Figure 10-24. Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX

Vol. 3A 10-35

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). This value locates interrupts at
the 1-MByte area with a base address of 4G – 18M. All accesses to this region are directed as interrupt
messages. Care must to be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the message’s target processor(s).
The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table Entry if the IOAPIC is used to
dispatch the interrupt to the processor(s).

3. Redirection hint indication (RH) — When this bit is set, the message is directed to the processor with the
lowest interrupt priority among processors that can receive the interrupt.

• When RH is 0, the interrupt is directed to the processor listed in the Destination ID field.

• When RH is 1 and the physical destination mode is used, the Destination ID field must not be set to FFH;
it must point to a processor that is present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using a flat addressing model, the
Destination ID field must be set so that bits set to 1 identify processors that are present and enabled to
receive the interrupt.

• If RH is set to 1 and the logical destination mode is active in a system using cluster addressing model,
then Destination ID field must not be set to FFH; the processors identified with this field must be
present and enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field should be interpreted as logical
or physical APIC ID for delivery of the lowest priority interrupt.

• If RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the processor in
the system that has the matching APIC ID is considered for delivery of that interrupt (this means no re-
direction).

• If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical destination mode and the
redirection is limited to only those processors that are part of the logical group of processors based on
the processor’s logical APIC ID and the Destination ID field in the message. The logical group of
processors consists of those identified by matching the 8-bit Destination ID with the logical destination
identified by the Destination Format Register and the Logical Destination Register in each local APIC.
The details are similar to those described in Section 10.6.2, “Determining IPI Destination.”

• If RH is 0, then the DM bit is ignored and the message is sent ahead independent of whether the
physical or logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their contents on writes. Other fields in
the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the message. Values range from 010H
to 0FEH. Software must guarantee that the field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. Delivery Modes operate only in
conjunction with specified Trigger Modes. Correct Trigger Modes must be guaranteed by software. Restrictions
are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The Trigger Mode for
fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest priority of all
agents listed in the destination field. The trigger mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is edge only. For systems that rely
on SMI semantics, the vector field is ignored but must be programmed to all zeroes for future compatibility.

10-36 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination field. The vector information is
ignored. NMI is an edge triggered interrupt regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination field. The vector information is
ignored. INIT is an edge triggered interrupt regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination field (as an interrupt
that originated from an 8259A compatible interrupt controller). The vector is supplied by the INTA cycle
issued by the activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert messages. For edge triggered
interrupts this field is not used. For level triggered interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message.

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 10.4) in a backward compatible
manner and provides forward extendability for future Intel platform innovations. Specifically, the x2APIC architec-
ture does the following.
• Retains all key elements of compatibility to the xAPIC architecture.

— Delivery modes.

— Interrupt and processor priorities.

— Interrupt sources.

— Interrupt destination types.
• Provides extensions to scale processor addressability for both the logical and physical destination modes.

Figure 10-25. Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16 15 14 13 11 10 8 7 0

63 32

Vol. 3A 10-37

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• Adds new features to enhance performance of interrupt delivery.
• Reduces complexity of logical destination mode interrupt delivery on link based platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode instead of memory-mapped

interfaces. Memory-mapped interface is supported when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 and then checking ECX, bit
21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor supports the x2APIC capability and can be placed into the
x2APIC mode.

System software can place the local APIC in the x2APIC mode by setting the x2APIC mode enable bit (bit 10) in the
IA32_APIC_BASE MSR at MSR address 01BH. The layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.

Table 10-5, “x2APIC operating mode configurations” describe the possible combinations of the enable bit (EN - bit
11) and the extended mode bit (EXTD - bit 10) in the IA32_APIC_BASE MSR.

Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), switching back to xAPIC mode would
require system software to disable the local APIC unit. Specifically, attempting to write a value to the
IA32_APIC_BASE MSR that has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only way to leave x2APIC mode
using IA32_APIC_BASE would require a WRMSR to set both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC
State Transitions” provides a detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1 Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC registers. The MSR addresses for
accessing the x2APIC registers are architecturally defined and specified in Section 10.12.1.2, “x2APIC Register
Address Space”. Executing the RDMSR instruction with the APIC register address specified in ECX returns the
content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are returned in register EDX - these
bits are reserved if the APIC register being read is a 32-bit register. Similarly executing the WRMSR instruction with
the APIC register address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC register. If
the register is a 64-bit register then bits 0 to 31 of register EDX are written to bits 32 to 63 of the APIC register. The

Figure 10-26. IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations

xAPIC global enable
(IA32_APIC_BASE[11])

x2APIC enable
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode

10-38 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Interrupt Command Register is the only APIC register that is implemented as a 64-bit MSR. The semantics of
handling reserved bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2 x2APIC Register Address Space
The MSR address range 800H through BFFH is architecturally reserved and dedicated for accessing APIC registers
in x2APIC mode. Table 10-6 lists the APIC registers that are available in x2APIC mode. When appropriate, the table
also gives the offset at which each register is available on the page referenced by IA32_APIC_BASE[35:12] in
xAPIC mode.
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC register offsets with the following
exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in xAPIC mode, is not supported in

x2APIC mode. There is no MSR with address 80EH.
• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode (at offsets 300H and 310H) are

merged into a single 64-bit MSR in x2APIC mode (with MSR address 830H). There is no MSR with address
831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 83FH. In xAPIC mode, there is
no register defined at offset 3F0H.

MSR addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH and 831H) are reserved.
Executions of RDMSR and WRMSR that attempt to access such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit register on a 128-bit boundary in the
legacy MMIO space is mapped to a single MSR in the local x2APIC MSR address space. The upper 32-bits of all
x2APIC MSRs (except for the ICR) are reserved.

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode) Register Name

MSR R/W
Semantics Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for initial
values.

803H 030H Local APIC Version register Read-only Same version used in xAPIC mode
and x2APIC mode.

808H 080H Task Priority Register (TPR) Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority Register
(PPR)

Read-only

80BH 0B0H EOI register Write-only3 WRMSR of a non-zero value causes
#GP(0).

80DH 0D0H Logical Destination Register
(LDR)

Read-only Read/write in xAPIC mode.

80FH 0F0H Spurious Interrupt Vector
Register (SVR)

Read/write See Section 10.9 for reserved bits.

810H 100H In-Service Register (ISR); bits
31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

Vol. 3A 10-39

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register (TMR);
bits 31:0

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request Register
(IRR); bits 31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register (ESR) Read/write WRMSR of a non-zero value causes
#GP(0). See Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for reserved bits.

830H4 300H and 310H Interrupt Command Register
(ICR)

Read/write See Figure 10-28 for reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for reserved bits.

833H 330H LVT Thermal Sensor register Read/write See Figure 10-8 for reserved bits.

834H 340H LVT Performance Monitoring
register

Read/write See Figure 10-8 for reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for reserved bits.

838H 380H Initial Count register (for
Timer)

Read/write

839H 390H Current Count register (for
Timer)

Read-only

83EH 3E0H Divide Configuration Register
(DCR; for Timer)

Read/write See Figure 10-10 for reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments

10-40 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.1.3 Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC registers in x2APIC mode. Non-
zero writes (by WRMSR instruction) to reserved bits to these registers will raise a general protection fault exception
while reads return zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 232–1 processors to be
addressable in physical destination mode. This 32-bit value is referred to as “x2APIC ID”. A processor implementa-
tion may choose to support less than 32 bits in its hardware. System software should be agnostic to the actual
number of bits that are implemented. All non-implemented bits will return zeros on reads by software.
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the implemented bit-width of the local
APIC ID register in the system are reserved and cannot be assigned to any logical processor.

In x2APIC mode, the local APIC ID register is a read-only register to system software and will be initialized by hard-
ware. It is accessed via the RDMSR instruction reading the MSR at address 0802H.
Each logical processor in the system (including clusters with a communication fabric) must be configured with an
unique x2APIC ID to avoid collisions of x2APIC IDs. On DP and high-end MP processors targeted to specific market
segments and depending on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these configurations, a model-specific
means may be provided in those product segments to enable BIOS and/or platform firmware to re-configure the
x2APIC IDs in some clusters to provide for unique and non-overlapping system wide IDs before configuring the
disconnected components into a single system.

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local APIC has been switched to the
x2APIC mode as described in Section 10.12.1. Accessing any APIC register in the MSR address range 0800H
through 0BFFH via RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-protection
exception. In x2APIC mode, the memory mapped interface is not available and any access to the MMIO interface
will behave similar to that of a legacy xAPIC in globally disabled state. Table 10-7 provides the interactions between
the legacy & extended modes and the legacy and register interfaces.

10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing semantics of WRMSR are relaxed
when writing to the APIC registers. Thus, system software should not use “WRMSR to APIC registers in x2APIC
mode” as a serializing instruction. Read and write accesses to the APIC registers will occur in program order. A
WRMSR to an APIC register may complete before all preceding stores are globally visible; software can prevent this
by inserting a serializing instruction, an SFENCE, or an MFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when reading APIC registers in x2APIC
mode. System software accessing the APIC registers using the RDMSR instruction should not expect a serializing
behavior. (Note: The MMIO-based xAPIC interface is mapped by system software as an un-cached region. Conse-
quently, read/writes to the xAPIC-MMIO interface have serializing semantics in the xAPIC mode.)

2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.
4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents of the APIC register at MMIO offset

310H are accessible in x2APIC mode through the MSR at address 830H.
5. SELF IPI register is supported only in x2APIC mode.

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection exception

x2APIC mode Behavior identical to xAPIC in globally disabled state Available

Vol. 3A 10-41

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on VMX transitions using the
VMX-transition MSR areas (see VM-exit MSR-store address field, VM-exit MSR-load address field, and VM-entry
MSR-load address field in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transition fails if the VMM has speci-
fied that the transition should access any MSRs in the address range from 0000_0800H to 0000_08FFH (the range
used for accessing the X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-transition
MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) satisfies the expression:
“ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a failure causes an associated VM entry to fail (by reloading
host state) and causes an associated VM exit to lead to VMX abort.

10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC unit, transitions between these
states as well as interactions of these states with INIT and reset.

10.12.5.1 x2APIC States
The valid states for a local x2APIC unit are listed in Table 10-5.
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0.
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0.
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1.
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1.
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get into this state. An execution
of WRMSR to the IA32_APIC_BASE_MSR that attempts a transition from a valid state to this invalid state causes a
general-protection exception. Figure 10-27 shows the comprehensive state transition diagram for a local x2APIC
unit.
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: IA32_APIC_BASE[EN]=1 and
IA32_APIC_BASE[EXTD]=0. The APIC registers are initialized as follows.
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The lowest 8 bits of the x2APIC ID are

the legacy local xAPIC ID, and are stored in the upper 8 bits of the APIC register for access in xAPIC mode.
• The following APIC registers are reset to all zeros for those fields that are defined in the xAPIC mode.

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Section 10.4 through Section 10.6 for
details of individual APIC registers).

— Timer initial count and timer current count registers.
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH.
• The DFR (available only in xAPIC mode) is reset to all 1s.
• SELF IPI register is reset to zero.

10-42 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical x2APIC ID (see Figure 10-6)

is preserved across this transition and the logical x2APIC ID (see Figure 10-29) is initialized by hardware during
this transition as documented in Section 10.12.10.2. The state of the extended fields in other APIC registers,
which was not initialized at reset, is not architecturally defined across this transition and system software
should explicitly initialize those programmable APIC registers.

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, EXTD= 0. The state of the local
APIC ID register is preserved (the 8-bit xAPIC ID is in the upper 8 bits of the APIC ID register). All the other APIC
registers are initialized as a result of INIT.
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of the local APIC ID register is
initialized as described in Section 10.12.5.1. All the other APIC registers are initialized described in Section
10.12.5.1.

x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to the state where the x2APIC
is disabled by setting EN to 0 and EXTD to 0. The x2APIC ID (32 bits) and the legacy local xAPIC ID (8 bits) are
preserved across this transition. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection exception.
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including the local APIC ID register) are
initialized as described in Section 10.12.5.1.
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local APIC ID register is preserved (all
32 bits). However, all the other APIC registers are initialized as a result of the INIT transition.

Figure 10-27. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset

xAPIC Mode

EN =1 Illegal
Transition

Init

EN=1, Extd=1

Extended

Invalid
State

Mode

Reset

Extd = 1

Illegal
Transition

EN = 0

EN = 0 Illegal
TransitionExtd = 0

Illegal
Transition

Extd = 0

EN=1, Extd=0

EN = 0

Extd = 1

Reset

Reset

Init

Init

Disabled
EN = 0
Extd = 0

Extd = 1

EN = 0

Vol. 3A 10-43

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to the xAPIC mode (EN= 1,
EXTD = 0). Thus the only means to transition from x2APIC mode to xAPIC mode is a two-step process:
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID (32 bits), are not preserved
across mode transitions.
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers (including the local APIC ID
register) are initialized as described in Section 10.12.5.1.
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transition from xAPIC mode to x2APIC
mode does not affect most of the APIC register states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not preserved.
• The high half of the Interrupt Command Register is not preserved.

10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as all PCI and PCI Express
(PCIe) devices that support the capability for message-signaled interrupts (MSI). Support for x2APIC modifies only
the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no modifications are required to
IOxAPIC units. This made possible through use of the interrupt-remapping architecture specified in the Intel®
Virtualization Technology for Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires use of the interrupt-remapping
architecture specified in the Intel® Virtualization Technology for Directed I/O (Revision 1.3 and/or later versions).
Because of this, BIOS must enumerate support for and software must enable this interrupt remapping with
Extended Interrupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System Description Tables,” of the Advanced
Configuration and Power Interface Specification, Revision 4.0a (http://www.acpi.info/spec.htm). The default
behavior for BIOS is to pass the control to the operating system with the local x2APICs in xAPIC mode if all APIC
IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if there are any logical processor reporting
an APIC ID of 255 or greater.

10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by CPUID.01H:ECX[21] indicates that
the processor supports x2APIC and the extended topology enumeration leaf (CPUID.0BH).

10-44 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The extended topology enumeration leaf can be accessed by executing CPUID with EAX = 0BH. Processors that do
not support x2APIC may support CPUID leaf 0BH. Software can detect the availability of the extended topology
enumeration leaf (0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is

greater than or equal or 11 (0BH), then proceed to next step
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.
If both of the above conditions are true, extended topology enumeration leaf is available. If available, the extended
topology enumeration leaf is the preferred mechanism for enumerating topology. The presence of CPUID leaf 0BH
in a processor does not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero and
maximum input value for basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not supported on
that processor.
The extended topology enumeration leaf is intended to assist software with enumerating processor topology on
systems that requires 32-bit x2APIC IDs to address individual logical processors. Details of CPUID leaf 0BH can be
found in the reference pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended topology enumeration leaf of
CPUID and processors that do not support CPUID leaf 0BH are treated in Section 8.9.4, “Algorithm for Three-Level
Mappings of APIC_ID”.

10.12.8.1 Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit value returned in
CPUID.0BH:EDX is facilitated by processor hardware.
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows BIOS to determine if a system
has processors with IDs exceeding the 8-bit initial APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID
(CPUID.01H:EBX[31:24]) is always equal to CPUID.0BH:EDX[7:0].
If the values of CPUID.0BH:EDX reported by all logical processors in a system are less than 255, BIOS can transfer
control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are greater than or equal to 255,
BIOS must support two options to hand off to OS.
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it should enable x2APIC in the Boot

Strap Processor (BSP) and all Application Processors (AP) before passing control to the OS. Applications
requiring processor topology information must use OS provided services based on x2APIC IDs or CPUID.0BH
leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that only logical processors with
CPUID.0BH.EDX value less than 255 are enabled. BIOS initialization on all logical processors with
CPUID.0B.EDX values greater than or equal to 255 must (a) disable APIC and execute CLI in each logical
processor, and (b) leave these logical processor in the lowest power state so that these processors do not
respond to INIT IPI during OS boot. The BSP and all the enabled logical processor operate in xAPIC mode after
BIOS passed control to OS. Application requiring processor topology information can use OS provided legacy
services based on 8-bit initial APIC IDs or legacy topology information from CPUID.01H and CPUID 04H leaves.
Even if the BIOS passes control in xAPIC mode, an OS can switch the processors to x2APIC mode later. BIOS
SMM handler should always read the APIC_BASE_MSR, determine the APIC mode and use the corresponding
access method.

10.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 10-12. The lower 32 bits of ICR
in x2APIC mode is identical to the lower half of the ICR in xAPIC mode, except the Delivery Status bit is removed
since it is not needed in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode.
To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI message to be sent and the
destination processor or processors. Self IPIs can also be sent using the SELF IPI register (see Section 10.12.11).

Vol. 3A 10-45

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

A single MSR write to the Interrupt Command Register is required for dispatching an interrupt in x2APIC mode.
With the removal of the Delivery Status bit, system software no longer has a reason to read the ICR. It remains
readable only to aid in debugging; however, software should not assume the value returned by reading the ICR is
the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both logical destination and physical
destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1 Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide. It is a read-only register to
system software. This 32-bit value is referred to as “logical x2APIC ID”. System software accesses this register via
the RDMSR instruction reading the MSR at address 80DH. Figure 10-29 provides the layout of the Logical Destina-
tion Register in x2APIC mode.

Figure 10-28. Interrupt Command Register (ICR) in x2APIC Mode

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Reserved

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

Destination Field

Address: 830H (63 - 0)

Value after Reset: 0H

Reserved

20

10-46 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

In the xAPIC mode, the Destination Format Register (DFR) through the MMIO interface determines the choice of a
flat logical mode or a clustered logical mode. Flat logical mode is not supported in the x2APIC mode. Hence the
Destination Format Register (DFR) is eliminated in x2APIC mode.
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within the cluster specified by

LDR[31:16].
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effectively providing an addressability
of ((2^20) - 16) processors in logical destination mode.
It is likely that processor implementations may choose to support less than 16 bits of the cluster ID or less than 16-
bits of the Logical ID in the Logical Destination Register. However system software should be agnostic to the
number of bits implemented in the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will
ensure that the appropriately initialized logical x2APIC IDs are available to system software and reads of non-
implemented bits return zero. This is a read-only register that software must read to determine the logical x2APIC
ID of the processor. Specifically, software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to
identify the logical address of a processor within a cluster without needing to know the number of implemented bits
in cluster ID and Logical ID sub-fields. Similarly, software can create a message destination address for cluster
model, by bit-Oring the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology characteristics and to enable effi-
cient routing of logical mode lowest priority device interrupts in link based platform interconnects, the LDR are
initialized by hardware based on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization
are provided in Section 10.12.10.2.

10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived from the 32-bit local x2APIC
ID. Specifically, the 16-bit logical ID sub-field is derived by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e.
Logical ID = 1 « x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion of the logical
x2APIC ID:

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are reserved for logical processors
within a socket in multi-socket configurations. If more than 16 APIC IDS are reserved for logical processors in a
socket/package then multiple cluster IDs can exist within the package.
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 10.12.5).

Figure 10-29. Logical Destination Register in x2APIC Mode

MSR Address: 80DH

31 0

Logical x2APIC ID

Vol. 3A 10-47

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture introduces a new register inter-
face. This new register is dedicated to the purpose of sending self-IPIs with the intent of enabling a highly opti-
mized path for sending self-IPIs.

Figure 10-30 provides the layout of the SELF IPI register. System software only specifies the vector associated with
the interrupt to be sent. The semantics of sending a self-IPI via the SELF IPI register are identical to sending a self
targeted edge triggered fixed interrupt with the specified vector. Specifically the semantics are identical to the
following settings for an inter-processor interrupt sent via the ICR - Destination Shorthand (ICR[19:18] = 01
(Self)), Trigger Mode (ICR[15] = 0 (Edge)), Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the SELF IPI register causes a
general-protection exception.
The handling and prioritization of a self-IPI sent via the SELF IPI register is architecturally identical to that for an
IPI sent via the ICR from a legacy xAPIC unit. Specifically the state of the interrupt would be tracked via the Inter-
rupt Request Register (IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were received
from the system bus. Also sending the IPI via the Self Interrupt Register ensures that interrupt is delivered to the
processor core. Specifically completion of the WRMSR instruction to the SELF IPI register implies that the interrupt
has been logged into the IRR. As expected for edge triggered interrupts, depending on the processor priority and
readiness to accept interrupts, it is possible that interrupts sent via the SELF IPI register or via the ICR with iden-
tical vectors can be combined.

10.13 APIC BUS MESSAGE FORMATS
This section describes the message formats used when transmitting messages on the serial APIC bus. The informa-
tion described here pertains only to the Pentium and P6 family processors.

10.13.1 Bus Message Formats
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI message, short message,
and non-focused lowest priority message. The purpose of each type of message and its format are described
below.

10.13.2 EOI Message
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level triggered interrupt has been
accepted by the processor. This interrupt, in turn, is a result of software writing into the EOI register of the local
APIC. Table 10-1 shows the cycles in an EOI message.

Figure 10-30. SELF IPI register

Table 10-1. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

MSR Address: 083FH

31 8 7 0

Reserved Vector

10-48 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0) logical data values.
The carry out of all but the last addition is added to the sum. If any APIC computes a different checksum than the
one appearing on the bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this case,
the APICs disregard the message. The sending APIC will receive an appropriate error indication (see Section
10.5.3, “Error Handling”) and resend the message. The status cycles are defined in Table 10-4.

10.13.2.1 Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, ExtINT and lowest-priority-with-
focus interrupts. Table 10-2 shows the cycles in a short message.

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

Table 10-2. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 10-1. EOI Message (14 Cycles) (Contd.)

Cycle Bit1 Bit0

Vol. 3A 10-49

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and cycles 13 and 14 are
considered don't care by the receiver. If the logical delivery mode is being used, then cycles 13 through 16 are the
8-bit logical destination field.

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15
(D0:D3 = 1111) are used. The agent sending the message is the only one required to distinguish between the two
cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor identifies itself by driving
10 during cycle 19 and accepts the interrupt. This is an indication to other APICs to terminate arbitration. If the
focus processor has not been found, the short message is extended on-the-fly to the non-focused lowest-priority
message. Note that except for the EOI message, messages generating a checksum or an acceptance error (see
Section 10.5.3, “Error Handling”) terminate after cycle 21.

10.13.2.2 Non-focused Lowest Priority Message
These 34-cycle messages (see Table 10-3) are used in the lowest priority delivery mode when a focus processor is
not present. Cycles 1 through 20 are same as for the short message. If during the status cycle (cycle 19) the state
of the (A:A) flags is 10B, a focus processor has been identified, and the short message format is used (see Table
10-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-cycles of the non-focused
lowest priority message are competed. For other combinations of status flags, refer to Section 10.13.2.3, “APIC
Bus Status Cycles.”

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 10-2. Short Message (21 Cycles) (Contd.)

Cycle Bit1 Bit0

10-50 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors participating in the arbi-
tration drive their inverted processor priority on the bus. Only the local APICs having free interrupt slots participate
in the lowest priority arbitration. If no such APIC exists, the message will be rejected, requiring it to be tried at a
later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same lowest priority. In
the lowest priority delivery mode, all combinations of errors in cycle 33 (A2 A2) will set the “accept error” bit in the
error status register (see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not affected by
errors detected in cycle 33. Only the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error
in cycle 33 will force the sender to resend the message.

10.13.2.3 APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the status flags (A:A) and
(A1:A1) are examined. Table 10-4 shows how these status flags are interpreted, depending on the current delivery
mode and existence of a focus processor.

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1

Vol. 3A 10-51

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 10-4. APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update ArbID
and Cycle#

Message
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT,
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Lowest 00: CS_OK, NoFocus 11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, NoFocus 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 10: End and Retry XX: Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 0X: Error XX: No 34 Cycle Yes

10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

10-52 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

12.Updates to Chapter 15, Volume 3B
Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--
Changes to this chapter: Addition of IOMCA information.

Vol. 3B 15-1

CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception mechanism found in the
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors. See Chapter 6, “Interrupt 18—Machine-Check Excep-
tion (#MC),” for more information on machine-check exceptions. A brief description of the Pentium processor’s
machine check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors implement a machine-check architecture that
provides a mechanism for detecting and reporting hardware (machine) errors, such as: system bus errors, ECC
errors, parity errors, cache errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are
used to set up machine checking and additional banks of MSRs used for recording errors that are detected.
The processor signals the detection of an uncorrected machine-check error by generating a machine-check excep-
tion (#MC), which is an abort class exception. The implementation of the machine-check architecture does not
ordinarily permit the processor to be restarted reliably after generating a machine-check exception. However, the
machine-check-exception handler can collect information about the machine-check error from the machine-check
MSRs.
Starting with 45 nm Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A), the processor can report information on corrected machine-check errors and
deliver a programmable interrupt for software to respond to MC errors, referred to as corrected machine-check
error interrupt (CMCI). See Section 15.5 for detail.
Intel 64 processors supporting machine-check architecture and CMCI may also support an additional enhance-
ment, namely, support for software recovery from certain uncorrected recoverable machine check errors. See
Section 15.6 for detail.

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support and extend the machine-check exception
mechanism introduced in the Pentium processor. The Pentium processor reports the following machine-check
errors:
• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs (implementation specific for the
Pentium processor). Use the RDMSR instruction to read these MSRs. See Chapter 2, “Model-Specific Registers
(MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 for the addresses.
The machine-check error reporting mechanism that Pentium processors use is similar to that used in Pentium 4,
Intel Xeon, Intel Atom, and P6 family processors. When an error is detected, it is recorded in P5_MC_TYPE and
P5_MC_ADDR; the processor then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture,”
and Section 15.10.2, “Pentium Processor Machine-Check Exception Handling,” for information on compatibility
between machine-check code written to run on the Pentium processors and code written to run on P6 family
processors.

15-2 Vol. 3B

MACHINE-CHECK ARCHITECTURE

15.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Atom, Intel Xeon, and P6 family processors consist of a set of global
control and status registers and several error-reporting register banks. See Figure 15-1.

Each error-reporting bank is associated with a specific hardware unit (or group of hardware units) in the processor.
Use RDMSR and WRMSR to read and to write these registers.

15.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, IA32_MCG_STATUS, and optionally
IA32_MCG_CTL and IA32_MCG_EXT_CTL. See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 4 for the addresses of these registers.

15.3.1.1 IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture of
the processor. Figure 15-2 shows the layout of the register.

Figure 15-1. Machine-Check MSRs

0

63 0

63
IA32_MCG_CAP MSR

IA32_MCG_STATUS MSR

Error-Reporting Bank Registers

0

63 0

63
IA32_MCi_CTL MSR

IA32_MCi_STATUS MSR

0

63 0

63
IA32_MCi_ADDR MSR

IA32_MCi_MISC MSR

Global Control MSRs
(One Set for Each Hardware Unit)

063
IA32_MCG_CTL MSR

063
IA32_MCi_CTL2 MSR

063
IA32_MCG_EXT_CTL MSR

Vol. 3B 15-3

MACHINE-CHECK ARCHITECTURE

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting banks available in a particular

processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor implements the

IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the processor implements the extended

machine-check state registers found starting at MSR address 180H; these registers are absent when clear.
• MCG_CMCI_P (Corrected MC error counting/signaling extension present) flag, bit 10 — Indicates

(when set) that extended state and associated MSRs necessary to support the reporting of an interrupt on a
corrected MC error event and/or count threshold of corrected MC errors, is present. When this bit is set, it does
not imply this feature is supported across all banks. Software should check the availability of the necessary
logic on a bank by bank basis when using this signaling capability (i.e. bit 30 settable in individual
IA32_MCi_CTL2 register).

• MCG_TES_P (threshold-based error status present) flag, bit 11 — Indicates (when set) that bits 56:53
of the IA32_MCi_STATUS MSR are part of the architectural space. Bits 56:55 are reserved, and bits 54:53 are
used to report threshold-based error status. Note that when MCG_TES_P is not set, bits 56:53 of the
IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-check state registers present. This
field is meaningful only when the MCG_EXT_P flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24 — Indicates (when set) that the
processor supports software error recovery (see Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are
used to report the signaling of uncorrected recoverable errors and whether software must take recovery
actions for uncorrected errors. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_MCi_STATUS MSR
are model-specific. If MCG_TES_P is set but MCG_SER_P is not set, bits 56:55 are reserved.

• MCG_EMC_P (Enhanced Machine Check Capability) flag, bit 25 — Indicates (when set) that the
processor supports enhanced machine check capabilities for firmware first signaling.

• MCG_ELOG_P (extended error logging) flag, bit 26 — Indicates (when set) that the processor allows
platform firmware to be invoked when an error is detected so that it may provide additional platform specific
information in an ACPI format “Generic Error Data Entry” that augments the data included in machine check
bank registers.
For additional information about extended error logging interface, see
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhanced-mca-logging-
xeon-paper.pdf.

Figure 15-2. IA32_MCG_CAP Register

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25

MCG_ELOG_P[26]

27 26

MCG_LMCE_P[27]

MCG_EMC_P[25]

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhanced-mca-logging-xeon-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhanced-mca-logging-xeon-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhanced-mca-logging-xeon-paper.pdf

15-4 Vol. 3B

MACHINE-CHECK ARCHITECTURE

• MCG_LMCE_P (local machine check exception) flag, bit 27 — Indicates (when set) that the following
interfaces are present:

— an extended state LMCE_S (located in bit 3 of IA32_MCG_STATUS), and

— the IA32_MCG_EXT_CTL MSR, necessary to support Local Machine Check Exception (LMCE).
A non-zero MCG_LMCE_P indicates that, when LMCE is enabled as described in Section 15.3.1.5, some machine
check errors may be delivered to only a single logical processor.

The effect of writing to the IA32_MCG_CAP MSR is undefined.

15.3.1.2 IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a machine-check exception has
occurred (see Figure 15-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program execution can be restarted reliably

at the instruction pointed to by the instruction pointer pushed on the stack when the machine-check exception
is generated. When clear, the program cannot be reliably restarted at the pushed instruction pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction pointed to by the instruction
pointer pushed onto the stack when the machine-check exception is generated is directly associated with the
error. When this flag is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a machine-check exception was
generated. Software can set or clear this flag. The occurrence of a second Machine-Check Event while MCIP is
set will cause the processor to enter a shutdown state. For information on processor behavior in the shutdown
state, please refer to the description in Chapter 6, “Interrupt and Exception Handling”: “Interrupt 8—Double
Fault Exception (#DF)”.

• LMCE_S (local machine check exception signaled), bit 3 — Indicates (when set) that a local machine-
check exception was generated. This indicates that the current machine-check event was delivered to only this
logical processor.

Bits 63:04 in IA32_MCG_STATUS are reserved. An attempt to write to IA32_MCG_STATUS with any value other
than 0 would result in #GP.

15.3.1.3 IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the IA32_MCG_CAP MSR.
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present, writing 1s to this register enables
machine-check features and writing all 0s disables machine-check features. All other values are undefined and/or
implementation specific.

Figure 15-3. IA32_MCG_STATUS Register

EIPV—Error IP valid flag
MCIP—Machine check in progress flag

63 0

Reserved

123
E
I
P
V

M
C
I
P

R
I
P
V

RIPV—Restart IP valid flag

LMCE_S—Local machine check exception signaled

Vol. 3B 15-5

MACHINE-CHECK ARCHITECTURE

15.3.1.4 IA32_MCG_EXT_CTL MSR
The IA32_MCG_EXT_CTL MSR is present if the capability flag MCG_LMCE_P is set in the IA32_MCG_CAP MSR.
IA32_MCG_EXT_CTL.LMCE_EN (bit 0) allows the processor to signal some MCEs to only a single logical processor
in the system.
If MCG_LMCE_P is not set in IA32_MCG_CAP, or platform software has not enabled LMCE by setting
IA32_FEATURE_CONTROL.LMCE_ON (bit 20), any attempt to write or read IA32_MCG_EXT_CTL will result in #GP.
The IA32_MCG_EXT_CTL MSR is cleared on RESET.
Figure 15-4 shows the layout of the IA32_MCG_EXT_CTL register

where
• LMCE_EN (local machine check exception enable) flag, bit 0 - System software sets this to allow

hardware to signal some MCEs to only a single logical processor. System software can set LMCE_EN only if the
platform software has configured IA32_FEATURE_CONTROL as described in Section 15.3.1.5.

15.3.1.5 Enabling Local Machine Check
The intended usage of LMCE requires proper configuration by both platform software and system software. Plat-
form software can turn LMCE on by setting bit 20 (LMCE_ON) in IA32_FEATURE_CONTROL MSR (MSR address
3AH).
System software must ensure that both IA32_FEATURE_CONTROL.Lock (bit 0)and
IA32_FEATURE_CONTROL.LMCE_ON (bit 20) are set before attempting to set IA32_MCG_EXT_CTL.LMCE_EN (bit
0). When system software has enabled LMCE, then hardware will determine if a particular error can be delivered
only to a single logical processor. Software should make no assumptions about the type of error that hardware can
choose to deliver as LMCE. The severity and override rules stay the same as described in Table 15-8 to determine
the recovery actions.

15.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, IA32_MCi_STATUS, IA32_MCi_ADDR, and
IA32_MCi_MISC MSRs. The number of reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address
0179H). The first error-reporting register (IA32_MC0_CTL) always starts at address 400H.
See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4 for addresses of the error-reporting registers in the Pentium 4, Intel Atom, and Intel Xeon
processors; and for addresses of the error-reporting registers P6 family processors.

15.3.2.1 IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls signaling of #MC for errors produced by a particular hardware unit (or group of
hardware units). Each of the 64 flags (EEj) represents a potential error. Setting an EEj flag enables signaling #MC
of the associated error and clearing it disables signaling of the error. Error logging happens regardless of the setting
of these bits. The processor drops writes to bits that are not implemented. Figure 15-5 shows the bit fields of
IA32_MCi_CTL.

Figure 15-4. IA32_MCG_EXT_CTL Register

63 0

Reserved

1

LMCE_EN - system software control to enable/disable LMCE

15-6 Vol. 3B

MACHINE-CHECK ARCHITECTURE

NOTE
For P6 family processors, processors based on Intel Core microarchitecture (excluding those on
which on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH and onward): the
operating system or executive software must not modify the contents of the IA32_MC0_CTL MSR.
This MSR is internally aliased to the EBL_CR_POWERON MSR and controls platform-specific error
handling features. System specific firmware (the BIOS) is responsible for the appropriate initial-
ization of the IA32_MC0_CTL MSR. P6 family processors only allow the writing of all 1s or all 0s to
the IA32_MCi_CTL MSR.

15.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set (see
Figure 15-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing
1s to them causes a general-protection exception.

NOTE
Figure 15-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] = 1,
IA32_MCG_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error reporting.
When IA32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The use of bits
54:53 for threshold-based error reporting began with Intel Core Duo processors, and is currently
used for cache memory. See Section 15.4, “Enhanced Cache Error reporting,” for more information.
When IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field. The use of bits
52:38 for corrected MC error count is introduced with Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH.

Where:
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-

tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check
architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and Chapter 16, “Interpreting Machine-
Check Error Codes”, for information on machine-check error codes.

• Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32
processors for the same machine-check error condition. See Chapter 16, “Interpreting Machine-Check Error
Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 —

• If IA32_MCG_CAP.MCG_EMC_P[bit 25] is 0, bits 37:32 contain “Other Information” that is implemen-
tation-specific and is not part of the machine-check architecture.

• If IA32_MCG_CAP.MCG_EMC_P is 1, “Other Information” is in bits 36:32. If bit 37 is 0, system firmware
has not changed the contents of IA32_MCi_STATUS. If bit 37 is 1, system firmware may have edited the
contents of IA32_MCi_STATUS.

• If IA32_MCG_CAP.MCG_CMCI_P[bit 10] is 0, bits 52:38 also contain “Other Information” (in the same
sense as bits 37:32).

Figure 15-5. IA32_MCi_CTL Register

EEj—Error reporting enable flag

63 0123
E
E
0
1

E
E
0
2

E
E
0
0

E
E
6
1

E
E
6
2

E
E
6
3

62 61

.
 (where j is 00 through 63)

Vol. 3B 15-7

MACHINE-CHECK ARCHITECTURE

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38
reports the value of a 15 bit counter that increments each time a corrected error is observed by the MCA
recording bank. This count value will continue to increment until cleared by software. The most
significant bit, 52, is a sticky count overflow bit.

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53
have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 15.6.2
for additional detail.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery
action must be performed by system software at the time this error was signaled. See Section
15.6.2 for additional detail.

• If the UC bit (Figure 15-6) is 1, bits 54:53 are undefined.

• If the UC bit (Figure 15-6) is 0, bits 54:53 indicate the status of the hardware structure that
reported the threshold-based error. See Table 15-1.

Figure 15-6. IA32_MCi_STATUS Register

Table 15-1. Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and UC = 0
Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this event.

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

11 Reserved

63

Threshold-based error status (54:53)**
AR — Recovery action required for UCR error (55)***
S — Signaling an uncorrected recoverable (UCR) error (56)***
PCC — Processor context corrupted (57)

37 32 31 16 0
P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C
MCA Error CodeU S

R
 Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15
V
A
L

O
V
E
R

C N Specific Error Code Info
Corrected Error
Count

** When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
 (part of “Other Information”).
*** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).

36

* When IA32_MCG_CAP[25] (MCG_EMC_P) is set, bit 37 is not part of “Other Information”.

Firmware updated error status indicator (37)*

15-8 Vol. 3B

MACHINE-CHECK ARCHITECTURE

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might
have been corrupted by the error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s state, and software may be
able to restart. When system software supports recovery, consult Section 15.10.4, “Machine-Check Software
Handler Guidelines for Error Recovery” for additional rules that apply.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR
register contains the address where the error occurred (see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When
clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain the
address where the error occurred. Do not read these registers if they are not implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC
register contains additional information regarding the error. When clear, this flag indicates that the
IA32_MCi_MISC register is either not implemented or does not contain additional information regarding the
error. Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit
of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to
correct the error condition. When clear, this flag indicates that the processor was able to correct the error
condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible for
clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written over
corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. When
MCG_CMCI_P is set, corrected errors may not set the OVER flag. Software can rely on corrected error count in
IA32_MCi_Status[52:38] to determine if any additional corrected errors may have occurred. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within the
IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the OVER flag
in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the VAL flag
and software is responsible for clearing it.

15.3.2.2.1 Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has already posted an event to
the MC bank – that is, what to do if the valid bit for an MC bank already is set to 1. When more than one structure
posts events in a given bank, these rules specify whether a new event will overwrite a previous posting or not.
These rules define a priority for uncorrected (highest priority), yellow, and green/unmonitored (lowest priority)
status.
In Table 15-2, the values in the two left-most columns are IA32_MCi_STATUS[54:53].

If a second event overwrites a previously posted event, the information (as guarded by individual valid bits) in the
MCi bank is entirely from the second event. Similarly, if a first event is retained, all of the information previously
posted for that event is retained. In general, when the logged error or the recent error is a corrected error, the
OVER bit (MCi_Status[62]) may be set to indicate an overflow. When MCG_CMCI_P is set in IA32_MCG_CAP,
system software should consult IA32_MCi_STATUS[52:38] to determine if additional corrected errors may have

Table 15-2. Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green either

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error

yellow yellow 0 yellow either

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first

Vol. 3B 15-9

MACHINE-CHECK ARCHITECTURE

occurred. Software may re-read IA32_MCi_STATUS, IA32_MCi_ADDR and IA32_MCi_MISC appropriately to ensure
data collected represent the last error logged.
After software polls a posting and clears the register, the valid bit is no longer set and therefore the meaning of the
rest of the bits, including the yellow/green/00 status field in bits 54:53, is undefined. The yellow/green indication
will only be posted for events associated with monitored structures – otherwise the unmonitored (00) code will be
posted in IA32_MCi_STATUS[54:53].

15.3.2.3 IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is set (see Section 15-7, “IA32_MCi_ADDR MSR”).
The IA32_MCi_ADDR register is either not implemented or contains no address if the ADDRV flag in the
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will
cause a general protection exception.
The address returned is an offset into a segment, linear address, or physical address. This depends on the error
encountered. When these registers are implemented, these registers can be cleared by explicitly writing 0s to
these registers. Writing 1s to these registers will cause a general-protection exception. See Figure 15-7.

15.3.2.4 IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set. The IA32_MCi_MISC_MSR is either not implemented or does not contain
additional information if the MISCV flag in the IA32_MCi_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR will cause a general protection exception.
When implemented in a processor, these registers can be cleared by explicitly writing all 0s to them; writing 1s to
them causes a general-protection exception to be generated. This register is not implemented in any of the error-
reporting register banks for the P6 or Intel Atom family processors.
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined according to Figure 15-8 to
support software recovery of uncorrected errors (see Section 15.6).

Figure 15-7. IA32_MCi_ADDR MSR

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the
the register state is saved.

15-10 Vol. 3B

MACHINE-CHECK ARCHITECTURE

• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. Indicates the position of the least
significant bit (LSB) of the recoverable error address. For example, if the processor logs bits [43:9] of the
address, the LSB sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] of the
recoverable error address in IA32_MCi_ADDR should be ignored.

• Address Mode (bits 8:6): Address mode for the address logged in IA32_MCi_ADDR. The supported address
modes are given in Table 15-3.

• Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.4.2 IOMCA
Logging and Signaling of errors from PCI Express domain is governed by PCI Express Advanced Error Reporting
(AER) architecture. PCI Express architecture divides errors in two categories: Uncorrectable errors and Correctable
errors. Uncorrectable errors can further be classified as Fatal or Non-Fatal. Uncorrected IO errors are signaled to
the system software either as AER Message Signaled Interrupt (MSI) or via platform specific mechanisms such as
NMI. Generally, the signaling mechanism is controlled by BIOS and/or platform firmware. Certain processors
support an error handling mode, called IOMCA mode, where Uncorrected PCI Express errors are signaled in the
form of machine check exception and logged in machine check banks.
When a processor is in this mode, Uncorrected PCI Express errors are logged in the MCACOD field of the
IA32_MCi_STATUS register as Generic I/O error. The corresponding MCA error code is defined in Table 15-8.
IA32_MCi_Status [15:0] Simple Error Code Encoding. Machine check logging complements and does not replace
AER logging that occurs inside the PCI Express hierarchy. The PCI Express Root Complex and Endpoints continue to
log the error in accordance with PCI Express AER mechanism. In IOMCA mode, MCi_MISC register in the bank that
logged IOMCA can optionally contain information that link the Machine Check logs with the AER logs or proprietary
logs. In such a scenario, the machine check handler can utilize the contents of MCi_MISC to locate the next level of
error logs corresponding to the same error. Specifically, if MCi_Status.MISCV is 1 and MCACOD is 0x0E0B,
MCi_MISC contains the PCI Express address of the Root Complex device containing the AER Logs. Software can
consult the header type and class code registers in the Root Complex device's PCIe Configuration space to deter-
mine what type of device it is. This Root Complex device can either be a PCI Express Root Port, PCI Express Root
Complex Event Collector or a proprietary device.

Figure 15-8. UCR Support in IA32_MCi_MISC Register

Table 15-3. Address Mode in IA32_MCi_MISC[8:6]
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

100 to 110 Reserved

111 Generic

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89

Vol. 3B 15-11

MACHINE-CHECK ARCHITECTURE

Errors that originate from PCI Express or Legacy Endpoints are logged in the corresponding Root Port in addition to
the generating device. If MISCV=1 and MCi_MISC contains the address of the Root Port or a Root Complex Event
collector, software can parse the AER logs to learn more about the error.
If MISCV=1 and MCi_MISC points to a device that is neither a Root Complex Event Collector not a Root Port, soft-
ware must consult the Vendor ID/Device ID and use device specific knowledge to locate and interpret the error log
registers. In some cases, the Root Complex device configuration space may not be accessible to the software and
both the Vendor and Device ID read as 0xFFFF.
• The format of MCi_MISC for IOMCA errors is shown in Table 15-4.

Refer to PCI Express Specification 3.0 for definition of PCI Express Requestor ID and AER architecture. Refer to PCI
Firmware Specification 3.0 for an explanation of PCI Ex-press Segment number and how software can access
configuration space of a PCI Ex-press device given the segment number and Requestor ID.

15.3.2.5 IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC error signaling capability that is
indicated by IA32_MCG_CAP[10] = 1. Software must check for the presence of IA32_MCi_CTL2 on a per-bank
basis.
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e. reads and writes to these MSR
are supported. However, signaling interface for corrected MC errors may not be supported in all banks.
The layout of IA32_MCi_CTL2 is shown in Figure 15-9:

• Corrected error count threshold, bits 14:0 — Software must initialize this field. The value is compared with
the corrected error count field in IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the
CMCI LVT entry (see Table 10-1) in the APIC when the count value equals the threshold value. The new LVT
entry in the APIC is at 02F0H offset from the APIC_BASE. If CMCI interface is not supported for a particular
bank (but IA32_MCG_CAP[10] = 1), this field will always read 0.

• CMCI_EN (Corrected error interrupt enable/disable/indicator), bits 30 — Software sets this bit to
enable the generation of corrected machine-check error interrupt (CMCI). If CMCI interface is not supported for
a particular bank (but IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that bank. This
bit also indicates CMCI is supported or not supported in the corresponding bank. See Section 15.5 for details of
software detection of CMCI facility.

Table 15-4. Address Mode in IA32_MCi_MISC[8:6]
63:40 39:32 31:16 15:9 8:6 5:0

RSVD PCI Express Segment
number

PCI Express
Requestor ID

RSVD ADDR MODE1

NOTES:
1. Not Applicable if ADDRV=0.

RECOV ADDR LSB1

Figure 15-9. IA32_MCi_CTL2 Register

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved

15-12 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Some microarchitectural sub-systems that are the source of corrected MC errors may be shared by more than one
logical processors. Consequently, the facilities for reporting MC errors and controlling mechanisms may be shared
by more than one logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical processors
sharing a processor core. Software is responsible to program IA32_MCi_CTL2 MSR in a consistent manner with
CMCI delivery and usage.
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6 IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended machine-check state MSRs.
The MCG_EXT_P flag in the IA32_MCG_CAP MSR indicates the presence of these extended registers, and the
MCG_EXT_CNT field indicates the number of these registers actually implemented. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.” Also see Table 15-5.

In processors with support for Intel 64 architecture, 64-bit machine check state MSRs are aliased to the legacy
MSRs. In addition, there may be registers beyond IA32_MCG_MISC. These may include up to five reserved MSRs
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit mode. See Table 15-6.

Table 15-5. Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal
operation.

Table 15-6. Extended Machine Check State MSRs
In Processors With Support For Intel 64 Architecture

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-check error.

Vol. 3B 15-13

MACHINE-CHECK ARCHITECTURE

When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the processor saves the state of
the general-purpose registers, the R/EFLAGS register, and the R/EIP in these extended machine-check state MSRs.
This information can be used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them; but if software writes to
them, only all zeros is allowed. If software attempts to write a non-zero value into one of these registers, a general-
protection (#GP) exception is generated. These registers are cleared on a hardware reset (power-up or RESET),
but maintain their contents following a soft reset (INIT reset).

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and P5_MC_ADDR. The
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors map these registers to the IA32_MCi_STATUS and
IA32_MCi_ADDR in the error-reporting register bank. This bank reports on the same type of external bus errors
reported in P5_MC_TYPE and P5_MC_ADDR.
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a general machine-check exception

handler written for Pentium 4, Intel Atom and P6 family processors.
• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR instruction.
The second capability permits a machine-check exception handler written to run on a Pentium processor to be run
on a Pentium 4, Intel Xeon, Intel Atom, or P6 family processor. There is a limitation in that information returned by
the Pentium 4, Intel Xeon, Intel Atom, and P6 family processors is encoded differently than information returned
by the Pentium processor. To run a Pentium processor machine-check exception handler on a Pentium 4, Intel
Xeon, Intel Atom, or P6 family processor; the handler must be written to interpret P5_MC_TYPE encodings
correctly.

15.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In earlier Intel processors, cache
status was based on the number of correction events that occurred in a cache. In the new paradigm, called
“threshold-based error status”, cache status is based on the number of lines (ECC blocks) in a cache that incur
repeated corrections. The threshold is chosen by Intel, based on various factors. If a processor supports threshold-
based error status, it sets IA32_MCG_CAP[11] (MCG_TES_P) to 1; if not, to 0.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal
operation.

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-check error.

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-check error.

Table 15-6. Extended Machine Check State MSRs
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description

15-14 Vol. 3B

MACHINE-CHECK ARCHITECTURE

A processor that supports enhanced cache error reporting contains hardware that tracks the operating status of
certain caches and provides an indicator of their “health”. The hardware reports a “green” status when the number
of lines that incur repeated corrections is at or below a pre-defined threshold, and a “yellow” status when the
number of affected lines exceeds the threshold. Yellow status means that the cache reporting the event is operating
correctly, but you should schedule the system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by threshold-base error reporting.
The CPU/system/platform response to a yellow event should be less severe than its response to an uncorrected
error. An uncorrected error means that a serious error has actually occurred, whereas the yellow condition is a
warning that the number of affected lines has exceeded the threshold but is not, in itself, a serious event: the error
was corrected and system state was not compromised.
The green/yellow status indicator is not a foolproof early warning for an uncorrected error resulting from the failure
of two bits in the same ECC block. Such a failure can occur and cause an uncorrected error before the yellow
threshold is reached. However, the chance of an uncorrected error increases as the number of affected lines
increases.

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to the machine-check architec-
ture. It provides capabilities beyond those of threshold-based error reporting (Section 15.4). With threshold-based
error reporting, software is limited to use periodic polling to query the status of hardware corrected MC errors.
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold values that software can
program using the IA32_MCi_CTL2 MSRs.
CMCI is disabled by default. System software is required to enable CMCI for each IA32_MCi bank that support the
reporting of hardware corrected errors if IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for each bank and program
threshold values into IA32_MCi_CTL2 MSR. CMCI is not affected by the CR4.MCE bit, and it is not affected by the
IA32_MCi_CTL MSRs.
To detect the existence of thresholding for a given bank, software writes only bits 14:0 with the threshold value. If
the bits persist, then thresholding is available (and CMCI is available). If the bits are all 0's, then no thresholding
exists. To detect that CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon subsequent
read, if bit 30 = 0, no CMCI is available for this bank and no corrected or UCNA errors will be reported on this bank.
If bit 30 = 1, then CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 15-10.

Figure 15-10. CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H

Vol. 3B 15-15

MACHINE-CHECK ARCHITECTURE

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the local APIC register space at
default address of APIC_BASE + 2F0H. A CMCI interrupt can be delivered to more than one logical processors if
multiple logical processors are affected by the associated MC errors. For example, if a corrected bit error in a cache
shared by two logical processors caused a CMCI, the interrupt will be delivered to both logical processors sharing
that microarchitectural sub-system. Similarly, package level errors may cause CMCI to be delivered to all logical
processors within the package. However, system level errors will not be handled by CMCI.
See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
System software must enable and manage CMCI, set up interrupt handlers to service CMCI interrupts delivered to
affected logical processors, program CMCI LVT entry, and query machine check banks that are shared by more
than one logical processors.
This section describes techniques system software can implement to manage CMCI initialization, service CMCI
interrupts in a efficient manner to minimize contentions to access shared MSR resources.

15.5.2.1 CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors depending on the nature of the
corrected MC error, only one instance of the interrupt service routine needs to perform the necessary service and
make queries to the machine-check banks. The following steps describes a technique that limits the amount of
work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data structure for each logical

processor to allow equal-opportunity and efficient response to interrupt delivery. Specifically, the per-thread
data structure should include a set of per-bank fields to track which machine check bank it needs to access in
response to a delivered CMCI interrupt. The number of banks that needs to be tracked is determined by
IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data structure must be done serially
on each logical processor in the system. The sequencing order to start the per-thread initialization between
different logical processor is arbitrary. But it must observe the following specific detail to satisfy the shared
nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to determine if another thread has
already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can not own bank i and should
proceed to step b. and examine the next machine check bank until all of the machine check banks are
exhausted.

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a subsequent read to determine
this bank can support CMCI.

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread can not own bank i and should
proceed to step b. and examine the next machine check bank until all of the machine check banks are
exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to indicate this thread claims
ownership to the MC bank; proceed to initialize the error threshold count (bits 15:0) of that bank as
described in Chapter 15, “CMCI Threshold Management”. Then proceed to step b. and examine the next
machine check bank until all of the machine check banks are exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns any MC banks to service CMCI.
If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in Chapter 15, “CMCI Interrupt
Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local APIC Interface”.

15-16 Vol. 3B

MACHINE-CHECK ARCHITECTURE

— Log and clear all of IA32_MCi_Status registers for the banks that this thread owns. This will allow new
errors to be logged.

15.5.2.2 CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally defined. Specifically, all these bits
are writable by software, but different processor implementations may choose to implement less than 15 bits as
threshold for the overflow comparison with IA32_MCi_STATUS[52:38]. The following describes techniques that
software can manage CMCI threshold to be compatible with changes in implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to IA32_MCi_CTL2[15:0]. This will cause overflow

condition on every corrected MC error and generates a CMCI interrupt.
• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[15:0],

• Read back IA32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the maximum threshold supported by the
processor.

b. Increase the threshold to a value below the maximum value discovered using step a.

15.5.2.3 CMCI Interrupt Handler
The following describes techniques system software may consider to implement a CMCI service routine:
• The service routine examines its private per-thread data structure to check which set of MC banks it has

ownership. If the thread does not have ownership of a given MC bank, proceed to the next MC bank. Ownership
is determined at initialization time which is described in Section [Cross Reference to 14.5.2.1].

If the thread had claimed ownership to an MC bank, this technique will allow each logical processors to handle
corrected MC errors independently and requires no synchronization to access shared MSR resources. Consult
Example 15-5 for guidelines on logging when processing CMCI.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS
Recovery of uncorrected recoverable machine check errors is an enhancement in machine-check architecture. The
first processor that supports this feature is 45 nm Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_2EH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow system software to
perform recovery action on certain class of uncorrected errors and continue execution.

15.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of software error recovery
support (see Figure 15-2). When IA32_MCG_CAP[24] is set, this indicates that the processor supports software
error recovery. When this bit is clear, this indicates that there is no support for error recovery from the processor
and the primary responsibility of the machine check handler is logging the machine check error information and
shutting down the system.
The new class of architectural MCA errors from which system software can attempt recovery is called Uncorrected
Recoverable (UCR) Errors. UCR errors are uncorrected errors that have been detected and signaled but have not
corrupted the processor context. For certain UCR errors, this means that once system software has performed a
certain recovery action, it is possible to continue execution on this processor. UCR error reporting provides an error
containment mechanism for data poisoning. The machine check handler will use the error log information from the
error reporting registers to analyze and implement specific error recovery actions for UCR errors.

Vol. 3B 15-17

MACHINE-CHECK ARCHITECTURE

15.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or uncorrected errors. The defini-
tions of IA32_MCi_STATUS, including bit fields to identify UCR errors, is shown in Figure 15-6. UCR errors can be
signaled through either the corrected machine check interrupt (CMCI) or machine check exception (MCE) path
depending on the type of the UCR error.
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings in the IA32_MCi_STATUS
register:
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers for the UCR error are available
when the ADDRV and the MISCV flags in the IA32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA
error code field of the IA32_MCi_STATUS register indicates the type of UCR error. System software can interpret
the MCA error code field to analyze and identify the necessary recovery action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see Figure 15-6) to provide addi-
tional information to help system software to properly identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception was generated for the UCR

error reported in this MC bank and system software needs to check the AR flag and the MCA error code fields in
the IA32_MCi_STATUS register to identify the necessary recovery action for this error. When the S flag in the
IA32_MCi_STATUS register is clear, this UCR error was not signaled via a machine check exception and instead
was reported as a corrected machine check (CMC). System software is not required to take any recovery action
when the S flag in the IA32_MCi_STATUS register is clear.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery action must be
performed by system software at the time this error was signaled. This recovery action must be completed
successfully before any additional work is scheduled for this processor. When the RIPV flag in the
IA32_MCG_STATUS is clear, an alternative execution stream needs to be provided; when the MCA error code
specific recovery specific recovery action cannot be successfully completed, system software must shut down
the system. When the AR flag in the IA32_MCi_STATUS register is clear, system software may still take MCA
error code specific recovery action but this is optional; system software can safely resume program execution
at the instruction pointer saved on the stack from the machine check exception when the RIPV flag in the
IA32_MCG_STATUS register is set.

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky bits, which mean that once
set, the processor does not clear them. Only software and good power-on reset can clear the S and the AR-flags.
Both the S and the AR flags are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a machine check exception and,

instead, is reported to system software as a corrected machine check error. UCNA errors indicate that some
data in the system is corrupted, but the data has not been consumed and the processor state is valid and you
may continue execution on this processor. UCNA errors require no action from system software to continue
execution. A UNCA error is indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled either via a machine check exception or
CMCI. System software recovery action is optional and not required to continue execution from this machine
check exception. SRAO errors indicate that some data in the system is corrupt, but the data has not been
consumed and the processor state is valid. SRAO errors provide the additional error information for system
software to perform a recovery action. An SRAO error when signaled as a machine check is indicated with
UC=1, PCC=0, S=1, EN=1 and AR=0 in the IA32_MCi_STATUS register. In cases when SRAO is signaled via
CMCI the error signature is indicated via UC=1, PCC=0, S=0. Recovery actions for SRAO errors are MCA error
code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the additional
error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System software
needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific recovery

15-18 Vol. 3B

MACHINE-CHECK ARCHITECTURE

action for a given SRAO error. If MISCV and ADDRV are not set, it is recommended that no system software
error recovery be performed however, system software can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system software to take a recovery
action on this processor before scheduling another stream of execution on this processor. SRAR errors indicate
that the error was detected and raised at the point of the consumption in the execution flow. An SRAR error is
indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the IA32_MCi_STATUS register. Recovery actions are
MCA error code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the
additional error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System
software needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific
recovery action for a given SRAR error. If MISCV and ADDRV are not set, it is recommended that system
software shutdown the system.

Table 15-7 summarizes UCR, corrected, and uncorrected errors.

15.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors.
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.
• UCR errors are not written over previous UCR errors.
• Corrected errors do not write over previous UCR errors.
Regardless of whether the 1st error is retained or the 2nd error is overwritten over the 1st error, the OVER flag in
the IA32_MCi_STATUS register will be set to indicate an overflow condition. As the S flag and AR flag in the
IA32_MCi_STATUS register are defined to be sticky flags, a second event cannot clear these 2 flags once set,
however the MC bank information may be filled in for the 2nd error. The table below shows the overwrite rules and
how to treat a second error if the first event is already logged in a MC bank along with the resulting bit setting of
the UC, PCC, and AR flags in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery
action from system software to continue program execution, a system reset by system software is not required
unless the AR flag or PCC flag is set for the UCR overflow case (OVER=1, VAL=1, UC=1, PCC=0).

Table 15-7. MC Error Classifications
Type of Error1

NOTES:
1. SRAR, SRAO and UCNA errors are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set.

UC EN PCC S AR Signaling Software Action Example

Uncorrected Error (UC) 1 1 1 x x MCE If EN=1, reset the system, else log
and OK to keep the system running.

SRAR 1 1 0 1 1 MCE For known MCACOD, take specific
recovery action;

For unknown MCACOD, must
bugcheck.

If OVER=1, reset system, else take
specific recovery action.

Cache to processor load
error.

SRAO 1 x2

2. EN=1, S=1 when signaled via MCE. EN=x, S=0 when signaled via CMC.

0 x2 0 MCE/CMC For known MCACOD, take specific
recovery action;

For unknown MCACOD, OK to keep
the system running.

Patrol scrub and explicit
writeback poison errors.

UCNA 1 x 0 0 0 CMC Log the error and Ok to keep the
system running.

Poison detection error.

Corrected Error (CE) 0 x x x x CMC Log the error and no corrective
action required.

ECC in caches and
memory.

Vol. 3B 15-19

MACHINE-CHECK ARCHITECTURE

Table 15-8 lists overwrite rules for uncorrected errors, corrected errors, and uncorrected recoverable errors.

15.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-specific features. Software can
execute the CPUID instruction to determine whether a processor implements these features. Following the execu-
tion of the CPUID instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate whether the
processor implements the machine-check architecture and machine-check exception.

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the processor to activate the machine-
check exception and the error-reporting mechanism.
Example 15-1 gives pseudocode for performing this initialization. This pseudocode checks for the existence of the
machine-check architecture and exception; it then enables machine-check exception and the error-reporting
register banks. The pseudocode shown is compatible with the Pentium 4, Intel Xeon, Intel Atom, P6 family, and
Pentium processors.
Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have valid data until after
they are initially cleared to zero by software (as shown in the initialization pseudocode in Example 15-1). In addi-
tion, when using P6 family processors, software must set MCi_STATUS registers to zero when doing a soft-reset.

Example 15-1. Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

IF (IA32_MCG_CAP.MCG_LMCE_P = 1 and IA32_FEATURE_CONTROL.LOCK = 1 and IA32_FEATURE_CONTROL.LMCE_ON= 1)

Table 15-8. Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA, else 1 1 if SRAR, else 0 second yes, if AR=1

UCR CE 1 0 0 if UCNA, else 1 1 if SRAR, else 0 first yes, if AR=1

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes

15-20 Vol. 3B

MACHINE-CHECK ARCHITECTURE

(* IA32_MCG_EXT_CTL register is present and platform has enabled LMCE to permit system software to use LMCE *)
THEN

IA32_MCG_EXT_CTL ← IA32_MCG_EXT_CTL | 01H;
(* System software enables LMCE capability for hardware to signal MCE to a single logical processor*)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

15.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error code to the MCA error code
field of one of the IA32_MCi_STATUS registers and sets the VAL (valid) flag in that register. The processor may also
write a 16-bit model-specific error code in the IA32_MCi_STATUS register depending on the implementation of the
machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To determine the cause of a
machine-check exception, the machine-check exception handler must read the VAL flag for each
IA32_MCi_STATUS register. If the flag is set, the machine check-exception handler must then read the MCA error
code field of the register. It is the encoding of the MCA error code field [15:0] that determines the type of error
being reported and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error codes.

Vol. 3B 15-21

MACHINE-CHECK ARCHITECTURE

15.9.1 Simple Error Codes
Table 15-9 shows the simple error codes. These unique codes indicate global error information.

15.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and interconnect logic, and
internal timer. A set of sub-fields is common to all of compound errors. These sub-fields describe the type of
access, level in the cache hierarchy, and type of request. Table 15-10 shows the general form of the compound
error codes.

The “Interpretation” column in the table indicates the name of a compound error. The name is constructed by
substituting mnemonics for the sub-field names given within curly braces. For example, the error code
ICACHEL1_RD_ERR is constructed from the form:

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Sections Section 15.9.2.1, “Correction
Report Filtering (F) Bit” through Section 15.9.2.5, “Bus and Interconnect Errors”.

Table 15-9. IA32_MCi_Status [15:0] Simple Error Code Encoding
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of error-reporting
registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the MCA error classes.

Microcode ROM Parity Error 0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused this processor to
enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

SMM Handler Code Access
Violation

0000 0000 0000 0110 An attempt was made by the SMM Handler to execute
outside the ranges specified by SMRR.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

I/O Error 0000 1110 0000 1011 generic I/O error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the same external bus) has BINIT#

observation enabled during power-on configuration (hardware strapping) and if machine check exceptions are enabled (by setting
CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified.

Table 15-10. IA32_MCi_Status [15:0] Compound Error Code Encoding
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

15-22 Vol. 3B

MACHINE-CHECK ARCHITECTURE

15.9.2.1 Correction Report Filtering (F) Bit
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-10 is used to indicate that a partic-
ular posting to a log may be the last posting for corrections in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Atom/Xeon processor meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in the posting). Filtering means

that some or all of the subsequent corrections to this entry (in this structure) will not be posted. The enhanced
error reporting introduced with the Intel Core Duo processors is based on tracking the lines affected by
repeated corrections (see Section 15.4, “Enhanced Cache Error reporting”). This capability is indicated by
IA32_MCG_CAP[11]. Only the first few correction events for a line are posted; subsequent redundant
correction events to the same line are not posted. Uncorrected events are always posted.

The behavior of error filtering after crossing the yellow threshold is model-specific. Filtering has meaning only for
corrected errors (UC=0 in IA32_MCi_STATUS MSR). System software must ignore filtering bit (12) for uncorrected
errors.

15.9.2.2 Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 15-11) indicates the type of transaction (data, instruction, or generic). The sub-field
applies to the TLB, cache, and interconnect error conditions. Note that interconnect error conditions are primarily
associated with P6 family and Pentium processors, which utilize an external APIC bus separate from the system
bus. The generic type is reported when the processor cannot determine the transaction type.

15.9.2.3 Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 15-12) indicates the level in the memory hierarchy where the error occurred (level
0, level 1, level 2, or generic). The LL sub-field also applies to the TLB, cache, and interconnect error conditions.
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support two levels in the cache hierarchy and one
level in the TLBs. Again, the generic type is reported when the processor cannot determine the hierarchy level.

15.9.2.4 Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 15-13) indicates the type of action associated with the error. Actions include
read and write operations, prefetches, cache evictions, and snoops. Generic error is returned when the type of
error cannot be determined. Generic read and generic write are returned when the processor cannot determine the
type of instruction or data request that caused the error. Eviction and snoop requests apply only to the caches. All
of the other requests apply to TLBs, caches and interconnects.

Table 15-11. Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 15-12. Level Encoding for LL (Memory Hierarchy Level) Sub-Field
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 15-13. Encoding of Request (RRRR) Sub-Field
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Vol. 3B 15-23

MACHINE-CHECK ARCHITECTURE

15.9.2.5 Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T (time-out), and 2-bit II
(memory or I/O) sub-fields, in addition to the LL and RRRR sub-fields (see Table 15-14). The bus error conditions
are implementation dependent and related to the type of bus implemented by the processor. Likewise, the inter-
connect error conditions are predicated on a specific implementation-dependent interconnect model that describes
the connections between the different levels of the storage hierarchy. The type of bus is implementation depen-
dent, and as such is not specified in this document. A bus or interconnect transaction consists of a request involving
an address and a response.

15.9.2.6 Memory Controller Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction type), and 4-bit CCCC
(channel) sub-fields. The encodings for MMM and CCCC are defined in Table 15-15.

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Table 15-14. Encodings of PP, T, and II Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as third party OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system components (including the APIC, other proces-

sors, etc.).

Table 15-15. Encodings of MMM and CCCC Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

Table 15-13. Encoding of Request (RRRR) Sub-Field (Contd.)

15-24 Vol. 3B

MACHINE-CHECK ARCHITECTURE

15.9.3 Architecturally Defined UCR Errors
Software recoverable compound error code are defined in this section.

15.9.3.1 Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined.
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-10). Their values and compound encoding format are given in Table
15-16.

Table 15-17 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAO errors.

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the
IA32_MCi_STATUS register are set to indicate that the offending physical address information is available from the
IA32_MCi_MISC and the IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors,
the address mode in the IA32_MCi_MISC register should be set as physical address mode (010b) and the address
LSB information in the IA32_MCi_MISC register should indicate the lowest valid address bit in the address informa-
tion provided from the IA32_MCi_ADDR register.
MCE signal is broadcast to all logical processors as outlined in Section 15.10.4.1. If LMCE is supported and enabled,
some errors (not limited to UCR errors) may be delivered to only a single logical processor. System software should
consult IA32_MCG_STATUS.LMCE_S to determine if the MCE signaled is only to this logical processor.

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 15-16. MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Memory Scrubbing C0H - CFH 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 17AH 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B

Table 15-17. IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 x1

NOTES:
1. When signaled as MCE, EN=1 and S=1. If error was signaled via CMC, then EN=x, and S=0.

1 1 0 x1 0 C0H-CFH

L3 Explicit Writeback 1 0 1 x1 1 1 0 x1 0 17AH

Table 15-15. Encodings of MMM and CCCC Sub-Fields (Contd.)

Vol. 3B 15-25

MACHINE-CHECK ARCHITECTURE

IA32_MCi_STATUS banks can be shared by logical processors within a core or within the same package. So several
logical processors may find an SRAO error in the shared IA32_MCi_STATUS bank but other processors do not find
it in any of the IA32_MCi_STATUS banks. Table 15-18 shows the RIPV and EIPV flag indication in the
IA32_MCG_STATUS register for the memory scrubbing and L3 explicit writeback errors on both the reporting and
non-reporting logical processors.

15.9.3.2 Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined.
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-10). Their values and compound encoding format are given in Table
15-19.

Table 15-20 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAR errors.

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the IA32_MCi_STATUS register
are set to indicate that the offending physical address information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors, the address mode in the
IA32_MCi_MISC register should be set as physical address mode (010b) and the address LSB information in the
IA32_MCi_MISC register should indicate the lowest valid address bit in the address information provided from the
IA32_MCi_ADDR register.
MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported, except when
the processor supports LMCE and LMCE is enabled by system software (see Section 15.3.1.5). The

Table 15-18. IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-19. MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Data Load 134H 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 150H 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)

Table 15-20. IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 134H

Instruction Fetch 1 0 1 1 1 1 0 1 1 150H

15-26 Vol. 3B

MACHINE-CHECK ARCHITECTURE

IA32_MCG_STATUS MSR allows system software to distinguish the affected logical processor of an SRAR error
amongst logical processors that observed SRAR via MCi_STATUS bank.
Table 15-21 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS register for the data load and
instruction fetch errors on both the reporting and non-reporting logical processors. The recoverable SRAR error
reported by a processor may be continuable, where the system software can interpret the context of continuable
as follows: the error was isolated, contained. If software can rectify the error condition in the current instruction
stream, the execution context on that logical processor can be continued without loss of information.

SRAR Error And Affected Logical Processors

The affected logical processor is the one that has detected and raised an SRAR error at the point of the consump-
tion in the execution flow. The affected logical processor should find the Data Load or the Instruction Fetch error
information in the IA32_MCi_STATUS register that is reporting the SRAR error.
Table 15-21 list the actionable scenarios that system software can respond to an SRAR error on an affected logical
processor according to RIPV and EIPV values:
• Recoverable-Continuable SRAR Error (RIPV=1, EIPV=1):

For Recoverable-Continuable SRAR errors, the affected logical processor should find that both the
IA32_MCG_STATUS.RIPV and the IA32_MCG_STATUS.EIPV flags are set, indicating that system software may
be able to restart execution from the interrupted context if it is able to rectify the error condition. If system
software cannot rectify the error condition then it must treat the error as a recoverable error where restarting
execution with the interrupted context is not possible. Restarting without rectifying the error condition will
result in most cases with another SRAR error on the same instruction.

• Recoverable-not-continuable SRAR Error (RIPV=0, EIPV=x):
For Recoverable-not-continuable errors, the affected logical processor should find that either

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=1, or

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=0.
In either case, this indicates that the error is detected at the instruction pointer saved on the stack for this
machine check exception and restarting execution with the interrupted context is not possible. System
software may take the following recovery actions for the affected logical processor:

• The current executing thread cannot be continued. System software must terminate the interrupted
stream of execution and provide a new stream of execution on return from the machine check handler
for the affected logical processor.

SRAR Error And Non-Affected Logical Processors

The logical processors that observed but not affected by an SRAR error should find that the RIPV flag in the
IA32_MCG_STATUS register is set and the EIPV flag in the IA32_MCG_STATUS register is cleared, indicating that it
is safe to restart the execution at the instruction saved on the stack for the machine check exception on these
processors after the recovery action is successfully taken by system software.

Table 15-21. IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processor Non-Affected Logical Processors

RIPV EIPV Continuable RIPV EIPV Continuable

Recoverable-
continuable

1 1 Yes1

NOTES:
1. see the definition of the context of “continuable” above and additional detail below.

1 0 YesRecoverable-not-
continuable

0 x No

Vol. 3B 15-27

MACHINE-CHECK ARCHITECTURE

15.9.4 Multiple MCA Errors
When multiple MCA errors are detected within a certain detection window, the processor may aggregate the
reporting of these errors together as a single event, i.e. a single machine exception condition. If this occurs,
system software may find multiple MCA errors logged in different MC banks on one logical processor or find
multiple MCA errors logged across different processors for a single machine check broadcast event. In order to
handle multiple UCR errors reported from a single machine check event and possibly recover from multiple errors,
system software may consider the following:
• Whether it can recover from multiple errors is determined by the most severe error reported on the system. If

the most severe error is found to be an unrecoverable error (VAL=1, UC=1, PCC=1 and EN=1) after system
software examines the MC banks of all processors to which the MCA signal is broadcast, recovery from the
multiple errors is not possible and system software needs to reset the system.

• When multiple recoverable errors are reported and no other fatal condition (e.g. overflowed condition for SRAR
error) is found for the reported recoverable errors, it is possible for system software to recover from the
multiple recoverable errors by taking necessary recovery action for each individual recoverable error. However,
system software can no longer expect one to one relationship with the error information recorded in the
IA32_MCi_STATUS register and the states of the RIPV and EIPV flags in the IA32_MCG_STATUS register as the
states of the RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the information for the
most severe error recorded on the processor. System software is required to use the RIPV flag indication in the
IA32_MCG_STATUS register to make a final decision of recoverability of the errors and find the restart-ability
requirement after examining each IA32_MCi_STATUS register error information in the MC banks.
In certain cases where system software observes more than one SRAR error logged for a single logical
processor, it can no longer rely on affected threads as specified in Table 15-20 above. System software is
recommended to reset the system if this condition is observed.

15.9.5 Machine-Check Error Codes Interpretation
Chapter 16, “Interpreting Machine-Check Error Codes,” provides information on interpreting the MCA error code,
model-specific error code, and other information error code fields. For P6 family processors, information has been
included on decoding external bus errors. For Pentium 4 and Intel Xeon processors; information is included on
external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE
The machine-check architecture and error logging can be used in three different ways:
• To detect machine errors during normal instruction execution, using the machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and perform recovery actions via a

machine-check exception handler or a corrected machine-check interrupt handler.
To use the machine-check exception, the operating system or executive software must provide a machine-check
exception handler. This handler may need to be designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging utility are given in the
following sections.

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-check exceptions, a trap gate
must be added to the IDT. The pointer in the trap gate must point to a machine-check exception handler. Two
approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a debugger or shut down the
system.

15-28 Vol. 3B

MACHINE-CHECK ARCHITECTURE

2. The handler can analyze the reported error information and, in some cases, attempt to correct the error and
restart the processor.

For Pentium 4, Intel Xeon, Intel Atom, P6 family, and Pentium processors; virtually all machine-check conditions
cannot be corrected (they result in abort-type exceptions). The logging of status and error information is therefore
a baseline implementation requirement.
When IA32_MCG_CAP[24] is clear, consider the following when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-reporting register banks. The

count field in the IA32_MCG_CAP register gives number of register banks. The first register of register bank 0
is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and do not need to
be checked.

• To write a portable exception handler, only the MCA error code field in the IA32_MCi_STATUS register should be
checked. See Section 15.9, “Interpreting the MCA Error Codes,” for information that can be used to write an
algorithm to interpret this field.

• Correctable errors are corrected automatically by the processor. The UC flag in each IA32_MCi_STATUS reg-
ister indicates whether the processor automatically corrected an error.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether recovery from the error is
possible. If PCC or OVER are set, recovery is not possible. If RIPV is not set, program execution can not be
restarted reliably. When recovery is not possible, the handler typically records the error information and signals
an abort to the operating system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can be restarted at the
instruction indicated by the instruction pointer (the address of the instruction pushed on the stack when the
exception was generated). If this flag is clear, the processor may still be able to be restarted (for debugging
purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates whether the instruction
indicated by the instruction pointer pushed on the stack (when the exception was generated) is related to the
error. If the flag is clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated.
Before returning from the machine-check exception handler, software should clear this flag so that it can be
used reliably by an error logging utility. The MCIP flag also detects recursion. The machine-check architecture
does not support recursion. When the processor detects machine-check recursion, it enters the shutdown
state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Vol. 3B 15-29

MACHINE-CHECK ARCHITECTURE

Example 15-2. Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

call errorlogging routine; (* returns restartability *)
FI;

ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family, Intel Atom and later processor families, should follow the guidelines
described in Section 15.10.1 and Example 15-2 that check the processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the P5_MC_TYPE and
P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in control register CR4),
the machine-check exception handler uses the RDMSR instruction to read the error type from the P5_MC_TYPE
register and the machine check address from the P5_MC_ADDR register. The handler then normally reports these
register values to the system console before aborting execution (see Example 15-2).

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible for logging uncorrected
errors.
If a machine-check error is correctable, the processor does not generate a machine-check exception for it. To
detect correctable machine-check errors, a utility program must be written that reads each of the machine-check
error-reporting register banks and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as hourly or daily.
• A user-initiated application that polls the register banks and records the exceptions. Here, the actual polling

service is provided by an operating-system driver or through the system call interface.
• An interrupt service routine servicing CMCI can read the MC banks and log the error. Please refer to Section

15.10.4.2 for guidelines on logging correctable machine checks.
Example 15-3 gives pseudocode for an error logging utility.

15-30 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Example 15-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR;
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through the banks of error-reporting
registers looking for valid register entries. It then saves the values of the IA32_MCi_STATUS, IA32_MCi_ADDR,
IA32_MCi_MISC and IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes processing
time by recording the raw data into a system data structure or file, reducing the overhead associated with polling.
User utilities analyze the collected data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is in progress and the
machine-check exception handler has called the exception logging routine.
Once the logging process has been completed the exception-handling routine must determine whether execution
can be restarted, which is usually possible when damage has not occurred (The PCC flag is clear, in the
IA32_MCi_STATUS register) and when the processor can guarantee that execution is restartable (the RIPV flag is
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system is not recoverable and the
exception-handling routine should signal the console appropriately before returning the error status to the Oper-
ating System kernel for subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-reporting bank although the
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors do not implement this feature. The error logging
routine should provide compatibility with future processors by reading each hardware error-reporting bank's
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in this register. The error logging
utility should re-read the IA32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The processor
will write the next error into the register bank and set the VAL flags.
Additional information that should be stored by the exception-logging routine includes the processor’s time-stamp
counter value, which provides a mechanism to indicate the frequency of exceptions. A multiprocessing operating
system stores the identity of the processor node incurring the exception using a unique identifier, such as the
processor’s APIC ID (see Section 10.8, “Handling Interrupts”).
The basic algorithm given in Example 15-3 can be modified to provide more robust recovery techniques. For
example, software has the flexibility to attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully analyze the error-reporting registers when
the error-logging routine reports an error that does not allow execution to be restarted. These recovery techniques

Vol. 3B 15-31

MACHINE-CHECK ARCHITECTURE

can use external bus related model-specific information provided with the error report to localize the source of the
error within the system and determine the appropriate recovery strategy.

15.10.4 Machine-Check Software Handler Guidelines for Error Recovery

15.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following:
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal

exceptions. The logging of status and error information is therefore a baseline implementation requirement.
• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may be

software recoverable. The handler can analyze the reported error information, and in some cases attempt to
recover from the uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH and onward, an MCA signal is
broadcast to all logical processors in the system (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Due to the
potentially shared machine check MSR resources among the logical processors on the same package/core, the
MCE handler may be required to synchronize with the other processors that received a machine check error and
serialize access to the machine check registers when analyzing, logging and clearing the information in the
machine check registers.

— On processors that indicate ability for local machine-check exception (MCG_LMCE_P), hardware can choose
to report the error to only a single logical processor if system software has enabled LMCE by setting
IA32_MCG_EXT_CTL[LMCE_EN] = 1 as outlined in Section 15.3.1.5.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be
checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1).
The MCE handler can optionally log and clear the corrected errors in the MC banks if it can implement software
algorithm to avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates (when set) that the
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is
generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be
associated with the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated.
When a machine check exception is generated, it is expected that the MCIP flag in the IA32_MCG_STATUS
register is set to 1. If it is not set, this machine check was generated by either an INT 18 instruction or some
piece of hardware signaling an interrupt with vector 18.

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE)
handler to support software recovery:
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from the error is possible for

uncorrected errors (UC=1). If the PCC flag is set for enabled uncorrected errors (UC=1 and EN=1), recovery is
not possible. When recovery is not possible, the MCE handler typically records the error information and signals
the operating system to reset the system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is possible. When the RIPV is set,
program execution can be restarted reliably when recovery is possible. If the RIPV flag is not set, program
execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the current
program execution and resuming an alternate thread of execution upon return from the machine check handler
when recovery is possible. When recovery is not possible, the MCE handler signals the operating system to
reset the system.

15-32 Vol. 3B

MACHINE-CHECK ARCHITECTURE

• When the EN flag is zero but the VAL and UC flags are one in the IA32_MCi_STATUS register, the reported
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = 0 are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and
should continue searching for enabled errors from the other IA32_MCi_STATUS registers. Note that when
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that
do not generate machine check exceptions, the EN flag has no meaning.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the IA32_MCi_STATUS
register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler needs to examine
the S flag and the AR flag to find the type of the UCR error for software recovery and determine if software error
recovery is possible.

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for the UCR error (VAL=1, UC=1,
EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA errors are
uncorrected but do not require any OS recovery action to continue execution. These errors indicate that some
data in the system is corrupt, but that data has not been consumed and may not be consumed. If that data is
consumed a non-UNCA machine check exception will be generated. UCNA errors are signaled in the same way
as corrected machine check errors and the CMCI and CMC polling handler is primarily responsible for handling
UCNA errors. Like corrected errors, the MCA handler can optionally log and clear UCNA errors as long as it can
avoid the undesired race condition with the CMCI or CMC polling handler. As UCNA errors are not the source of
machine check exceptions, the MCA handler should continue searching for uncorrected or software recoverable
errors in all other MC banks.

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0),
the error in this bank is software recoverable and it was signaled through a machine-check exception. The AR
flag in the IA32_MCi_STATUS register further clarifies the type of the software recoverable errors.

• When the AR flag in the IA32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The MCE
handler and the operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA error code
specific optional recovery action, but this recovery action is optional. System software can resume the program
execution from the instruction pointer saved on the stack for the machine check exception when the RIPV flag
in the IA32_MCG_STATUS register is set.

• Even if the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=0), the MCE handler can take recovery action for the SRAO error logged in the IA32_MCi_STATUS
register. Since the recovery action for SRAO errors is optional, restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is still possible for the overflowed SRAO
error if the RIPV flag in the IA32_MCG_STATUS is set.

• When the AR flag in the IA32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The MCE
handler and the operating system must take recovery action in order to continue execution after the machine-
check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS [15:0] to
determine the MCA error code specific recovery action. If no recovery action can be performed, the operating
system must reset the system.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system.

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an
unexpected condition for the MCE handler and the handler should signal the operating system to reset the
system.

• Before returning from the machine-check exception handler, software must clear the MCIP flag in the
IA32_MCG_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does
not support recursion. When the processor receives a machine check when MCIP is set, it automatically enters
the shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery of UCR.

Vol. 3B 15-33

MACHINE-CHECK ARCHITECTURE

Example 15-4. Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER: (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6)

THEN
IF (MCG_LMCE = 1)

MCA_BROADCAST = FALSE;
ELSE

MCA_BROADCAST = TRUE;
FI;
Acquire SpinLock;
ProcessorCount++; (* Allowing one logical processor at a time to examine machine check registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
 THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0)
THEN

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN

Report RESTARTABILITY to console;
Reset system;

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
 AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock;
Wait till ProcessorCount = MAX_PROCESSRS on system;
(* implement a timeout and abort function if necessary *)

FI;
CLEAR IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING: (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;

15-34 Vol. 3B

MACHINE-CHECK ARCHITECTURE

FOR each bank of machine-check registers
DO

CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC = 1 and EN = 1 in IA32_MCi_STATUS

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE;

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
RESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI;
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *)
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
 AND Current Processor is an Affected Processor

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TRUE;

ELSE
RESTARTABILITY = FALSE;

FI;
ELSE (* It is a software recoverable and action optional (SRAO) error *)

IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR
FI; PCC
NOERROR = FALSE;

Vol. 3B 15-35

MACHINE-CHECK ARCHITECTURE

GOTO LOG MCA REGISTER;
ELSE (* It is a corrected error; continue to the next IA32_MCi_STATUS *)

GOTO CONTINUE;
FI; UC

FI; VAL
LOG MCA REGISTER:

SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
(*END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

15.10.4.2 Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI or called from an OS CMC
Polling dispatcher, consider the following:
• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register

is valid. If this flag is clear, the registers in that bank does not contain valid error information and does not need
to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or not (UC=1).

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for logging and clearing uncorrected no-
action required (UCNA) errors. When the UC flag is one but the PCC, S, and AR flags are zero in the
IA32_MCi_STATUS register, the reported error in this bank is an uncorrected no-action required (UCNA) error.
In cases when SRAO error are signaled as UCNA error via CMCI, software can perform recovery for those errors
identified in Table 15-16.

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs uncorrected (UC=1 and
PCC=1), software recoverable machine check errors (UC=1, PCC=0 and S=1), but should avoid clearing those
errors from the MC banks. Clearing these errors may result in accidentally removing these errors before these
errors are actually handled and processed by the MCE handler for attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

15-36 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Example 15-5. Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER: (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN
GOTO LOG CMC ERROR;

ELSE
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;

LOG CMC ERROR:
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
(*END FOR *)

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

13.Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--
Changes to this chapter: Added Section 19.13 “Performance Monitoring Events for Processors Based on the Gold-
mont Plus Microarchitecture”. Updates to Section 19.14 “Performance Monitoring Events for Processors Based on
the Goldmont Microarchitecture”.

Vol. 3B 19-1

CHAPTER 19
PERFORMANCE MONITORING EVENTS

This chapter lists the performance monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Model-specific performance events are listed for each generation of microarchitecture:
• Section 19.2 - Processors based on Skylake microarchitecture
• Section 19.3 - Processors based on Skylake and Kaby Lake microarchitectures
• Section 19.4 - Processors based on Knights Landing microarchitecture
• Section 19.5 - Processors based on Broadwell microarchitecture
• Section 19.6 - Processors based on Haswell microarchitecture
• Section 19.6.1 - Processors based on Haswell-E microarchitecture
• Section 19.7 - Processors based on Ivy Bridge microarchitecture
• Section 19.7.1 - Processors based on Ivy Bridge-E microarchitecture
• Section 19.8 - Processors based on Sandy Bridge microarchitecture
• Section 19.9 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.10 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.11 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.12 - Processors based on Intel® Core™ microarchitecture
• Section 19.13 - Processors based on the Goldmont microarchitecture
• Section 19.15 - Processors based on the Silvermont microarchitecture
• Section 19.15.1 - Processors based on the Airmont microarchitecture
• Section 19.16 - 45 nm and 32 nm Intel® Atom™ Processors
• Section 19.17 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.18 - Processors based on Intel NetBurst® microarchitecture
• Section 19.19 - Pentium® M family processors
• Section 19.20 - P6 family processors
• Section 19.21 - Pentium® processors

NOTE
These performance monitoring events are intended to be used as guides for performance tuning.
The counter values reported by the performance monitoring events are approximate and believed
to be useful as relative guides for tuning software. Known discrepancies are documented where
applicable.
All performance event encodings not documented in the appropriate tables for the given processor
are considered reserved, and their use will result in undefined counter updates with associated
overflow actions.
The event tables listed this chapter provide information for tool developers to support architectural
and model-specific performance monitoring events. The tables are up to date at processor launch,
but are subject to changes. The most up to date event tables and additional details of performance
event implementation for end-user (including additional details beyond event code/umask) can
found at the “perfmon” repository provided by The Intel Open Source Technology Center
(https://download.01.org/perfmon/).

19-2 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.1 ARCHITECTURAL PERFORMANCE MONITORING EVENTS
Architectural performance events are introduced in Intel Core Solo and Intel Core Duo processors. They are also
supported on processors based on Intel Core microarchitecture. Table 19-1 lists pre-defined architectural perfor-
mance events that can be configured using general-purpose performance counters and associated event-select
registers.

Fixed-function performance counters count only events defined in Table 19-2.

Table 19-1. Architectural Performance Events
Event
Num. Event Mask Name

Umask
Value Description

3CH UnHalted Core Cycles 00H Counts core clock cycles whenever the logical processor is in C0 state
(not halted). The frequency of this event varies with state transitions in
the core.

3CH UnHalted Reference Cycles1

NOTES:
1. Current implementations count at core crystal clock, TSC, or bus clock frequency.

01H Counts at a fixed frequency whenever the logical processor is in C0
state (not halted).

C0H Instructions Retired 00H Counts when the last uop of an instruction retires.

2EH LLC Reference 4FH Counts requests originating from the core that reference a cache line in
the last level on-die cache.

2EH LLC Misses 41H Counts each cache miss condition for references to the last level on-die
cache.

C4H Branch Instruction Retired 00H Counts when the last uop of a branch instruction retires.

C5H Branch Misses Retired 00H Counts when the last uop of a branch instruction retires which
corrected misprediction of the branch prediction hardware at execution
time.

Table 19-2. Fixed-Function Performance Counter and Pre-defined Performance Events
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

IA32_PERF_FIXED_CTR0 309H Inst_Retired.Any This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-
ops, this event counts the retirement of the last micro-op
of the instruction. The counter continues counting during
hardware interrupts, traps, and inside interrupt handlers.

IA32_PERF_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THRE
AD/CPU_CLK_UNHALTED.C
ORE/CPU_CLK_UNHALTED.
THREAD_ANY

The CPU_CLK_UNHALTED.THREAD event counts the
number of core cycles while the logical processor is not in
a halt state.

If there is only one logical processor in a processor core,
CPU_CLK_UNHALTED.CORE counts the unhalted cycles of
the processor core.

If there are more than one logical processor in a processor
core, CPU_CLK_UNHALTED.THREAD_ANY is supported by
programming IA32_FIXED_CTR_CTRL[bit 6]AnyThread =
1.

The core frequency may change from time to time due to
transitions associated with Enhanced Intel SpeedStep
Technology or TM2. For this reason this event may have a
changing ratio with regards to time.

Vol. 3B 19-3

PERFORMANCE MONITORING EVENTS

19.2 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR
SCALABLE FAMILY

The Intel® Xeon® Processor Scalable Family is based on the Skylake microarchitecture. These processors support
the architectural performance monitoring events listed in Table 19-1. Fixed counters in the core PMU support the
architecture events defined in Table 19-2. Model-specific performance monitoring events in the processor core are
listed in Table 19-4. The events in Table 19-4 apply to processors with CPUID signature of
DisplayFamily_DisplayModel encoding with the following value: 06_55H .

The comment column in Table 19-4 uses abbreviated letters to indicate additional conditions applicable to the
Event Mask Mnemonic. For event umasks listed in Table 19-4 that do not show “AnyT”, users should refrain from
programming “AnyThread =1” in IA32_PERF_EVTSELx.

IA32_PERF_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF_
TSC

This event counts the number of reference cycles at the
TSC rate when the core is not in a halt state and not in a
TM stop-clock state. The core enters the halt state when
it is running the HLT instruction or the MWAIT instruction.
This event is not affected by core frequency changes (e.g.,
P states) but counts at the same frequency as the time
stamp counter. This event can approximate elapsed time
while the core was not in a halt state and not in a TM
stopclock state.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

00H 01H INST_RETIRED.ANY Counts the number of instructions retired from
execution. For instructions that consist of multiple
micro-ops, Counts the retirement of the last micro-op of
the instruction. Counting continues during hardware
interrupts, traps, and inside interrupt handlers. Notes:
INST_RETIRED.ANY is counted by a designated fixed
counter, leaving the four (eight when Hyperthreading is
disabled) programmable counters available for other
events. INST_RETIRED.ANY_P is counted by a
programmable counter and it is an architectural
performance event. Counting: Faulting executions of
GETSEC/VM entry/VM Exit/MWait will not count as
retired instructions.

 Fixed Counter

00H 02H CPU_CLK_UNHALTED.THREAD Counts the number of core cycles while the thread is
not in a halt state. The thread enters the halt state
when it is running the HLT instruction. This event is a
component in many key event ratios. The core
frequency may change from time to time due to
transitions associated with Enhanced Intel SpeedStep
Technology or TM2. For this reason this event may
have a changing ratio with regards to time. When the
core frequency is constant, this event can approximate
elapsed time while the core was not in the halt state. It
is counted on a dedicated fixed counter, leaving the
four (eight when Hyperthreading is disabled)
programmable counters available for other events.

Fixed Counter

Table 19-2. Fixed-Function Performance Counter and Pre-defined Performance Events (Contd.)
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

19-4 Vol. 3B

PERFORMANCE MONITORING EVENTS

00H 02H CPU_CLK_UNHALTED.THREAD_
ANY

Core cycles when at least one thread on the physical
core is not in halt state.

AnyThread=1

00H 03H CPU_CLK_UNHALTED.REF_TSC Counts the number of reference cycles when the core is
not in a halt state. The core enters the halt state when
it is running the HLT instruction or the MWAIT
instruction. This event is not affected by core
frequency changes (for example, P states, TM2
transitions) but has the same incrementing frequency
as the time stamp counter. This event can approximate
elapsed time while the core was not in a halt state. This
event has a constant ratio with the
CPU_CLK_UNHALTED.REF_XCLK event. It is counted on
a dedicated fixed counter, leaving the four (eight when
Hyperthreading is disabled) programmable counters
available for other events. Note: On all current
platforms this event stops counting during ‘throttling
(TM)’ states duty off periods the processor is ‘halted’.
The counter update is done at a lower clock rate then
the core clock the overflow status bit for this counter
may appear ‘sticky’. After the counter has overflowed
and software clears the overflow status bit and resets
the counter to less than MAX. The reset value to the
counter is not clocked immediately so the overflow
status bit will flip “high (1)” and generate another PMI
(if enabled) after which the reset value gets clocked
into the counter. Therefore, software will get the
interrupt, read the overflow status bit ‘1 for bit 34
while the counter value is less than MAX. Software
should ignore this case.

Fixed Counter

03H 02H LD_BLOCKS.STORE_FORWARD Counts how many times the load operation got the true
Block-on-Store blocking code preventing store
forwarding. This includes cases when: a. preceding
store conflicts with the load (incomplete overlap), b.
store forwarding is impossible due to u-arch limitations,
c. preceding lock RMW operations are not forwarded, d.
store has the no-forward bit set (uncacheable/page-
split/masked stores), e. all-blocking stores are used
(mostly, fences and port I/O), and others. The most
common case is a load blocked due to its address range
overlapping with a preceding smaller uncompleted
store. Note: This event does not take into account cases
of out-of-SW-control (for example, SbTailHit), unknown
physical STA, and cases of blocking loads on store due
to being non-WB memory type or a lock. These cases
are covered by other events. See the table of not
supported store forwards in the Optimization Guide.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for handling
the split accesses are in use.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-5

PERFORMANCE MONITORING EVENTS

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

Counts false dependencies in MOB when the partial
comparison upon loose net check and dependency was
resolved by the Enhanced Loose net mechanism. This
may not result in high performance penalties. Loose net
checks can fail when loads and stores are 4k aliased.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Counts demand data loads that caused a page walk of
any page size (4K/2M/4M/1G). This implies it missed in
all TLB levels, but the walk need not have completed.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Counts demand data loads that caused a completed
page walk (4K page size). This implies it missed in all
TLB levels. The page walk can end with or without a
fault.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Counts demand data loads that caused a completed
page walk (2M and 4M page sizes). This implies it
missed in all TLB levels. The page walk can end with or
without a fault.

08H 08H DTLB_LOAD_MISSES.WALK_COM
PLETED_1G

Counts load misses in all DTLB levels that cause a
completed page walk (1G page size). The page walk can
end with or without a fault.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Counts demand data loads that caused a completed
page walk of any page size (4K/2M/4M/1G). This implies
it missed in all TLB levels. The page walk can end with
or without a fault.

08H 10H DTLB_LOAD_MISSES.WALK_PEN
DING

Counts 1 per cycle for each PMH that is busy with a
page walk for a load. EPT page walk duration are
excluded in Skylake microarchitecture.

08H 10H DTLB_LOAD_MISSES.WALK_ACT
IVE

Counts cycles when at least one PMH (Page Miss
Handler) is busy with a page walk for a load.

CounterMask=1
CMSK1

08H 20H DTLB_LOAD_MISSES.STLB_HIT Counts loads that miss the DTLB (Data TLB) and hit the
STLB (Second level TLB).

0DH 01H INT_MISC.RECOVERY_CYCLES Core cycles the Resource allocator was stalled due to
recovery from an earlier branch misprediction or
machine clear event.

0DH 01H INT_MISC.RECOVERY_CYCLES_A
NY

Core cycles the allocator was stalled due to recovery
from earlier clear event for any thread running on the
physical core (e.g. misprediction or memory nuke).

AnyThread=1 AnyT

0DH 80H INT_MISC.CLEAR_RESTEER_CYC
LES

Cycles the issue-stage is waiting for front-end to fetch
from resteered path following branch misprediction or
machine clear events.

0EH 01H UOPS_ISSUED.ANY Counts the number of uops that the Resource
Allocation Table (RAT) issues to the Reservation Station
(RS).

0EH 01H UOPS_ISSUED.STALL_CYCLES Counts cycles during which the Resource Allocation
Table (RAT) does not issue any uops to the reservation
station (RS) for the current thread.

CounterMask=1
Invert=1 CMSK1, INV

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-6 Vol. 3B

PERFORMANCE MONITORING EVENTS

0EH 02H UOPS_ISSUED.VECTOR_WIDTH_
MISMATCH

Counts the number of Blend Uops issued by the
Resource Allocation Table (RAT) to the reservation
station (RS) in order to preserve upper bits of vector
registers. Starting with the Skylake microarchitecture,
these Blend uops are needed since every Intel SSE
instruction executed in Dirty Upper State needs to
preserve bits 128-255 of the destination register. For
more information, refer to Mixing Intel AVX and Intel
SSE Code section of the Optimization Guide.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA uops being allocated. A uop is
generally considered SlowLea if it has 3 sources (e.g. 2
sources + immediate) regardless if as a result of LEA
instruction or not.

14H 01H ARITH.DIVIDER_ACTIVE Cycles when divide unit is busy executing divide or
square root operations. Accounts for integer and
floating-point operations.

CounterMask=1

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Counts the number of demand Data Read requests that
miss L2 cache. Only not rejected loads are counted.

24H 22H L2_RQSTS.RFO_MISS Counts the RFO (Read-for-Ownership) requests that
miss L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Counts L2 cache misses when fetching instructions.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H 38H L2_RQSTS.PF_MISS Counts requests from the L1/L2/L3 hardware
prefetchers or Load software prefetches that miss L2
cache.

24H 3FH L2_RQSTS.MISS All requests that miss L2 cache.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Counts the number of demand Data Read requests that
hit L2 cache. Only non rejected loads are counted.

24H 42H L2_RQSTS.RFO_HIT Counts the RFO (Read-for-Ownership) requests that hit
L2 cache.

24H 44H L2_RQSTS.CODE_RD_HIT Counts L2 cache hits when fetching instructions, code
reads.

24H D8H L2_RQSTS.PF_HIT Counts requests from the L1/L2/L3 hardware
prefetchers or Load software prefetches that hit L2
cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts the number of demand Data Read requests
(including requests from L1D hardware prefetchers).
These loads may hit or miss L2 cache. Only non rejected
loads are counted.

24H E2H L2_RQSTS.ALL_RFO Counts the total number of RFO (read for ownership)
requests to L2 cache. L2 RFO requests include both
L1D demand RFO misses as well as L1D RFO
prefetches.

24H E4H L2_RQSTS.ALL_CODE_RD Counts the total number of L2 code requests.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache.

24H F8H L2_RQSTS.ALL_PF Counts the total number of requests from the L2
hardware prefetchers.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-7

PERFORMANCE MONITORING EVENTS

24H FFH L2_RQSTS.REFERENCES All L2 requests.

28H 07H CORE_POWER.LVL0_TURBO_LIC
ENSE

Core cycles where the core was running with power-
delivery for baseline license level 0. This includes non-
AVX codes, SSE, AVX 128-bit, and low-current AVX
256-bit codes.

28H 18H CORE_POWER.LVL1_TURBO_LIC
ENSE

Core cycles where the core was running with power-
delivery for license level 1. This includes high current
AVX 256-bit instructions as well as low current AVX
512-bit instructions.

28H 20H CORE_POWER.LVL2_TURBO_LIC
ENSE

Core cycles where the core was running with power-
delivery for license level 2 (introduced in Skylake
Server microarchitecture). This includes high current
AVX 512-bit instructions.

28H 40H CORE_POWER.THROTTLE Core cycles the out-of-order engine was throttled due
to a pending power level request.

2EH 41H LONGEST_LAT_CACHE.MISS Counts core-originated cacheable requests that miss
the L3 cache (Longest Latency cache). Requests include
data and code reads, Reads-for-Ownership (RFOs),
speculative accesses and hardware prefetches from L1
and L2. It does not include all misses to the L3.

See Table 19-1.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

Counts core-originated cacheable requests to the L3
cache (Longest Latency cache). Requests include data
and code reads, Reads-for-Ownership (RFOs),
speculative accesses and hardware prefetches from L1
and L2. It does not include all accesses to the L3.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

This is an architectural event that counts the number of
thread cycles while the thread is not in a halt state. The
thread enters the halt state when it is running the HLT
instruction. The core frequency may change from time
to time due to power or thermal throttling. For this
reason, this event may have a changing ratio with
regards to wall clock time.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P_ANY

Core cycles when at least one thread on the physical
core is not in halt state.

AnyThread=1 AnyT

3CH 00H CPU_CLK_UNHALTED.RING0_TR
ANS

Counts when the Current Privilege Level (CPL)
transitions from ring 1, 2 or 3 to ring 0 (Kernel).

EdgeDetect=1
CounterMask=1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Core crystal clock cycles when the thread is unhalted. See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK_ANY

Core crystal clock cycles when at least one thread on
the physical core is unhalted.

AnyThread=1 AnyT

3CH 01H CPU_CLK_UNHALTED.REF_XCLK Core crystal clock cycles when the thread is unhalted. See Table 19-1.

3CH 01H CPU_CLK_UNHALTED.REF_XCLK
_ANY

Core crystal clock cycles when at least one thread on
the physical core is unhalted.

AnyThread=1 AnyT

3CH 02H CPU_CLK_THREAD_UNHALTED.
ONE_THREAD_ACTIVE

Core crystal clock cycles when this thread is unhalted
and the other thread is halted.

3CH 02H CPU_CLK_UNHALTED.ONE_THR
EAD_ACTIVE

Core crystal clock cycles when this thread is unhalted
and the other thread is halted.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-8 Vol. 3B

PERFORMANCE MONITORING EVENTS

48H 01H L1D_PEND_MISS.PENDING Counts duration of L1D miss outstanding, that is each
cycle number of Fill Buffers (FB) outstanding required
by Demand Reads. FB either is held by demand loads, or
it is held by non-demand loads and gets hit at least
once by demand. The valid outstanding interval is
defined until the FB deallocation by one of the
following ways: from FB allocation, if FB is allocated by
demand from the demand Hit FB, if it is allocated by
hardware or software prefetch.Note: In the L1D, a
Demand Read contains cacheable or noncacheable
demand loads, including ones causing cache-line splits
and reads due to page walks resulted from any request
type.

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES

Counts duration of L1D miss outstanding in cycles. CounterMask=1
CMSK1

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES_ANY

Cycles with L1D load Misses outstanding from any
thread on physical core.

CounterMask=1
AnyThread=1
CMSK1, AnyT

48H 02H L1D_PEND_MISS.FB_FULL Number of times a request needed a FB (Fill Buffer)
entry but there was no entry available for it. A request
includes cacheable/uncacheable demands that are load,
store or SW prefetch instructions.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Counts demand data stores that caused a page walk of
any page size (4K/2M/4M/1G). This implies it missed in
all TLB levels, but the walk need not have completed.

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Counts demand data stores that caused a completed
page walk (4K page size). This implies it missed in all
TLB levels. The page walk can end with or without a
fault.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Counts demand data stores that caused a completed
page walk (2M and 4M page sizes). This implies it
missed in all TLB levels. The page walk can end with or
without a fault.

49H 08H DTLB_STORE_MISSES.WALK_CO
MPLETED_1G

Counts store misses in all DTLB levels that cause a
completed page walk (1G page size). The page walk can
end with or without a fault.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Counts demand data stores that caused a completed
page walk of any page size (4K/2M/4M/1G). This implies
it missed in all TLB levels. The page walk can end with
or without a fault.

49H 10H DTLB_STORE_MISSES.WALK_PE
NDING

Counts 1 per cycle for each PMH that is busy with a
page walk for a store. EPT page walk duration are
excluded in Skylake microarchitecture.

49H 10H DTLB_STORE_MISSES.WALK_AC
TIVE

Counts cycles when at least one PMH (Page Miss
Handler) is busy with a page walk for a store.

CounterMask=1
CMSK1

49H 20H DTLB_STORE_MISSES.STLB_HIT Stores that miss the DTLB (Data TLB) and hit the STLB
(2nd Level TLB).

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-9

PERFORMANCE MONITORING EVENTS

4CH 01H LOAD_HIT_PRE.SW_PF Counts all not software-prefetch load dispatches that
hit the fill buffer (FB) allocated for the software
prefetch. It can also be incremented by some lock
instructions. So it should only be used with profiling so
that the locks can be excluded by ASM (Assembly File)
inspection of the nearby instructions.

4FH 10H EPT.WALK_PENDING Counts cycles for each PMH (Page Miss Handler) that is
busy with an EPT (Extended Page Table) walk for any
request type.

51H 01H L1D.REPLACEMENT Counts L1D data line replacements including
opportunistic replacements, and replacements that
require stall-for-replace or block-for-replace.

54H 01H TX_MEM.ABORT_CONFLICT Number of times a TSX line had a cache conflict.

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes.

54H 04H TX_MEM.ABORT_HLE_STORE_T
O_ELIDED_LOCK

Number of times a TSX Abort was triggered due to a
non-release/commit store to lock.

54H 08H TX_MEM.ABORT_HLE_ELISION_
BUFFER_NOT_EMPTY

Number of times a TSX Abort was triggered due to
commit but Lock Buffer not empty.

54H 10H TX_MEM.ABORT_HLE_ELISION_
BUFFER_MISMATCH

Number of times a TSX Abort was triggered due to
release/commit but data and address mismatch.

54H 20H TX_MEM.ABORT_HLE_ELISION_
BUFFER_UNSUPPORTED_ALIGN
MENT

Number of times a TSX Abort was triggered due to
attempting an unsupported alignment from Lock
Buffer.

54H 40H TX_MEM.HLE_ELISION_BUFFER
_FULL

Number of times we could not allocate Lock Buffer.

5DH 01H TX_EXEC.MISC1 Unfriendly TSX abort triggered by a flowmarker.

5DH 02H TX_EXEC.MISC2 Unfriendly TSX abort triggered by a vzeroupper
instruction.

5DH 04H TX_EXEC.MISC3 Unfriendly TSX abort triggered by a nest count that is
too deep.

5DH 08H TX_EXEC.MISC4 RTM region detected inside HLE.

5DH 10H TX_EXEC.MISC5 Counts the number of times an HLE XACQUIRE
instruction was executed inside an RTM transactional
region.

5EH 01H RS_EVENTS.EMPTY_CYCLES Counts cycles during which the reservation station (RS)
is empty for the thread.; Note: In ST-mode, not active
thread should drive 0. This is usually caused by
severely costly branch mispredictions, or allocator/FE
issues.

5EH 01H RS_EVENTS.EMPTY_END Counts end of periods where the Reservation Station
(RS) was empty. Could be useful to precisely locate
front-end Latency Bound issues.

EdgeDetect=1
CounterMask=1
Invert=1 CMSK1, INV

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-10 Vol. 3B

PERFORMANCE MONITORING EVENTS

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Counts the number of offcore outstanding Demand
Data Read transactions in the super queue (SQ) every
cycle. A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor. See the corresponding
Umask under OFFCORE_REQUESTS. Note: A prefetch
promoted to Demand is counted from the promotion
point.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_D
ATA_RD

Counts cycles when offcore outstanding Demand Data
Read transactions are present in the super queue (SQ).
A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation).

CounterMask=1
CMSK1

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD_GE_6

Cycles with at least 6 offcore outstanding Demand Data
Read transactions in uncore queue.

CounterMask=6
CMSK6

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Counts the number of offcore outstanding Code Reads
transactions in the super queue every cycle. The
'Offcore outstanding' state of the transaction lasts
from the L2 miss until the sending transaction
completion to requestor (SQ deallocation). See the
corresponding Umask under OFFCORE_REQUESTS.

CounterMask=1
CMSK1

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_C
ODE_RD

Counts the number of offcore outstanding Code Reads
transactions in the super queue every cycle. The
'Offcore outstanding' state of the transaction lasts
from the L2 miss until the sending transaction
completion to requestor (SQ deallocation). See the
corresponding Umask under OFFCORE_REQUESTS.

CMSK1

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Counts the number of offcore outstanding RFO (store)
transactions in the super queue (SQ) every cycle. A
transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation). See
corresponding Umask under OFFCORE_REQUESTS.

CounterMask=1
CMSK1

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_R
FO

Counts the number of offcore outstanding demand rfo
Reads transactions in the super queue every cycle. The
'Offcore outstanding' state of the transaction lasts
from the L2 miss until the sending transaction
completion to requestor (SQ deallocation). See the
corresponding Umask under OFFCORE_REQUESTS.

CMSK1

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Counts the number of offcore outstanding cacheable
Core Data Read transactions in the super queue every
cycle. A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation). See
corresponding Umask under OFFCORE_REQUESTS.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DATA_RD

Counts cycles when offcore outstanding cacheable Core
Data Read transactions are present in the super queue.
A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation). See
corresponding Umask under OFFCORE_REQUESTS.

CounterMask=1
CMSK1

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-11

PERFORMANCE MONITORING EVENTS

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD

Counts number of Offcore outstanding Demand Data
Read requests that miss L3 cache in the superQ every
cycle.

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_L3_MISS_D
EMAND_DATA_RD

Cycles with at least 1 Demand Data Read requests who
miss L3 cache in the superQ.

CounterMask=1
CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD_GE_6

Cycles with at least 6 Demand Data Read requests that
miss L3 cache in the superQ.

CounterMask=6
CMSK6

79H 04H IDQ.MITE_UOPS Counts the number of uops delivered to Instruction
Decode Queue (IDQ) from the MITE path. Counting
includes uops that may 'bypass' the IDQ. This also
means that uops are not being delivered from the
Decode Stream Buffer (DSB).

79H 04H IDQ.MITE_CYCLES Counts cycles during which uops are being delivered to
Instruction Decode Queue (IDQ) from the MITE path.
Counting includes uops that may 'bypass' the IDQ.

CounterMask=1
CMSK1

79H 08H IDQ.DSB_UOPS Counts the number of uops delivered to Instruction
Decode Queue (IDQ) from the Decode Stream Buffer
(DSB) path. Counting includes uops that may ‘bypass’
the IDQ.

79H 08H IDQ.DSB_CYCLES Counts cycles during which uops are being delivered to
Instruction Decode Queue (IDQ) from the Decode
Stream Buffer (DSB) path. Counting includes uops that
may 'bypass' the IDQ.

CounterMask=1
CMSK1

79H 10H IDQ.MS_DSB_CYCLES Counts cycles during which uops initiated by Decode
Stream Buffer (DSB) are being delivered to Instruction
Decode Queue (IDQ) while the Microcode Sequencer
(MS) is busy. Counting includes uops that may 'bypass'
the IDQ.

CounterMask=1

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts the number of cycles 4 uops were delivered to
Instruction Decode Queue (IDQ) from the Decode
Stream Buffer (DSB) path. Count includes uops that may
'bypass' the IDQ.

CounterMask=4
CMSK4

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts the number of cycles uops were delivered to
Instruction Decode Queue (IDQ) from the Decode
Stream Buffer (DSB) path. Count includes uops that may
'bypass' the IDQ.

CounterMask=1
CMSK1

79H 20H IDQ.MS_MITE_UOPS Counts the number of uops initiated by MITE and
delivered to Instruction Decode Queue (IDQ) while the
Microcode Sequencer (MS) is busy. Counting includes
uops that may 'bypass' the IDQ.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts the number of cycles 4 uops were delivered to
the Instruction Decode Queue (IDQ) from the MITE
(legacy decode pipeline) path. Counting includes uops
that may 'bypass' the IDQ. During these cycles uops are
not being delivered from the Decode Stream Buffer
(DSB).

CounterMask=4
CMSK4

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-12 Vol. 3B

PERFORMANCE MONITORING EVENTS

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts the number of cycles uops were delivered to
the Instruction Decode Queue (IDQ) from the MITE
(legacy decode pipeline) path. Counting includes uops
that may 'bypass' the IDQ. During these cycles uops are
not being delivered from the Decode Stream Buffer
(DSB).

CounterMask=1
CMSK1

79H 30H IDQ.MS_CYCLES Counts cycles during which uops are being delivered to
Instruction Decode Queue (IDQ) while the Microcode
Sequencer (MS) is busy. Counting includes uops that
may 'bypass' the IDQ. Uops maybe initiated by Decode
Stream Buffer (DSB) or MITE.

CounterMask=1
CMSK1

79H 30H IDQ.MS_SWITCHES Number of switches from DSB (Decode Stream Buffer)
or MITE (legacy decode pipeline) to the Microcode
Sequencer.

EdgeDetect=1
CounterMask=1
EDGE

79H 30H IDQ.MS_UOPS Counts the total number of uops delivered by the
Microcode Sequencer (MS). Any instruction over 4 uops
will be delivered by the MS. Some instructions such as
transcendentals may additionally generate uops from
the MS.

80H 04H ICACHE_16B.IFDATA_STALL Cycles where a code line fetch is stalled due to an L1
instruction cache miss. The legacy decode pipeline
works at a 16 Byte granularity.

83H 01H ICACHE_64B.IFTAG_HIT Instruction fetch tag lookups that hit in the instruction
cache (L1I). Counts at 64-byte cache-line granularity.

83H 02H ICACHE_64B.IFTAG_MISS Instruction fetch tag lookups that miss in the
instruction cache (L1I). Counts at 64-byte cache-line
granularity.

83H 04H ICACHE_64B.IFTAG_STALL Cycles where a code fetch is stalled due to L1
instruction cache tag miss.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Counts page walks of any page size (4K/2M/4M/1G)
caused by a code fetch. This implies it missed in the
ITLB and further levels of TLB, but the walk need not
have completed.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Counts completed page walks (4K page size) caused by
a code fetch. This implies it missed in the ITLB and
further levels of TLB. The page walk can end with or
without a fault.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Counts completed page walks of any page size
(4K/2M/4M/1G) caused by a code fetch. This implies it
missed in the ITLB and further levels of TLB. The page
walk can end with or without a fault.

85H 08H ITLB_MISSES.WALK_COMPLETE
D_1G

Counts store misses in all DTLB levels that cause a
completed page walk (1G page size). The page walk can
end with or without a fault.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Counts completed page walks (2M and 4M page sizes)
caused by a code fetch. This implies it missed in the
ITLB and further levels of TLB. The page walk can end
with or without a fault.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-13

PERFORMANCE MONITORING EVENTS

85H 10H ITLB_MISSES.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a
page walk for an instruction fetch request. EPT page
walk duration are excluded in Skylake
microarchitecture.

85H 10H ITLB_MISSES.WALK_ACTIVE Cycles when at least one PMH is busy with a page walk
for code (instruction fetch) request. EPT page walk
duration are excluded in Skylake microarchitecture.

CounterMask=1

85H 20H ITLB_MISSES.STLB_HIT Instruction fetch requests that miss the ITLB and hit
the STLB.

87H 01H ILD_STALL.LCP Counts cycles that the Instruction Length decoder (ILD)
stalls occurred due to dynamically changing prefix
length of the decoded instruction (by operand size
prefix instruction 0x66, address size prefix instruction
0x67 or REX.W for Intel64). Count is proportional to the
number of prefixes in a 16B-line. This may result in a
three-cycle penalty for each LCP (Length changing
prefix) in a 16-byte chunk.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Counts the number of uops not delivered to Resource
Allocation Table (RAT) per thread adding “4 – x” ? when
Resource Allocation Table (RAT) is not stalled and
Instruction Decode Queue (IDQ) delivers x uops to
Resource Allocation Table (RAT) (where x belongs to
{0,1,2,3}). Counting does not cover cases when: a. IDQ-
Resource Allocation Table (RAT) pipe serves the other
thread. b. Resource Allocation Table (RAT) is stalled for
the thread (including uop drops and clear BE
conditions). c. Instruction Decode Queue (IDQ) delivers
four uops.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_0_UOPS_DELIV.CORE

Counts, on the per-thread basis, cycles when no uops
are delivered to Resource Allocation Table (RAT).
IDQ_Uops_Not_Delivered.core =4.

CounterMask=4
CMSK4

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_1_UOP_DELIV.CORE

Counts, on the per-thread basis, cycles when less than
1 uop is delivered to Resource Allocation Table (RAT).
IDQ_Uops_Not_Delivered.core >= 3.

CounterMask=3
CMSK3

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_2_UOP_DELIV.CORE

Cycles with less than 2 uops delivered by the front end. CounterMask=2
CMSK2

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_3_UOP_DELIV.CORE

Cycles with less than 3 uops delivered by the front end. CounterMask=1
CMSK1

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_FE_WAS_OK

Counts cycles FE delivered 4 uops or Resource
Allocation Table (RAT) was stalling FE.

CounterMask=1
Invert=1 CMSK, INV

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 1.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 2.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-14 Vol. 3B

PERFORMANCE MONITORING EVENTS

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 3.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 4.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 5.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 6.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 7.

A2H 01H RESOURCE_STALLS.ANY Counts resource-related stall cycles. Reasons for stalls
can be as follows: a. *any* u-arch structure got full (LB,
SB, RS, ROB, BOB, LM, Physical Register Reclaim Table
(PRRT), or Physical History Table (PHT) slots). b. *any*
u-arch structure got empty (like INT/SIMD FreeLists). c.
FPU control word (FPCW), MXCSR.and others. This
counts cycles that the pipeline back end blocked uop
delivery from the front end.

A2H 08H RESOURCE_STALLS.SB Counts allocation stall cycles caused by the store buffer
(SB) being full. This counts cycles that the pipeline back
end blocked uop delivery from the front end.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_MI
SS

Cycles while L2 cache miss demand load is outstanding. CounterMask=1
CMSK1

A3H 02H CYCLE_ACTIVITY.CYCLES_L3_MI
SS

Cycles while L3 cache miss demand load is outstanding. CounterMask=2
CMSK2

A3H 04H CYCLE_ACTIVITY.STALLS_TOTAL Total execution stalls. CounterMask=4
CMSK4

A3H 05H CYCLE_ACTIVITY.STALLS_L2_MI
SS

Execution stalls while L2 cache miss demand load is
outstanding.

CounterMask=5
CMSK5

A3H 06H CYCLE_ACTIVITY.STALLS_L3_MI
SS

Execution stalls while L3 cache miss demand load is
outstanding.

CounterMask=6
CMSK6

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_M
ISS

Cycles while L1 cache miss demand load is outstanding. CounterMask=8
CMSK8

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_M
ISS

Execution stalls while L1 cache miss demand load is
outstanding.

CounterMask=12
CMSK12

A3H 10H CYCLE_ACTIVITY.CYCLES_MEM_
ANY

Cycles while memory subsystem has an outstanding
load.

CounterMask=16
CMSK16

A3H 14H CYCLE_ACTIVITY.STALLS_MEM_
ANY

Execution stalls while memory subsystem has an
outstanding load.

CounterMask=20
CMSK20

A6H 01H EXE_ACTIVITY.EXE_BOUND_0_P
ORTS

Counts cycles during which no uops were executed on
all ports and Reservation Station (RS) was not empty.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-15

PERFORMANCE MONITORING EVENTS

A6H 02H EXE_ACTIVITY.1_PORTS_UTIL Counts cycles during which a total of 1 uop was
executed on all ports and Reservation Station (RS) was
not empty.

A6H 04H EXE_ACTIVITY.2_PORTS_UTIL Counts cycles during which a total of 2 uops were
executed on all ports and Reservation Station (RS) was
not empty.

A6H 08H EXE_ACTIVITY.3_PORTS_UTIL Cycles total of 3 uops are executed on all ports and
Reservation Station (RS) was not empty.

A6H 10H EXE_ACTIVITY.4_PORTS_UTIL Cycles total of 4 uops are executed on all ports and
Reservation Station (RS) was not empty.

A6H 40H EXE_ACTIVITY.BOUND_ON_STO
RES

Cycles where the Store Buffer was full and no
outstanding load.

A8H 01H LSD.UOPS Number of uops delivered to the back-end by the LSD
(Loop Stream Detector).

A8H 01H LSD.CYCLES_ACTIVE Counts the cycles when at least one uop is delivered by
the LSD (Loop-stream detector).

CounterMask=1
CMSK1

A8H 01H LSD.CYCLES_4_UOPS Counts the cycles when 4 uops are delivered by the
LSD (Loop-stream detector).

CounterMask=4
CMSK4

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

Counts Decode Stream Buffer (DSB)-to-MITE switch
true penalty cycles. These cycles do not include uops
routed through because of the switch itself, for
example, when Instruction Decode Queue (IDQ) pre-
allocation is unavailable, or Instruction Decode Queue
(IDQ) is full. SBD-to-MITE switch true penalty cycles
happen after the merge mux (MM) receives Decode
Stream Buffer (DSB) Sync-indication until receiving the
first MITE uop. MM is placed before Instruction Decode
Queue (IDQ) to merge uops being fed from the MITE
and Decode Stream Buffer (DSB) paths. Decode Stream
Buffer (DSB) inserts the Sync-indication whenever a
Decode Stream Buffer (DSB)-to-MITE switch
occurs.Penalty: A Decode Stream Buffer (DSB) hit
followed by a Decode Stream Buffer (DSB) miss can
cost up to six cycles in which no uops are delivered to
the IDQ. Most often, such switches from the Decode
Stream Buffer (DSB) to the legacy pipeline cost 0 to 2
cycles.

AEH 01H ITLB.ITLB_FLUSH Counts the number of flushes of the big or small ITLB
pages. Counting include both TLB Flush (covering all
sets) and TLB Set Clear (set-specific).

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Counts the Demand Data Read requests sent to uncore.
Use it in conjunction with
OFFCORE_REQUESTS_OUTSTANDING to determine
average latency in the uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Counts both cacheable and non-cacheable code read
requests.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Counts the demand RFO (read for ownership) requests
including regular RFOs, locks, ItoM.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-16 Vol. 3B

PERFORMANCE MONITORING EVENTS

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Counts the demand and prefetch data reads. All Core
Data Reads include cacheable 'Demands' and L2
prefetchers (not L3 prefetchers). Counting also covers
reads due to page walks resulted from any request
type.

B0H 10H OFFCORE_REQUESTS.L3_MISS_
DEMAND_DATA_RD

Demand Data Read requests who miss L3 cache.

B0H 80H OFFCORE_REQUESTS.ALL_REQU
ESTS

Counts memory transactions reached the super queue
including requests initiated by the core, all L3
prefetches, page walks, etc.

B1H 01H UOPS_EXECUTED.THREAD Number of uops to be executed per-thread each cycle.

B1H 01H UOPS_EXECUTED.STALL_CYCLE
S

Counts cycles during which no uops were dispatched
from the Reservation Station (RS) per thread.

CounterMask=1
Invert=1 CMSK, INV

B1H 01H UOPS_EXECUTED.CYCLES_GE_1
_UOP_EXEC

Cycles where at least 1 uop was executed per-thread. CounterMask=1
CMSK1

B1H 01H UOPS_EXECUTED.CYCLES_GE_2
_UOPS_EXEC

Cycles where at least 2 uops were executed per-thread. CounterMask=2
CMSK2

B1H 01H UOPS_EXECUTED.CYCLES_GE_3
_UOPS_EXEC

Cycles where at least 3 uops were executed per-thread. CounterMask=3
CMSK3

B1H 01H UOPS_EXECUTED.CYCLES_GE_4
_UOPS_EXEC

Cycles where at least 4 uops were executed per-thread. CounterMask=4
CMSK4

B1H 02H UOPS_EXECUTED.CORE Number of uops executed from any thread.

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_1

Cycles at least 1 micro-op is executed from any thread
on physical core.

CounterMask=1
CMSK1

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_2

Cycles at least 2 micro-op is executed from any thread
on physical core.

CounterMask=2
CMSK2

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_3

Cycles at least 3 micro-op is executed from any thread
on physical core.

CounterMask=3
CMSK3

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_4

Cycles at least 4 micro-op is executed from any thread
on physical core.

CounterMask=4
CMSK4

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_NONE

Cycles with no micro-ops executed from any thread on
physical core.

CounterMask=1
Invert=1 CMSK1, INV

B1H 10H UOPS_EXECUTED.X87 Counts the number of x87 uops executed.

B2H 01H OFFCORE_REQUESTS_BUFFER.S
Q_FULL

Counts the number of cases when the offcore requests
buffer cannot take more entries for the core. This can
happen when the superqueue does not contain eligible
entries, or when L1D writeback pending FIFO requests
is full. Note: Writeback pending FIFO has six entries.

BDH 01H TLB_FLUSH.DTLB_THREAD Counts the number of DTLB flush attempts of the
thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Counts the number of any STLB flush attempts (such as
entire, VPID, PCID, InvPage, CR3 write, etc.).

C0H 00H INST_RETIRED.ANY_P Counts the number of instructions (EOMs) retired.
Counting covers macro-fused instructions individually
(that is, increments by two).

See Table 19-1.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-17

PERFORMANCE MONITORING EVENTS

C0H 01H INST_RETIRED.PREC_DIST A version of INST_RETIRED that allows for a more
unbiased distribution of samples across instructions
retired. It utilizes the Precise Distribution of
Instructions Retired (PDIR) feature to mitigate some
bias in how retired instructions get sampled.

Precise event capable
Requires PEBS on
General Counter
1(PDIR).

C1H 3FH OTHER_ASSISTS.ANY Number of times a microcode assist is invoked by HW
other than FP-assist. Examples include AD (page Access
Dirty) and AVX* related assists.

C2H 01H UOPS_RETIRED.STALL_CYCLES This is a non-precise version (that is, does not use
PEBS) of the event that counts cycles without actually
retired uops.

CounterMask=1
Invert=1 CMSK1, INV

C2H 01H UOPS_RETIRED.TOTAL_CYCLES Number of cycles using always true condition (uops_ret
< 16) applied to non PEBS uops retired event.

CounterMask=10
Invert=1 CMSK10,
INV

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the retirement slots used.

C3H 01H MACHINE_CLEARS.COUNT Number of machine clears (nukes) of any type. EdgeDetect=1
CounterMask=1
CMSK1, EDG

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of memory ordering Machine Clears
detected. Memory Ordering Machine Clears can result
from one of the following: a. memory disambiguation, b.
external snoop, or c. cross SMT-HW-thread snoop
(stores) hitting load buffer.

C3H 04H MACHINE_CLEARS.SMC Counts self-modifying code (SMC) detected, which
causes a machine clear.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Counts all (macro) branch instructions retired. Precise event capable.

See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

This is a non-precise version (that is, does not use
PEBS) of the event that counts conditional branch
instructions retired.

Precise event capable.
PS

C4H 02H BR_INST_RETIRED.NEAR_CALL This is a non-precise version (that is, does not use
PEBS) of the event that counts both direct and indirect
near call instructions retired.

Precise event capable.
PS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

This is a non-precise version (that is, does not use
PEBS) of the event that counts return instructions
retired.

Precise event capable.
PS

C4H 10H BR_INST_RETIRED.NOT_TAKEN This is a non-precise version (that is, does not use
PEBS) of the event that counts not taken branch
instructions retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

This is a non-precise version (that is, does not use
PEBS) of the event that counts taken branch
instructions retired.

Precise event capable.
PS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

This is a non-precise version (that is, does not use
PEBS) of the event that counts far branch instructions
retired.

Precise event capable.
PS

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-18 Vol. 3B

PERFORMANCE MONITORING EVENTS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Counts all the retired branch instructions that were
mispredicted by the processor. A branch misprediction
occurs when the processor incorrectly predicts the
destination of the branch. When the misprediction is
discovered at execution, all the instructions executed in
the wrong (speculative) path must be discarded, and
the processor must start fetching from the correct
path.

Precise event capable.

See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

This is a non-precise version (that is, does not use
PEBS) of the event that counts mispredicted conditional
branch instructions retired.

Precise event capable.
PS

C5H 02H BR_MISP_RETIRED.NEAR_CALL Counts both taken and not taken retired mispredicted
direct and indirect near calls, including both register and
memory indirect.

Precise event capable.

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that were
mispredicted and taken.

Precise event capable.
PS

C6H 01H FRONTEND_RETIRED.DSB_MISS Counts retired Instructions that experienced DSB
(Decode stream buffer, i.e. the decoded instruction-
cache) miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.L1I_MISS Retired Instructions who experienced Instruction L1
Cache true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.L2_MISS Retired Instructions who experienced Instruction L2
Cache true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.ITLB_MISS Counts retired Instructions that experienced iTLB
(Instruction TLB) true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.STLB_MIS
S

Counts retired Instructions that experienced STLB (2nd
level TLB) true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of 2
cycles which was not interrupted by a back-end stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_4

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of 4
cycles which was not interrupted by a back-end stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_8

Counts retired instructions that are delivered to the
back end after a front-end stall of at least 8 cycles.
During this period the front end delivered no uops.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_16

Counts retired instructions that are delivered to the
back end after a front-end stall of at least 16 cycles.
During this period the front end delivered no uops.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_32

Counts retired instructions that are delivered to the
back end after a front-end stall of at least 32 cycles.
During this period the front end delivered no uops.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_64

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
64 cycles which was not interrupted by a back-end
stall.

Precise event capable.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-19

PERFORMANCE MONITORING EVENTS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_128

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
128 cycles which was not interrupted by a back-end
stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_256

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
256 cycles which was not interrupted by a back-end
stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_512

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
512 cycles which was not interrupted by a back-end
stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_1

Counts retired instructions that are delivered to the
back end after the front end had at least 1 bubble-slot
for a period of 2 cycles. A bubble-slot is an empty issue-
pipeline slot while there was no RAT stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_2

Retired instructions that are fetched after an interval
where the front end had at least 2 bubble-slots for a
period of 2 cycles which was not interrupted by a back-
end stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_3

Retired instructions that are fetched after an interval
where the front end had at least 3 bubble-slots for a
period of 2 cycles which was not interrupted by a back-
end stall.

Precise event capable.

C7H 01H FP_ARITH_INST_RETIRED.SCAL
AR_DOUBLE

Number of SSE/AVX computational scalar double
precision floating-point instructions retired. Each count
represents 1 computation. Applies to SSE* and AVX*
scalar double precision floating-point instructions: ADD
SUB MUL DIV MIN MAX SQRT FM(N)ADD/SUB.
FM(N)ADD/SUB instructions count twice as they
perform multiple calculations per element.

Software may treat
each count as one DP
FLOP.

C7H 02H FP_ARITH_INST_RETIRED.SCAL
AR_SINGLE

Number of SSE/AVX computational scalar single
precision floating-point instructions retired. Each count
represents 1 computation. Applies to SSE* and AVX*
scalar single precision floating-point instructions: ADD
SUB MUL DIV MIN MAX RCP RSQRT SQRT
FM(N)ADD/SUB. FM(N)ADD/SUB instructions count
twice as they perform multiple calculations per
element.

Software may treat
each count as one SP
FLOP.

C7H 04H FP_ARITH_INST_RETIRED.128B
_PACKED_DOUBLE

Number of SSE/AVX computational 128-bit packed
double precision floating-point instructions retired.
Each count represents 2 computations. Applies to SSE*
and AVX* packed double precision floating-point
instructions: ADD SUB MUL DIV MIN MAX SQRT DPP
FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions
count twice as they perform multiple calculations per
element.

Software may treat
each count as two DP
FLOPs.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-20 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 08H FP_ARITH_INST_RETIRED.128B
_PACKED_SINGLE

Number of SSE/AVX computational 128-bit packed
single precision floating-point instructions retired. Each
count represents 4 computations. Applies to SSE* and
AVX* packed single precision floating-point
instructions: ADD SUB MUL DIV MIN MAX RCP RSQRT
SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB
instructions count twice as they perform multiple
calculations per element.

Software may treat
each count as four SP
FLOPs.

C7H 10H FP_ARITH_INST_RETIRED.256B
_PACKED_DOUBLE

Number of SSE/AVX computational 256-bit packed
double precision floating-point instructions retired.
Each count represents 4 computations. Applies to SSE*
and AVX* packed double precision floating-point
instructions: ADD SUB MUL DIV MIN MAX SQRT DPP
FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions
count twice as they perform multiple calculations per
element.

Software may treat
each count as four DP
FLOPs.

C7H 20H FP_ARITH_INST_RETIRED.256B
_PACKED_SINGLE

Number of SSE/AVX computational 256-bit packed
single precision floating-point instructions retired. Each
count represents 8 computations. Applies to SSE* and
AVX* packed single precision floating-point
instructions: ADD SUB MUL DIV MIN MAX RCP RSQRT
SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB
instructions count twice as they perform multiple
calculations per element.

Software may treat
each count as eight
SP FLOPs.

C7H 40H FP_ARITH_INST_RETIRED.512B
_PACKED_DOUBLE

Number of Packed Double-Precision FP arithmetic
instructions (use operation multiplier of 8).

Only applicable when
AVX-512 is enabled.

C7H 80H FP_ARITH_INST_RETIRED.512B
_PACKED_SINGLE

Number of Packed Single-Precision FP arithmetic
instructions (use operation multiplier of 16).

Only applicable when
AVX-512 is enabled.

C8H 01H HLE_RETIRED.START Number of times we entered an HLE region. Does not
count nested transactions.

C8H 02H HLE_RETIRED.COMMIT Number of times HLE commit succeeded.

C8H 04H HLE_RETIRED.ABORTED Number of times HLE abort was triggered. Precise event capable.

C8H 08H HLE_RETIRED.ABORTED_MEM Number of times an HLE execution aborted due to
various memory events (e.g., read/write capacity and
conflicts).

C8H 10H HLE_RETIRED.ABORTED_TIMER Number of times an HLE execution aborted due to
hardware timer expiration.

C8H 20H HLE_RETIRED.ABORTED_UNFRI
ENDLY

Number of times an HLE execution aborted due to HLE-
unfriendly instructions and certain unfriendly events
(such as AD assists etc.).

C8H 40H HLE_RETIRED.ABORTED_MEMT
YPE

Number of times an HLE execution aborted due to
incompatible memory type.

C8H 80H HLE_RETIRED.ABORTED_EVENT
S

Number of times an HLE execution aborted due to
unfriendly events (such as interrupts).

C9H 01H RTM_RETIRED.START Number of times we entered an RTM region. Does not
count nested transactions.

C9H 02H RTM_RETIRED.COMMIT Number of times RTM commit succeeded.

C9H 04H RTM_RETIRED.ABORTED Number of times RTM abort was triggered. Precise event capable.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-21

PERFORMANCE MONITORING EVENTS

C9H 08H RTM_RETIRED.ABORTED_MEM Number of times an RTM execution aborted due to
various memory events (e.g. read/write capacity and
conflicts).

C9H 10H RTM_RETIRED.ABORTED_TIMER Number of times an RTM execution aborted due to
uncommon conditions.

C9H 20H RTM_RETIRED.ABORTED_UNFRI
ENDLY

Number of times an RTM execution aborted due to
HLE-unfriendly instructions.

C9H 40H RTM_RETIRED.ABORTED_MEMT
YPE

Number of times an RTM execution aborted due to
incompatible memory type.

C9H 80H RTM_RETIRED.ABORTED_EVENT
S

Number of times an RTM execution aborted due to
none of the previous 4 categories (e.g. interrupt).

CAH 1EH FP_ASSIST.ANY Counts cycles with any input and output SSE or x87 FP
assist. If an input and output assist are detected on the
same cycle the event increments by 1.

CounterMask=1
CMSK1

CBH 01H HW_INTERRUPTS.RECEIVED Counts the number of hardware interruptions received
by the processor.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Increments when an entry is added to the Last Branch
Record (LBR) array (or removed from the array in case
of RETURNs in call stack mode). The event requires LBR
enable via IA32_DEBUGCTL MSR and branch type
selection via MSR_LBR_SELECT.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_4

Counts loads when the latency from first dispatch to
completion is greater than 4 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_8

Counts loads when the latency from first dispatch to
completion is greater than 8 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_16

Counts loads when the latency from first dispatch to
completion is greater than 16 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_32

Counts loads when the latency from first dispatch to
completion is greater than 32 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_64

Counts loads when the latency from first dispatch to
completion is greater than 64 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_128

Counts loads when the latency from first dispatch to
completion is greater than 128 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_256

Counts loads when the latency from first dispatch to
completion is greater than 256 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_512

Counts loads when the latency from first dispatch to
completion is greater than 512 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

D0H 11H MEM_INST_RETIRED.STLB_MISS
_LOADS

Retired load instructions that miss the STLB. Precise event capable.
PSDLA

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-22 Vol. 3B

PERFORMANCE MONITORING EVENTS

D0H 12H MEM_INST_RETIRED.STLB_MISS
_STORES

Retired store instructions that miss the STLB. Precise event capable.
PSDLA

D0H 21H MEM_INST_RETIRED.LOCK_LOA
DS

Retired load instructions with locked access. Precise event capable.
PSDLA

D0H 41H MEM_INST_RETIRED.SPLIT_LOA
DS

Counts retired load instructions that split across a
cacheline boundary.

Precise event capable.
PSDLA

D0H 42H MEM_INST_RETIRED.SPLIT_STO
RES

Counts retired store instructions that split across a
cacheline boundary.

Precise event capable.
PSDLA

D0H 81H MEM_INST_RETIRED.ALL_LOAD
S

All retired load instructions. Precise event capable.
PSDLA

D0H 82H MEM_INST_RETIRED.ALL_STOR
ES

All retired store instructions. Precise event capable.
PSDLA

D1H 01H MEM_LOAD_RETIRED.L1_HIT Counts retired load instructions with at least one uop
that hit in the L1 data cache. This event includes all SW
prefetches and lock instructions regardless of the data
source.

Precise event capable.
PSDLA

D1H 02H MEM_LOAD_RETIRED.L2_HIT Retired load instructions with L2 cache hits as data
sources.

Precise event capable.
PSDLA

D1H 04H MEM_LOAD_RETIRED.L3_HIT Counts retired load instructions with at least one uop
that hit in the L3 cache.

Precise event capable.
PSDLA

D1H 08H MEM_LOAD_RETIRED.L1_MISS Counts retired load instructions with at least one uop
that missed in the L1 cache.

Precise event capable.
PSDLA

D1H 10H MEM_LOAD_RETIRED.L2_MISS Retired load instructions missed L2 cache as data
sources.

Precise event capable.
PSDLA

D1H 20H MEM_LOAD_RETIRED.L3_MISS Counts retired load instructions with at least one uop
that missed in the L3 cache.

Precise event capable.
PSDLA

D1H 40H MEM_LOAD_RETIRED.FB_HIT Counts retired load instructions with at least one uop
was load missed in L1 but hit FB (Fill Buffers) due to
preceding miss to the same cache line with data not
ready.

Precise event capable.
PSDLA

D2H 01H MEM_LOAD_L3_HIT_RETIRED.X
SNP_MISS

Retired load instructions which data sources were L3
hit and cross-core snoop missed in on-pkg core cache.

Precise event capable.
PSDLA

D2H 02H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HIT

Retired load instructions which data sources were L3
and cross-core snoop hits in on-pkg core cache.

Precise event capable.
PSDLA

D2H 04H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HITM

Retired load instructions which data sources were HitM
responses from shared L3.

Precise event capable.
PSDLA

D2H 08H MEM_LOAD_L3_HIT_RETIRED.X
SNP_NONE

Retired load instructions which data sources were hits
in L3 without snoops required.

Precise event capable.
PSDLA

D3H 01H MEM_LOAD_L3_MISS_RETIRED.
LOCAL_DRAM

Retired load instructions which data sources missed L3
but serviced from local DRAM.

Precise event capable.

D3H 02H MEM_LOAD_L3_MISS_RETIRED.
REMOTE_DRAM

Retired load instructions which data sources missed L3
but serviced from remote dram.

Precise event capable.

D3H 04H MEM_LOAD_L3_MISS_RETIRED.
REMOTE_HITM

Retired load instructions whose data sources was
remote HITM.

Precise event capable.

D3H 08H MEM_LOAD_L3_MISS_RETIRED.
REMOTE_FWD

Retired load instructions whose data sources was
forwarded from a remote cache.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-23

PERFORMANCE MONITORING EVENTS

19.3 PERFORMANCE MONITORING EVENTS FOR 6TH GENERATION INTEL®
CORE™ PROCESSOR AND 7TH GENERATION INTEL® CORE™ PROCESSOR

6th Generation Intel® Core™ processors are based on the Skylake microarchitecture. They support the architec-
tural performance monitoring events listed in Table 19-1. Fixed counters in the core PMU support the architecture
events defined in Table 19-2. Model-specific performance monitoring events in the processor core are listed in
Table 19-4. The events in Table 19-4 apply to processors with CPUID signature of DisplayFamily_DisplayModel
encoding with the following values: 06_4EH and 06_5EH. Table 19-10 lists performance events supporting Intel
TSX (see Section 18.3.6.5) and the events are applicable to processors based on Skylake microarchitecture. Where
Skylake microarchitecture implements TSX-related event semantics that differ from Table 19-10, they are listed in
Table 19-5.

7th Generation Intel® Core™ processors are based on the Kaby Lake microarchitecture. Model-specific perfor-
mance monitoring events in the processor core are listed in Table 19-4. The events in Table 19-4 apply to proces-
sors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_8EH and
06_9EH.

D4H 04H MEM_LOAD_MISC_RETIRED.UC Retired instructions with at least 1 uncacheable load or
lock.

Precise event capable.

E6H 01H BACLEARS.ANY Counts the number of times the front-end is resteered
when it finds a branch instruction in a fetch line. This
occurs for the first time a branch instruction is fetched
or when the branch is not tracked by the BPU (Branch
Prediction Unit) anymore.

F0H 40H L2_TRANS.L2_WB Counts L2 writebacks that access L2 cache.

F1H 1FH L2_LINES_IN.ALL Counts the number of L2 cache lines filling the L2.
Counting does not cover rejects.

F2H 01H L2_LINES_OUT.SILENT Counts the number of lines that are silently dropped by
L2 cache when triggered by an L2 cache fill. These lines
are typically in Shared state. A non-threaded event.

F2H 02H L2_LINES_OUT.NON_SILENT Counts the number of lines that are evicted by L2 cache
when triggered by an L2 cache fill. Those lines can be
either in modified state or clean state. Modified lines
may either be written back to L3 or directly written to
memory and not allocated in L3. Clean lines may either
be allocated in L3 or dropped.

F2H 04H L2_LINES_OUT.USELESS_PREF Counts the number of lines that have been hardware
prefetched but not used and now evicted by L2 cache.

F2H 04H L2_LINES_OUT.USELESS_HWPF Counts the number of lines that have been hardware
prefetched but not used and now evicted by L2 cache.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of cache line split locks sent to the
uncore.

FEH 02H IDI_MISC.WB_UPGRADE Counts number of cache lines that are allocated and
written back to L3 with the intention that they are
more likely to be reused shortly.

FEH 04H IDI_MISC.WB_DOWNGRADE Counts number of cache lines that are dropped and not
written back to L3 as they are deemed to be less likely
to be reused shortly.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-24 Vol. 3B

PERFORMANCE MONITORING EVENTS

The comment column in Table 19-4 uses abbreviated letters to indicate additional conditions applicable to the Event
Mask Mnemonic. For event umasks listed in Table 19-4 that do not show “AnyT”, users should refrain from program-
ming “AnyThread =1” in IA32_PERF_EVTSELx.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for handling
the split accesses are in use.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare on
address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Load misses in all TLB levels that cause a page walk of
any page size.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Load misses in all TLB levels causes a page walk that
completes. (All page sizes.)

08H 10H DTLB_LOAD_MISSES.WALK_PEN
DING

Counts 1 per cycle for each PMH that is busy with a
page walk for a load.

08H 10H DTLB_LOAD_MISSES.WALK_ACT
IVE

Cycles when at least one PMH is busy with a walk for a
load.

CMSK1

08H 20H DTLB_LOAD_MISSES.STLB_HIT Loads that miss the DTLB but hit STLB.

0DH 01H INT_MISC.RECOVERY_CYCLES Core cycles the allocator was stalled due to recovery
from earlier machine clear event for this thread (for
example, misprediction or memory order conflict).

0DH 01H INT_MISC.RECOVERY_CYCLES_A
NY

Core cycles the allocator was stalled due to recovery
from earlier machine clear event for any logical thread
in this processor core.

AnyT

0DH 80H INT_MISC.CLEAR_RESTEER_CYC
LES

Cycles the issue-stage is waiting for front end to fetch
from resteered path following branch misprediction or
machine clear events.

0EH 01H UOPS_ISSUED.ANY The number of uops issued by the RAT to RS.

0EH 01H UOPS_ISSUED.STALL_CYCLES Cycles when the RAT does not issue uops to RS for the
thread.

CMSK1, INV

0EH 02H UOPS_ISSUED.VECTOR_WIDTH_
MISMATCH

Uops inserted at issue-stage in order to preserve upper
bits of vector registers.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such uop
has 3 sources (for example, 2 sources + immediate)
regardless of whether it is a result of LEA instruction or
not.

14H 01H ARITH.FPU_DIVIDER_ACTIVE Cycles when divider is busy executing divide or square
root operations. Accounts for FP operations including
integer divides.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no rejects.

24H 22H L2_RQSTS.RFO_MISS RFO requests that missed L2.

24H 24H L2_RQSTS.CODE_RD_MISS L2 cache misses when fetching instructions.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that missed L2.

Vol. 3B 19-25

PERFORMANCE MONITORING EVENTS

24H 38H L2_RQSTS.PF_MISS Requests from the L1/L2/L3 hardware prefetchers or
load software prefetches that miss L2 cache.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H 42H L2_RQSTS.RFO_HIT RFO requests that hit L2 cache.

24H 44H L2_RQSTS.CODE_RD_HIT L2 cache hits when fetching instructions.

24H D8H L2_RQSTS.PF_HIT Prefetches that hit L2.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

All demand data read requests to L2.

24H E2H L2_RQSTS.ALL_RFO All L RFO requests to L2.

24H E4H L2_RQSTS.ALL_CODE_RD All L2 code requests.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

All demand requests to L2.

24H F8H L2_RQSTS.ALL_PF All requests from the L1/L2/L3 hardware prefetchers
or load software prefetches.

24H EFH L2_RQSTS.REFERENCES All requests to L2.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the L3 cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the L3 cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Cycles while the logical processor is not in a halt state. See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P_ANY

Cycles while at least one logical processor is not in a
halt state.

AnyT

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Core crystal clock cycles when the thread is unhalted. See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK_ANY

Core crystal clock cycles when at least one thread on
the physical core is unhalted.

AnyT

3CH 02H CPU_CLK_THREAD_UNHALTED.
ONE_THREAD_ACTIVE

Core crystal clock cycles when this thread is unhalted
and the other thread is halted.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle.

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES

Cycles with at least one outstanding L1D misses from
this logical processor.

CMSK1

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES_ANY

Cycles with at least one outstanding L1D misses from
any logical processor in this core.

CMSK1, AnyT

48H 02H L1D_PEND_MISS.FB_FULL Number of times a request needed a FB entry but there
was no entry available for it. That is, the FB
unavailability was the dominant reason for blocking the
request. A request includes cacheable/uncacheable
demand that is load, store or SW prefetch. HWP are
excluded.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Store misses in all TLB levels that cause page walks.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-26 Vol. 3B

PERFORMANCE MONITORING EVENTS

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Counts completed page walks in any TLB levels due to
store misses (all page sizes).

49H 10H DTLB_STORE_MISSES.WALK_PE
NDING

Counts 1 per cycle for each PMH that is busy with a
page walk for a store.

49H 10H DTLB_STORE_MISSES.WALK_AC
TIVE

Cycles when at least one PMH is busy with a page walk
for a store.

CMSK1

49H 20H DTLB_STORE_MISSES.STLB_HIT Store misses that missed DTLB but hit STLB.

4CH 01H LOAD_HIT_PRE.HW_PF Demand load dispatches that hit fill buffer allocated for
software prefetch.

4FH 10H EPT.WALK_PENDING Counts 1 per cycle for each PMH that is busy with an
EPT walk for any request type.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5EH 01H RS_EVENTS.EMPTY_END Counts end of periods where the Reservation Station
(RS) was empty. Could be useful to precisely locate
Front-end Latency Bound issues.

CMSK1, INV

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Increment each cycle of the number of offcore
outstanding Demand Data Read transactions in SQ to
uncore.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_D
ATA_RD

Cycles with at least one offcore outstanding Demand
Data Read transactions in SQ to uncore.

CMSK1

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD_GE_6

Cycles with at least 6 offcore outstanding Demand Data
Read transactions in SQ to uncore.

CMSK6

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Increment each cycle of the number of offcore
outstanding demand code read transactions in SQ to
uncore.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_C
ODE_RD

Cycles with at least one offcore outstanding demand
code read transactions in SQ to uncore.

CMSK1

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Increment each cycle of the number of offcore
outstanding RFO store transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_R
FO

Cycles with at least one offcore outstanding RFO
transactions in SQ to uncore.

CMSK1

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Increment each cycle of the number of offcore
outstanding cacheable data read transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DATA_RD

Cycles with at least one offcore outstanding data read
transactions in SQ to uncore.

CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD

Increment each cycle of the number of offcore
outstanding demand data read requests from SQ that
missed L3.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-27

PERFORMANCE MONITORING EVENTS

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_L3_MISS_D
EMAND_DATA_RD

Cycles with at least one offcore outstanding demand
data read requests from SQ that missed L3.

CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD_GE_6

Cycles with at least one offcore outstanding demand
data read requests from SQ that missed L3.

CMSK6

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

79H 04H IDQ.MITE_CYCLES Cycles when uops are being delivered to IDQ from MITE
path.

CMSK1

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ from
DSB path.

79H 08H IDQ.DSB_CYCLES Cycles when uops are being delivered to IDQ from DSB
path.

CMSK1

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ by DSB
when MS_busy.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Cycles DSB is delivered at least one uops. CMSK1

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Cycles DSB is delivered four uops. CMSK4

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ by
MITE when MS_busy.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. CMSK1

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. CMSK4

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ while
MS is busy.

79H 30H IDQ.MS_SWITCHES Number of switches from DSB or MITE to MS. EDG

79H 30H IDQ.MS_CYCLES Cycles MS is delivered at least one uops. CMSK1

80H 04H ICACHE_16B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache miss.

80H 04H ICACHE_64B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache tag miss.

83H 01H ICACHE_64B.IFTAG_HIT Instruction fetch tag lookups that hit in the instruction
cache (L1I). Counts at 64-byte cache-line granularity.

83H 02H ICACHE_64B.IFTAG_MISS Instruction fetch tag lookups that miss in the
instruction cache (L1I). Counts at 64-byte cache-line
granularity.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses at all ITLB levels that cause page walks.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Counts completed page walks in any TLB level due to
code fetch misses (all page sizes).

85H 10H ITLB_MISSES.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a
page walk for an instruction fetch request.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-28 Vol. 3B

PERFORMANCE MONITORING EVENTS

85H 20H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was delivered
from the front end to the back end when there is no
back-end stall.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_0_UOP_DELIV.CORE

Cycles which 4 issue pipeline slots had no uop delivered
from the front end to the back end when there is no
back-end stall.

CMSK4

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_n_UOP_DELIV.CORE

Cycles which “4-n” issue pipeline slots had no uop
delivered from the front end to the back end when
there is no back-end stall.

Set CMSK = 4-n; n = 1,
2, 3

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_FE_WAS_OK

Cycles which front end delivered 4 uops or the RAT was
stalling FE.

CMSK, INV

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts the number of cycles in which a uop is
dispatched to port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts the number of cycles in which a uop is
dispatched to port 1.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts the number of cycles in which a uop is
dispatched to port 2.

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts the number of cycles in which a uop is
dispatched to port 3.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts the number of cycles in which a uop is
dispatched to port 4.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts the number of cycles in which a uop is
dispatched to port 5.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts the number of cycles in which a uop is
dispatched to port 6.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts the number of cycles in which a uop is
dispatched to port 7.

A2H 01H RESOURCE_STALLS.ANY Resource-related stall cycles.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_MI
SS

Cycles while L2 cache miss demand load is outstanding. CMSK1

A3H 02H CYCLE_ACTIVITY.CYCLES_L3_MI
SS

Cycles while L3 cache miss demand load is outstanding. CMSK2

A3H 04H CYCLE_ACTIVITY.STALLS_TOTAL Total execution stalls. CMSK4

A3H 05H CYCLE_ACTIVITY.STALLS_L2_MI
SS

Execution stalls while L2 cache miss demand load is
outstanding.

CMSK5

A3H 06H CYCLE_ACTIVITY.STALLS_L3_MI
SS

Execution stalls while L3 cache miss demand load is
outstanding.

CMSK6

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_M
ISS

Cycles while L1 data cache miss demand load is
outstanding.

CMSK8

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_M
ISS

Execution stalls while L1 data cache miss demand load
is outstanding.

CMSK12

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-29

PERFORMANCE MONITORING EVENTS

A3H 10H CYCLE_ACTIVITY.CYCLES_MEM_
ANY

Cycles while memory subsystem has an outstanding
load.

CMSK16

A3H 14H CYCLE_ACTIVITY.STALLS_MEM_
ANY

Execution stalls while memory subsystem has an
outstanding load.

CMSK20

A6H 01H EXE_ACTIVITY.EXE_BOUND_0_P
ORTS

Cycles for which no uops began execution, the
Reservation Station was not empty, the Store Buffer
was full and there was no outstanding load.

A6H 02H EXE_ACTIVITY.1_PORTS_UTIL Cycles for which one uop began execution on any port,
and the Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.2_PORTS_UTIL Cycles for which two uops began execution, and the
Reservation Station was not empty.

A6H 08H EXE_ACTIVITY.3_PORTS_UTIL Cycles for which three uops began execution, and the
Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.4_PORTS_UTIL Cycles for which four uops began execution, and the
Reservation Station was not empty.

A6H 40H EXE_ACTIVITY.BOUND_ON_STO
RES

Cycles where the Store Buffer was full and no
outstanding load.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

A8H 01H LSD.CYCLES_ACTIVE Cycles with at least one uop delivered by the LSD and
none from the decoder.

CMSK1

A8H 01H LSD.CYCLES_4_UOPS Cycles with 4 uops delivered by the LSD and none from
the decoder.

CMSK4

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

DSB-to-MITE switch true penalty cycles.

AEH 01H ITLB.ITLB_FLUSH Flushing of the Instruction TLB (ITLB) pages, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

B0H 10H OFFCORE_REQUESTS.L3_MISS_
DEMAND_DATA_RD

Demand data read requests that missed L3.

B0H 80H OFFCORE_REQUESTS.ALL_REQU
ESTS

Any memory transaction that reached the SQ.

B1H 01H UOPS_EXECUTED.THREAD Counts the number of uops that begin execution across
all ports.

B1H 01H UOPS_EXECUTED.STALL_CYCLE
S

Cycles where there were no uops that began execution. CMSK, INV

B1H 01H UOPS_EXECUTED.CYCLES_GE_1
_UOP_EXEC

Cycles where there was at least one uop that began
execution.

CMSK1

B1H 01H UOPS_EXECUTED.CYCLES_GE_2
_UOP_EXEC

Cycles where there were at least two uops that began
execution.

CMSK2

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-30 Vol. 3B

PERFORMANCE MONITORING EVENTS

B1H 01H UOPS_EXECUTED.CYCLES_GE_3
_UOP_EXEC

Cycles where there were at least three uops that began
execution.

CMSK3

B1H 01H UOPS_EXECUTED.CYCLES_GE_4
_UOP_EXEC

Cycles where there were at least four uops that began
execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE Counts the number of uops from any logical processor
in this core that begin execution.

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_1

Cycles where there was at least one uop, from any
logical processor in this core, that began execution.

CMSK1

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_2

Cycles where there were at least two uops, from any
logical processor in this core, that began execution.

CMSK2

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_3

Cycles where there were at least three uops, from any
logical processor in this core, that began execution.

CMSK3

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_4

Cycles where there were at least four uops, from any
logical processor in this core, that began execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_NONE

Cycles where there were no uops from any logical
processor in this core that began execution.

CMSK1, INV

B1H 10H UOPS_EXECUTED.X87 Counts the number of X87 uops that begin execution.

B2H 01H OFF_CORE_REQUEST_BUFFER.S
Q_FULL

Offcore requests buffer cannot take more entries for
this core.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 01H TLB_FLUSH.STLB_ANY STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only;

C0H 01H INST_RETIRED.TOTAL_CYCLES Number of cycles using always true condition applied to
PEBS instructions retired event.

CMSK10, PS

C1H 3FH OTHER_ASSISTS.ANY Number of times a microcode assist is invoked by HW
other than FP-assist. Examples include AD (page Access
Dirty) and AVX* related assists.

C2H 01H UOPS_RETIRED.STALL_CYCLES Cycles without actually retired uops. CMSK1, INV

C2H 01H UOPS_RETIRED.TOTAL_CYCLES Cycles with less than 10 actually retired uops. CMSK10, INV

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Retirement slots used.

C3H 01H MACHINE_CLEARS.COUNT Number of machine clears of any type. CMSK1, EDG

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions that retired. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

PS

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-31

PERFORMANCE MONITORING EVENTS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. PS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. PS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions retired. PS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. PS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired. PS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. PS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. PS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that were
mispredicted and taken.

PS

C6H 01H FRONTEND_RETIRED.DSB_MISS Retired instructions which experienced DSB miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=11H.

PS

C6H 01H FRONTEND_RETIRED.L1I_MISS Retired instructions which experienced instruction L1
cache true miss. Specify
MSR_PEBS_FRONTEND.EVTSEL=12H.

PS

C6H 01H FRONTEND_RETIRED.L2_MISS Retired instructions which experienced L2 cache true
miss. Specify MSR_PEBS_FRONTEND.EVTSEL=13H.

PS

C6H 01H FRONTEND_RETIRED.ITLB_MISS Retired instructions which experienced ITLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=14H.

PS

C6H 01H FRONTEND_RETIRED.STLB_MIS
S

Retired instructions which experienced STLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=15H.

PS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_16

Retired instructions that are fetched after an interval
where the front end delivered no uops for at least 16
cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =16, IDQ_Bubble_Width = 4.

PS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_m

Retired instructions that are fetched after an interval
where the front end had ‘m’ IDQ slots delivered, no uops
for at least 2 cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =2, IDQ_Bubble_Width = m.

PS, m = 1, 2, 3

C7H 01H FP_ARITH_INST_RETIRED.SCAL
AR_DOUBLE

Number of double-precision, floating-point, scalar
SSE/AVX computational instructions that are retired.
Each scalar FMA instruction counts as 2.

Software may treat
each count as one DP
FLOP.

C7H 02H FP_ARITH_INST_RETIRED.SCAL
AR_SINGLE

Number of single-precision, floating-point, scalar
SSE/AVX computational instructions that are retired.
Each scalar FMA instruction counts as 2.

Software may treat
each count as one SP
FLOP.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-32 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 04H FP_ARITH_INST_RETIRED.128B
_PACKED_DOUBLE

Number of double-precision, floating-point, 128-bit
SSE/AVX computational instructions that are retired.
Each 128-bit FMA or (V)DPPD instruction counts as 2.

Software may treat
each count as two DP
FLOPs.

C7H 08H FP_ARITH_INST_RETIRED.128B
_PACKED_SINGLE

Number of single-precision, floating-point, 128-bit
SSE/AVX computational instructions that are retired.
Each 128-bit FMA or (V)DPPS instruction counts as 2.

Software may treat
each count as four SP
FLOPs.

C7H 10H FP_ARITH_INST_RETIRED.256B
_PACKED_DOUBLE

Number of double-precision, floating-point, 256-bit
SSE/AVX computational instructions that are retired.
Each 256-bit FMA instruction counts as 2.

Software may treat
each count as four DP
FLOPs.

C7H 20H FP_ARITH_INST_RETIRED.256B
_PACKED_SINGLE

Number of single-precision, floating-point, 256-bit
SSE/AVX computational instructions that are retired.
Each 256-bit FMA or VDPPS instruction counts as 2.

Software may treat
each count as eight
SP FLOPs.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists. CMSK1

CBH 01H HW_INTERRUPTS.RECEIVED Number of hardware interrupts received by the
processor.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a user
defined threshold. A small fraction of the overall loads
are sampled due to randomization.

Specify threshold in
MSR 3F6H.

PSDLA

D0H 11H MEM_INST_RETIRED.STLB_MISS
_LOADS

Retired load instructions that miss the STLB. PSDLA

D0H 12H MEM_INST_RETIRED.STLB_MISS
_STORES

Retired store instructions that miss the STLB. PSDLA

D0H 21H MEM_INST_RETIRED.LOCK_LOA
DS

Retired load instructions with locked access. PSDLA

D0H 41H MEM_INST_RETIRED.SPLIT_LOA
DS

Number of load instructions retired with cache-line
splits that may impact performance.

PSDLA

D0H 42H MEM_INST_RETIRED.SPLIT_STO
RES

Number of store instructions retired with line-split. PSDLA

D0H 81H MEM_INST_RETIRED.ALL_LOAD
S

All retired load instructions. PSDLA

D0H 82H MEM_INST_RETIRED.ALL_STOR
ES

All retired store instructions. PSDLA

D1H 01H MEM_LOAD_RETIRED.L1_HIT Retired load instructions with L1 cache hits as data
sources.

PSDLA

D1H 02H MEM_LOAD_RETIRED.L2_HIT Retired load instructions with L2 cache hits as data
sources.

PSDLA

D1H 04H MEM_LOAD_RETIRED.L3_HIT Retired load instructions with L3 cache hits as data
sources.

PSDLA

D1H 08H MEM_LOAD_RETIRED.L1_MISS Retired load instructions missed L1 cache as data
sources.

PSDLA

D1H 10H MEM_LOAD_RETIRED.L2_MISS Retired load instructions missed L2. Unknown data
source excluded.

PSDLA

D1H 20H MEM_LOAD_RETIRED.L3_MISS Retired load instructions missed L3. Excludes unknown
data source.

PSDLA

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-33

PERFORMANCE MONITORING EVENTS

Table 19-10 lists performance events supporting Intel TSX (see Section 18.3.6.5) and the events are applicable to
processors based on Skylake microarchitecture. Where Skylake microarchitecture implements TSX-related event
semantics that differ from Table 19-10, they are listed in Table 19-5.

19.4 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON PHI™ PROCESSOR
3200, 5200, 7200 SERIES

Intel® Xeon Phi™ processors 3200/5200/7200 series are based on the Knights Landing microarchitecture. Model-
specific performance monitoring events in the processor core are listed in Table 19-6. The events in Table 19-6
apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following value
06_57H.

D1H 40H MEM_LOAD_RETIRED.FB_HIT Retired load instructions where data sources were load
uops missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

PSDLA

D2H 01H MEM_LOAD_L3_HIT_RETIRED.X
SNP_MISS

Retired load instructions where data sources were L3
hit and cross-core snoop missed in on-pkg core cache.

PSDLA

D2H 02H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HIT

Retired load Instructions where data sources were L3
and cross-core snoop hits in on-pkg core cache.

PSDLA

D2H 04H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HITM

Retired load instructions where data sources were HitM
responses from shared L3.

PSDLA

D2H 08H MEM_LOAD_L3_HIT_RETIRED.X
SNP_NONE

Retired load instructions where data sources were hits
in L3 without snoops required.

PSDLA

E6H 01H BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2.

CMSK1: Counter Mask = 1 required; CMSK4: CounterMask = 4 required; CMSK6: CounterMask = 6 required; CMSK8: CounterMask = 8
required; CMSK10: CounterMask = 10 required; CMSK12: CounterMask = 12 required; CMSK16: CounterMask = 16 required; CMSK20:
CounterMask = 20 required.

AnyT: AnyThread = 1 required.

INV: Invert = 1 required.

EDG: EDGE = 1 required.

PSDLA: Also supports PEBS and DataLA.

PS: Also supports PEBS.

Table 19-5. Intel® TSX Performance Event Addendum in Processors based on Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-34 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H RECYCLEQ.LD_BLOCK_ST_FORW
ARD

Counts the number of occurrences a retired load gets
blocked because its address partially overlaps with a
store.

PSDLA

03H 02H RECYCLEQ.LD_BLOCK_STD_NOT
READY

Counts the number of occurrences a retired load gets
blocked because its address overlaps with a store
whose data is not ready.

03H 04H RECYCLEQ.ST_SPLITS Counts the number of occurrences a retired store that
is a cache line split. Each split should be counted only
once.

03H 08H RECYCLEQ.LD_SPLITS Counts the number of occurrences a retired load that is
a cache line split. Each split should be counted only
once.

PSDLA

03H 10H RECYCLEQ.LOCK Counts all the retired locked loads. It does not include
stores because we would double count if we count
stores.

03H 20H RECYCLEQ.STA_FULL Counts the store micro-ops retired that were pushed in
the recycle queue because the store address buffer is
full.

03H 40H RECYCLEQ.ANY_LD Counts any retired load that was pushed into the
recycle queue for any reason.

03H 80H RECYCLEQ.ANY_ST Counts any retired store that was pushed into the
recycle queue for any reason.

04H 01H MEM_UOPS_RETIRED.L1_MISS_
LOADS

Counts the number of load micro-ops retired that miss
in L1 D cache.

04H 02H MEM_UOPS_RETIRED.L2_HIT_L
OADS

Counts the number of load micro-ops retired that hit in
the L2.

PSDLA

04H 04H MEM_UOPS_RETIRED.L2_MISS_
LOADS

Counts the number of load micro-ops retired that miss
in the L2.

PSDLA

04H 08H MEM_UOPS_RETIRED.DTLB_MIS
S_LOADS

Counts the number of load micro-ops retired that cause
a DTLB miss.

PSDLA

04H 10H MEM_UOPS_RETIRED.UTLB_MIS
S_LOADS

Counts the number of load micro-ops retired that
caused micro TLB miss.

04H 20H MEM_UOPS_RETIRED.HITM Counts the loads retired that get the data from the
other core in the same tile in M state.

04H 40H MEM_UOPS_RETIRED.ALL_LOAD
S

Counts all the load micro-ops retired.

04H 80H MEM_UOPS_RETIRED.ALL_STOR
ES

Counts all the store micro-ops retired.

05H 01H PAGE_WALKS.D_SIDE_WALKS Counts the total D-side page walks that are completed
or started. The page walks started in the speculative
path will also be counted.

EdgeDetect=1

05H 01H PAGE_WALKS.D_SIDE_CYCLES Counts the total number of core cycles for all the D-side
page walks. The cycles for page walks started in
speculative path will also be included.

05H 02H PAGE_WALKS.I_SIDE_WALKS Counts the total I-side page walks that are completed. EdgeDetect=1

Vol. 3B 19-35

PERFORMANCE MONITORING EVENTS

05H 02H PAGE_WALKS.I_SIDE_CYCLES Counts the total number of core cycles for all the I-side
page walks. The cycles for page walks started in
speculative path will also be included.

05H 03H PAGE_WALKS.WALKS Counts the total page walks that are completed (I-side
and D-side).

EdgeDetect=1

05H 03H PAGE_WALKS.CYCLES Counts the total number of core cycles for all the page
walks. The cycles for page walks started in speculative
path will also be included.

2EH 41H LONGEST_LAT_CACHE.MISS Counts the number of L2 cache misses. Also called
L2_REQUESTS_MISS.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

Counts the total number of L2 cache references. Also
called L2_REQUESTS_REFERENCE.

30H 00H L2_REQUESTS_REJECT.ALL Counts the number of MEC requests from the L2Q that
reference a cache line (cacheable requests) excluding
SW prefetches filling only to L2 cache and L1 evictions
(automatically excludes L2HWP, UC, WC) that were
rejected - Multiple repeated rejects should be counted
multiple times.

31H 00H CORE_REJECT_L2Q.ALL Counts the number of MEC requests that were not
accepted into the L2Q because of any L2 queue reject
condition. There is no concept of at-ret here. It might
include requests due to instructions in the speculative
path.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of unhalted core clock cycles.

3CH 01H CPU_CLK_UNHALTED.REF Counts the number of unhalted reference clock cycles.

3EH 04H L2_PREFETCHER.ALLOC_XQ Counts the number of L2HWP allocated into XQ GP.

80H 01H ICACHE.HIT Counts all instruction fetches that hit the instruction
cache.

80H 02H ICACHE.MISSES Counts all instruction fetches that miss the instruction
cache or produce memory requests. An instruction
fetch miss is counted only once and not once for every
cycle it is outstanding.

80H 03H ICACHE.ACCESSES Counts all instruction fetches, including uncacheable
fetches.

86H 04H FETCH_STALL.ICACHE_FILL_PEN
DING_CYCLES

Counts the number of core cycles the fetch stalls
because of an icache miss. This is a cumulative count of
core cycles the fetch stalled for all icache misses.

B7H 01H OFFCORE_RESPONSE_0 See Section 18.4.1.1.2. Requires
MSR_OFFCORE_RESP
0 to specify request
type and response.

B7H 02H OFFCORE_RESPONSE_1 See Section 18.4.1.1.2. Requires
MSR_OFFCORE_RESP
1 to specify request
type and response.

C0H 00H INST_RETIRED.ANY_P Counts the total number of instructions retired. PS

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-36 Vol. 3B

PERFORMANCE MONITORING EVENTS

C2H 01H UOPS_RETIRED.MS Counts the number of micro-ops retired that are from
the complex flows issued by the micro-sequencer (MS).

C2H 10H UOPS_RETIRED.ALL Counts the number of micro-ops retired.

C2H 20H UOPS_RETIRED.SCALAR_SIMD Counts the number of scalar SSE, AVX, AVX2, and AVX-
512 micro-ops except for loads (memory-to-register
mov-type micro ops), division and sqrt.

C2H 40H UOPS_RETIRED.PACKED_SIMD Counts the number of packed SSE, AVX, AVX2, and
AVX-512 micro-ops (both floating point and integer)
except for loads (memory-to-register mov-type micro-
ops), packed byte and word multiplies.

C3H 01H MACHINE_CLEARS.SMC Counts the number of times that the machine clears
due to program modifying data within 1K of a recently
fetched code page.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of times the machine clears due to
memory ordering hazards.

C3H 04H MACHINE_CLEARS.FP_ASSIST Counts the number of floating operations retired that
required microcode assists.

C3H 08H MACHINE_CLEARS.ALL Counts all machine clears.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. PS

C4H 7EH BR_INST_RETIRED.JCC Counts the number of JCC branch instructions retired. PS

C4H BFH BR_INST_RETIRED.FAR_BRANC
H

Counts the number of far branch instructions retired. PS

C4H EBH BR_INST_RETIRED.NON_RETUR
N_IND

Counts the number of branch instructions retired that
were near indirect CALL or near indirect JMP.

PS

C4H F7H BR_INST_RETIRED.RETURN Counts the number of near RET branch instructions
retired.

PS

C4H F9H BR_INST_RETIRED.CALL Counts the number of near CALL branch instructions
retired.

PS

C4H FBH BR_INST_RETIRED.IND_CALL Counts the number of near indirect CALL branch
instructions retired.

PS

C4H FDH BR_INST_RETIRED.REL_CALL Counts the number of near relative CALL branch
instructions retired.

PS

C4H FEH BR_INST_RETIRED.TAKEN_JCC Counts the number of branch instructions retired that
were taken conditional jumps.

PS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Counts the number of mispredicted branch instructions
retired.

PS

C5H 7EH BR_MISP_RETIRED.JCC Counts the number of mispredicted JCC branch
instructions retired.

PS

C5H BFH BR_MISP_RETIRED.FAR_BRANC
H

Counts the number of mispredicted far branch
instructions retired.

PS

C5H EBH BR_MISP_RETIRED.NON_RETUR
N_IND

Counts the number of mispredicted branch instructions
retired that were near indirect CALL or near indirect
JMP.

PS

C5H F7H BR_MISP_RETIRED.RETURN Counts the number of mispredicted near RET branch
instructions retired.

PS

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-37

PERFORMANCE MONITORING EVENTS

C5H F9H BR_MISP_RETIRED.CALL Counts the number of mispredicted near CALL branch
instructions retired.

PS

C5H FBH BR_MISP_RETIRED.IND_CALL Counts the number of mispredicted near indirect CALL
branch instructions retired.

PS

C5H FDH BR_MISP_RETIRED.REL_CALL Counts the number of mispredicted near relative CALL
branch instructions retired.

PS

C5H FEH BR_MISP_RETIRED.TAKEN_JCC Counts the number of mispredicted branch instructions
retired that were taken conditional jumps.

PS

CAH 01H NO_ALLOC_CYCLES.ROB_FULL Counts the number of core cycles when no micro-ops
are allocated and the ROB is full.

CAH 04H NO_ALLOC_CYCLES.MISPREDICT
S

Counts the number of core cycles when no micro-ops
are allocated and the alloc pipe is stalled waiting for a
mispredicted branch to retire.

CAH 20H NO_ALLOC_CYCLES.RAT_STALL Counts the number of core cycles when no micro-ops
are allocated and a RATstall (caused by reservation
station full) is asserted.

CAH 90H NO_ALLOC_CYCLES.NOT_DELIVE
RED

Counts the number of core cycles when no micro-ops
are allocated, the IQ is empty, and no other condition is
blocking allocation.

CAH 7FH NO_ALLOC_CYCLES.ALL Counts the total number of core cycles when no micro-
ops are allocated for any reason.

CBH 01H RS_FULL_STALL.MEC Counts the number of core cycles when allocation
pipeline is stalled and is waiting for a free MEC
reservation station entry.

CBH 1FH RS_FULL_STALL.ALL Counts the total number of core cycles the allocation
pipeline is stalled when any one of the reservation
stations is full.

CDH 01H CYCLES_DIV_BUSY.ALL Cycles the number of core cycles when divider is busy.
Does not imply a stall waiting for the divider.

E6H 01H BACLEARS.ALL Counts the number of times the front end resteers for
any branch as a result of another branch handling
mechanism in the front end.

E6H 08H BACLEARS.RETURN Counts the number of times the front end resteers for
RET branches as a result of another branch handling
mechanism in the front end.

E6H 10H BACLEARS.COND Counts the number of times the front end resteers for
conditional branches as a result of another branch
handling mechanism in the front end.

E7H 01H MS_DECODED.MS_ENTRY Counts the number of times the MSROM starts a flow
of uops.

PS: Also supports PEBS.

PSDLA: Also supports PEBS and DataLA.

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-38 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.5 PERFORMANCE MONITORING EVENTS FOR THE INTEL® CORE™ M AND 5TH
GENERATION INTEL® CORE™ PROCESSORS

The Intel® Core™ M processors, the 5th generation Intel® Core™ processors and the Intel Xeon processor E3 1200
v4 product family are based on the Broadwell microarchitecture. They support the architectural performance moni-
toring events listed in Table 19-1. Model-specific performance monitoring events in the processor core are listed in
Table 19-7. The events in Table 19-7 apply to processors with CPUID signature of DisplayFamily_DisplayModel
encoding with the following values: 06_3DH and 06_47H. Table 19-10 lists performance events supporting Intel
TSX (see Section 18.3.6.5) and the events are available on processors based on Broadwell microarchitecture. Fixed
counters in the core PMU support the architecture events defined in Table 19-2.

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Broadwell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3DH
and 06_47H support uncore performance events listed in Table 19-11.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Load misses in all TLB levels that cause a page walk
of any page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
add delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (for example, 2 sources +
immediate) regardless of whether it is a result of
LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

Vol. 3B 19-39

PERFORMANCE MONITORING EVENTS

14H 01H ARITH.FPU_DIV_ACTIVE Cycles when divider is busy executing divide
operations.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand data read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand data read requests that hit L2 cache.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

Counter 2 only.

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes a page walk of any page
size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4FH 10H EPT.WALK_CYCLES Cycles of Extended Page Table walks.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer move elimination candidate uops
that were not eliminated.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-40 Vol. 3B

PERFORMANCE MONITORING EVENTS

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD move elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer move elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD move elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding demand data read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding demand code read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is off.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle # of uops delivered to IDQ from
DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uop. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS Number of uops delivered to IDQ from any path.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-41

PERFORMANCE MONITORING EVENTS

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that cause a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls or returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non-call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls or returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non-call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-42 Vol. 3B

PERFORMANCE MONITORING EVENTS

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts the number of cycles in which a uop is
dispatched to port 0.

Set AnyThread to count
per core.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts the number of cycles in which a uop is
dispatched to port 1.

Set AnyThread to count
per core.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts the number of cycles in which a uop is
dispatched to port 2.

Set AnyThread to count
per core.

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts the number of cycles in which a uop is
dispatched to port 3.

Set AnyThread to count
per core.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts the number of cycles in which a uop is
dispatched to port 4.

Set AnyThread to count
per core.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts the number of cycles in which a uop is
dispatched to port 5.

Set AnyThread to count
per core.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts the number of cycles in which a uop is
dispatched to port 6.

Set AnyThread to count
per core.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts the number of cycles in which a uop is
dispatched to port 7.

Set AnyThread to count
per core.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to resource related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

Cycles of delay due to Decode Stream Buffer to MITE
switches.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes; includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is off.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is off.

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
logical-processor each cycle.

Use Cmask to count stall
cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-43

PERFORMANCE MONITORING EVENTS

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C0H 02H INST_RETIRED.X87 FP operations retired. X87 FP operations that have
no exceptions.

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired.

Use cmask=1 and invert to count active cycles or
stalled cycles.

Supports PEBS and
DataLA, use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 01H MACHINE_CLEARS.CYCLES Counts cycles while a machine clears stalled forward
progress of a logical processor or a processor core.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-44 Vol. 3B

PERFORMANCE MONITORING EVENTS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H.

D0H 11H MEM_UOPS_RETIRED.STLB_MIS
S_LOADS

Retired load uops that miss the STLB. Supports PEBS and
DataLA.

D0H 12H MEM_UOPS_RETIRED.STLB_MIS
S_STORES

Retired store uops that miss the STLB. Supports PEBS and
DataLA.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS and
DataLA.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LO
ADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 42H MEM_UOPS_RETIRED.SPLIT_ST
ORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 81H MEM_UOPS_RETIRED.ALL_LOAD
S

All retired load uops. Supports PEBS and
DataLA.

D0H 82H MEM_UOPS_RETIRED.ALL_STOR
ES

All retired store uops. Supports PEBS and
DataLA.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA.

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-45

PERFORMANCE MONITORING EVENTS

Table 19-10 lists performance events supporting Intel TSX (see Section 18.3.6.5) and the events are applicable to
processors based on Broadwell microarchitecture. Where Broadwell microarchitecture implements TSX-related
event semantics that differ from Table 19-10, they are listed in Table 19-8.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA.

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source.

Supports PEBS and
DataLA.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops where data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS and
DataLA.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops where data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops where data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops where data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA.

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops where data sources were hits in
L3 without snoops required.

Supports PEBS and
DataLA.

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops where data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand data read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

Table 19-8. Intel® TSX Performance Event Addendum in Processors Based on Broadwell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-46 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.6 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION
INTEL® CORE™ PROCESSORS

4th generation Intel® Core™ processors and Intel Xeon processor E3-1200 v3 product family are based on the
Haswell microarchitecture. They support the architectural performance monitoring events listed in Table 19-1.
Model-specific performance monitoring events in the processor core are listed in Table 19-9. The events in Table
19-9 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_3CH, 06_45H and 06_46H. Table 19-10 lists performance events focused on supporting Intel TSX (see Section
18.3.6.5). Fixed counters in the core PMU support the architecture events defined in Table 19-2.

Additional information on event specifics (e.g., derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at https://software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-monitoring.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size
due to demand load misses.

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1 to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
add delay.

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring

Vol. 3B 19-47

PERFORMANCE MONITORING EVENTS

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (for example, 2 sources +
immediate) regardless of whether it is a result of
LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand data read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand data read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache.

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

Counter 2 only.

Set Cmask = 1 to count
cycles.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-48 Vol. 3B

PERFORMANCE MONITORING EVENTS

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes a page walk of any page
size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer move elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD move elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer move elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD move elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding demand data read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is off.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-49

PERFORMANCE MONITORING EVENTS

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uop. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-50 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls or returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non-call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls or returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non-call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back-end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a uop is dispatched on port 0 in this
thread.

Set AnyThread to count
per core.

A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a uop is dispatched on port 1 in this
thread.

Set AnyThread to count
per core.

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this
thread.

Set AnyThread to count
per core.

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this
thread.

Set AnyThread to count
per core.

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this
thread.

Set AnyThread to count
per core.

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this
thread.

Set AnyThread to count
per core.

A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a uop is dispatched on port 6 in this
thread.

Set AnyThread to count
per core.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-51

PERFORMANCE MONITORING EVENTS

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a uop is dispatched on port 7 in this
thread

Set AnyThread to count
per core.

A2H 01H RESOURCE_STALLS.ANY Cycles allocation is stalled due to resource related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to
count cycle.

Use only when HTT is off.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is off.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 data cache miss loads. Set
Cmask=8 to count cycle.

PMC2 only.

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_P
ENDING

Execution stalls due to L1 data cache miss loads. Set
Cmask=0CH.

PMC2 only.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is off.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is off.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY.

B7H 01H OFF_CORE_RESPONSE_0 See Table 18-28 or Table 18-29. Requires MSR 01A6H.

BBH 01H OFF_CORE_RESPONSE_1 See Table 18-28 or Table 18-29. Requires MSR 01A7H.

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-52 Vol. 3B

PERFORMANCE MONITORING EVENTS

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired. Use
Cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS and
DataLA; use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that
were taken but mispredicted.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-53

PERFORMANCE MONITORING EVENTS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H.

D0H 11H MEM_UOPS_RETIRED.STLB_MIS
S_LOADS

Retired load uops that miss the STLB. Supports PEBS and
DataLA.

D0H 12H MEM_UOPS_RETIRED.STLB_MIS
S_STORES

Retired store uops that miss the STLB. Supports PEBS and
DataLA.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS and
DataLA.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LO
ADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 42H MEM_UOPS_RETIRED.SPLIT_ST
ORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 81H MEM_UOPS_RETIRED.ALL_LOAD
S

All retired load uops. Supports PEBS and
DataLA.

D0H 82H MEM_UOPS_RETIRED.ALL_STOR
ES

All retired store uops. Supports PEBS and
DataLA.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA.

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA.

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source .

Supports PEBS and
DataLA.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops
missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

Supports PEBS and
DataLA.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-54 Vol. 3B

PERFORMANCE MONITORING EVENTS

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3
without snoops required.

Supports PEBS and
DataLA.

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand data read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

Table 19-10. Intel TSX Performance Events in Processors Based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 01H TX_MEM.ABORT_CONFLICT Number of times a transactional abort was signaled due
to a data conflict on a transactionally accessed address.

54H 02H TX_MEM.ABORT_CAPACITY_W
RITE

Number of times a transactional abort was signaled due
to a data capacity limitation for transactional writes.

54H 04H TX_MEM.ABORT_HLE_STORE_
TO_ELIDED_LOCK

Number of times a HLE transactional region aborted due
to a non XRELEASE prefixed instruction writing to an
elided lock in the elision buffer.

54H 08H TX_MEM.ABORT_HLE_ELISION
_BUFFER_NOT_EMPTY

Number of times an HLE transactional execution aborted
due to NoAllocatedElisionBuffer being non-zero.

54H 10H TX_MEM.ABORT_HLE_ELISION
_BUFFER_MISMATCH

Number of times an HLE transactional execution aborted
due to XRELEASE lock not satisfying the address and
value requirements in the elision buffer.

54H 20H TX_MEM.ABORT_HLE_ELISION
_BUFFER_UNSUPPORTED_ALI
GNMENT

Number of times an HLE transactional execution aborted
due to an unsupported read alignment from the elision
buffer.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-55

PERFORMANCE MONITORING EVENTS

54H 40H TX_MEM.HLE_ELISION_BUFFE
R_FULL

Number of times HLE lock could not be elided due to
ElisionBufferAvailable being zero.

5DH 01H TX_EXEC.MISC1 Counts the number of times a class of instructions that
may cause a transactional abort was executed. Since this
is the count of execution, it may not always cause a
transactional abort.

5DH 02H TX_EXEC.MISC2 Counts the number of times a class of instructions (for
example, vzeroupper) that may cause a transactional
abort was executed inside a transactional region.

5DH 04H TX_EXEC.MISC3 Counts the number of times an instruction execution
caused the transactional nest count supported to be
exceeded.

5DH 08H TX_EXEC.MISC4 Counts the number of times an XBEGIN instruction was
executed inside an HLE transactional region.

5DH 10H TX_EXEC.MISC5 Counts the number of times an instruction with HLE-
XACQUIRE semantic was executed inside an RTM
transactional region.

C8H 01H HLE_RETIRED.START Number of times an HLE execution started. IF HLE is supported.

C8H 02H HLE_RETIRED.COMMIT Number of times an HLE execution successfully
committed.

C8H 04H HLE_RETIRED.ABORTED Number of times an HLE execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS.

C8H 08H HLE_RETIRED.ABORTED_MEM Number of times an HLE execution aborted due to
various memory events (for example, read/write
capacity and conflicts).

C8H 10H HLE_RETIRED.ABORTED_TIME
R

Number of times an HLE execution aborted due to
uncommon conditions.

C8H 20H HLE_RETIRED.ABORTED_UNFR
IENDLY

Number of times an HLE execution aborted due to HLE-
unfriendly instructions.

C8H 40H HLE_RETIRED.ABORTED_MEM
TYPE

Number of times an HLE execution aborted due to
incompatible memory type.

C8H 80H HLE_RETIRED.ABORTED_EVEN
TS

Number of times an HLE execution aborted due to none
of the previous 4 categories (for example, interrupts).

C9H 01H RTM_RETIRED.START Number of times an RTM execution started. IF RTM is supported.

C9H 02H RTM_RETIRED.COMMIT Number of times an RTM execution successfully
committed.

C9H 04H RTM_RETIRED.ABORTED Number of times an RTM execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS.

Table 19-10. Intel TSX Performance Events in Processors Based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-56 Vol. 3B

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Haswell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3CH
and 06_45H support performance events listed in Table 19-11.

C9H 08H RTM_RETIRED.ABORTED_MEM Number of times an RTM execution aborted due to
various memory events (for example, read/write
capacity and conflicts).

IF RTM is supported.

C9H 10H RTM_RETIRED.ABORTED_TIME
R

Number of times an RTM execution aborted due to
uncommon conditions.

C9H 20H RTM_RETIRED.ABORTED_UNF
RIENDLY

Number of times an RTM execution aborted due to HLE-
unfriendly instructions.

C9H 40H RTM_RETIRED.ABORTED_MEM
TYPE

Number of times an RTM execution aborted due to
incompatible memory type.

C9H 80H RTM_RETIRED.ABORTED_EVE
NTS

Number of times an RTM execution aborted due to none
of the previous 4 categories (for example, interrupt).

Table 19-11. Uncore Performance Events in the 4th Generation Intel® Core™ Processors
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with
one of the umask
values of 20H, 40H,
80H.

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due
to external snoop request.

Must combine with at
least one of 01H, 02H,
04H, 08H, 10H.22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due
to processor core memory request.

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due
to L3 eviction.

34H 01H UNC_CBO_CACHE_LOOKUP.M L3 lookup request that access cache and found line in
M-state.

Must combine with
one of the umask
values of 10H, 20H,
40H, 80H.

34H 06H UNC_CBO_CACHE_LOOKUP.ES L3 lookup request that access cache and found line in E
or S state.

34H 08H UNC_CBO_CACHE_LOOKUP.I L3 lookup request that access cache and found line in I-
state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

Table 19-10. Intel TSX Performance Events in Processors Based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-57

PERFORMANCE MONITORING EVENTS

19.6.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v3
Family

Model-specific performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 v3 family based on the Haswell-E microarchitecture, with CPUID signature of
DisplayFamily_DisplayModel 06_3FH, are listed in Table 19-12. The performance events listed in Table 19-9 and
Table 19-10 also apply Intel Xeon processor E5 v3 family, except that the OFF_CORE_RESPONSE_x event listed in
Table 19-9 should reference Table 18-30.

Uncore performance monitoring events for Intel Xeon Processor E5 v3 families are described in “Intel® Xeon®
Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including
uncacheable, non-coherent requests. Must combine
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests
waiting for data returning from the memory controller.
Accounts for coherent and non-coherent requests
initiated by IA cores, processor graphic units, or L3.

Counter 0 only.

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent
requests initiated by IA cores, processor graphic units,
or L3.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include
full, partial, and L3 evictions.

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of L3 evictions allocated.

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in
Coherency Tracker.

Counter 0 only.

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:
1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO*

events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-12. Performance Events Applicable only to the Processor Core of Intel® Xeon® Processor E5 v3 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 04H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_DRAM

Retired load uops whose data sources were remote
DRAM (snoop not needed, Snoop Miss).

Supports PEBS.

D3H 10H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_HITM

Retired load uops whose data sources were remote
cache HITM.

Supports PEBS.

D3H 20H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_FWD

Retired load uops whose data sources were forwards
from a remote cache.

Supports PEBS.

Table 19-11. Uncore Performance Events in the 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

19-58 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.7 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION
INTEL® CORE™ PROCESSORS

3rd generation Intel® Core™ processors and Intel Xeon processor E3-1200 v2 product family are based on Intel
microarchitecture code name Ivy Bridge. They support architectural performance monitoring events listed in Table
19-1. Model-specific performance monitoring events in the processor core are listed in Table 19-13. The events in
Table 19-13 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following
values: 06_3AH. Fixed counters in the core PMU support the architecture events defined in Table 19-24.

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at found at https://software.intel.com/en-
us/forums/software-tuning-performance-optimization-platform-monitoring.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS_
ALIAS

False dependencies in MOB due to partial compare
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CAUSE
S_A_WALK

Misses in all TLB levels that cause a page walk of
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_COM
PLETED

Misses in all TLB levels that caused page walk
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk due to demand loads.

08H 88H DTLB_LOAD_MISSES.LARGE_PAG
E_WALK_DURATION

Page walk for a large page completed for Demand
load.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_PAC
KED_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_SCA
LAR_SINGLE

Counts number of SSE* or AVX-128 single precision
FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACKED
SINGLE

Counts number of SSE* or AVX-128 single precision
FP packed uops executed.

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring

Vol. 3B 19-59

PERFORMANCE MONITORING EVENTS

10H 80H FP_COMP_OPS_EXE.SSE_SCALAR
_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBLE Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD_H
IT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DATA_
RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 08H L2_STORE_LOCK_RQSTS.HIT_M RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERENC
E

This event counts requests originating from the
core that reference a cache line in the last level
cache.

See Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_P Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-60 Vol. 3B

PERFORMANCE MONITORING EVENTS

3CH 01H CPU_CLK_THREAD_UNHALTED.R
EF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAUS
ES_A_WALK

Miss in all TLB levels causes a page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_DUR
ATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_EL
IMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_E
LIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMINA
TED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMIN
ATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 04H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB
but hit the 2nd level.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_L
OCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-61

PERFORMANCE MONITORING EVENTS

63H 02H LOCK_CYCLES.CACHE_LOCK_DUR
ATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UOP
S

Counts cycles DSB is delivered at least one uops.
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UOP
S

Counts cycles MITE is delivered at least one uops.
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 04H ICACHE.IFETCH_STALL Cycles where a code-fetch stalled due to L1
instruction-cache miss or an iTLB miss.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_W
ALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLETED Misses in all ITLB levels that cause completed page
walks.

85H 04H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

88H 04H BR_INST_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls or returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-62 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non-call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR_
CALL

Qualify indirect near calls, including both register
and memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls or returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non-call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR_
CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.COR
E

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back-end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.PORT_
2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.PORT_
3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.PORT_
4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.PORT_
5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-63

PERFORMANCE MONITORING EVENTS

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PEN
DING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_P
ENDING

Cycles with pending memory loads. Set AnyThread
to count per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_EX
ECUTE

Cycles of dispatch stalls. Set AnyThread to count
per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PEN
DING

Number of loads missed L2. Restricted to counters 0-
3 when HTT is disabled.

A3H 06H CYCLE_ACTIVITY.STALLS_LDM_P
ENDING

Restricted to counters 0-
3 when HTT is disabled.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_PE
NDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only.

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_PE
NDING

Execution stalls due to L1 data cache miss loads.
Set Cmask=0CH.

PMC2 only.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALTY_
CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_D
ATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_C
ODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_R
FO

Demand RFO read requests sent to uncore,
including regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DATA_
RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY.

B7H 01H OFFCORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

BBH 01H OFFCORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-64 Vol. 3B

PERFORMANCE MONITORING EVENTS

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 80H OTHER_ASSISTS.WB Number of times microcode assist is invoked by
hardware upon uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS, use
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_ORD
ERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANCH
ES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONAL Counts the number of conditional branch
instructions retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANCH
ES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RETUR
N

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

Supports PEBS.

C4H 20H BR_INST_RETIRED.NEAR_TAKEN Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANCH Number of far branches retired. Supports PEBS.

C5H 00H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONAL Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.NEAR_TAKEN Mispredicted taken branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to output values. Supports PEBS.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values. Supports PEBS.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values. Supports PEBS.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Count cases of saving new LBR records by
hardware.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-65

PERFORMANCE MONITORING EVENTS

CDH 01H MEM_TRANS_RETIRED.LOAD_LA
TENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.

Specify threshold in MSR
3F6H. PMC 3 only.

CDH 02H MEM_TRANS_RETIRED.PRECISE_
STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.3.4.4.3.

D0H 11H MEM_UOPS_RETIRED.STLB_MISS
_LOADS

Retired load uops that miss the STLB. Supports PEBS.

D0H 12H MEM_UOPS_RETIRED.STLB_MISS
_STORES

Retired store uops that miss the STLB. Supports PEBS.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LOA
DS

Retired load uops that split across a cacheline
boundary.

Supports PEBS.

D0H 42H MEM_UOPS_RETIRED.SPLIT_STO
RES

Retired store uops that split across a cacheline
boundary.

Supports PEBS.

D0H 81H MEM_UOPS_RETIRED.ALL_LOADS All retired load uops. Supports PEBS.

D0H 82H MEM_UOPS_RETIRED.ALL_STORE
S

All retired store uops. Supports PEBS.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS.

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC_
HIT

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops whose data source followed an
L1 miss.

Supports PEBS.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops that missed L2, excluding
unknown sources.

Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LLC_
MISS

Retired load uops whose data source is LLC miss. Supports PEBS.
Restricted to counters 0-
3 when HTT is disabled.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT_
LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops whose data source was local
memory (cross-socket snoop not needed or missed).

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-66 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.7.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v2
Family and Intel Xeon Processor E7 v2 Family

Model-specific performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 v2 family and Intel Xeon processor E7 v2 family based on the Ivy Bridge-E microarchitecture, with
CPUID signature of DisplayFamily_DisplayModel 06_3EH, are listed in Table 19-14.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

Table 19-14. Performance Events Applicable Only to the Processor Core of
Intel® Xeon® Processor E5 v2 Family and Intel® Xeon® Processor E7 v2 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 03H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.LOCAL_DRAM

Retired load uops whose data sources were local
DRAM (snoop not needed, Snoop Miss, or Snoop Hit
data not forwarded).

Supports PEBS.

D3H 0CH MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_DRAM

Retired load uops whose data source was remote
DRAM (snoop not needed, Snoop Miss, or Snoop Hit
data not forwarded).

Supports PEBS.

D3H 10H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_HITM

Retired load uops whose data sources were remote
HITM.

Supports PEBS.

D3H 20H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_FWD

Retired load uops whose data sources were forwards
from a remote cache.

Supports PEBS.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-67

PERFORMANCE MONITORING EVENTS

19.8 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION
INTEL® CORE™ I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX
PROCESSOR SERIES

2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel
Xeon processor E3-1200 product family are based on the Intel microarchitecture code name Sandy Bridge. They
support architectural performance monitoring events listed in Table 19-1. Model-specific performance monitoring
events in the processor core are listed in Table 19-15, Table 19-16, and Table 19-17. The events in Table 19-15
apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_2AH and 06_2DH. The events in Table 19-16 apply to processors with CPUID signature 06_2AH. The events in
Table 19-17 apply to processors with CPUID signature 06_2DH. Fixed counters in the core PMU support the archi-
tecture events defined in Table 19-2.

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at found at https://software.intel.com/en-
us/forums/software-tuning-performance-optimization-platform-monitoring.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_UNKNOWN Blocked loads due to store buffer blocks with
unknown data.

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to resource not
available.

03H 10H LD_BLOCKS.ALL_BLOCK Number of cases where any load is blocked but has
no DCU miss.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare
on address.

07H 08H LD_BLOCKS_PARTIAL.ALL_STA
_BLOCK

The number of times that load operations are
temporarily blocked because of older stores, with
addresses that are not yet known. A load operation
may incur more than one block of this type.

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk
completed of any size.

08H 04H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears or
JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0DH 40H INT_MISC.RAT_STALL_CYCLES Cycles RAT external stall is sent to IDQ for this
thread.

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring

19-68 Vol. 3B

PERFORMANCE MONITORING EVENTS

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED_DOUBLE

Counts number of SSE* double precision FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR_SINGLE

Counts number of SSE* single precision FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACK
ED SINGLE

Counts number of SSE* single precision FP packed
uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCAL
AR_DOUBLE

Counts number of SSE* double precision FP scalar
uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBL
E

Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO_IQ.INSTS Counts the number of instructions written into the
IQ every cycle.

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware prefetcher that missed
L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware prefetchers.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQSTS.HIT_
E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-69

PERFORMANCE MONITORING EVENTS

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks from L1D to L2 cache lines
that missed L2.

28H 02H L2_L1D_WB_RQSTS.HIT_S Not rejected writebacks from L1D to L2 cache lines
in S state.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the
core that reference a cache line in the last level
cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED
.REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes a page walk of any page
size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4EH 02H HW_PRE_REQ.DL1_MISS Hardware Prefetch requests that miss the L1D
cache. A request is being counted each time it
access the cache & miss it, including if a block is
applicable or if hit the Fill Buffer for example.

This accounts for both L1
streamer and IP-based
(IPP) HW prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

51H 02H L1D.ALLOCATED_IN_M Counts the number of allocations of modified L1D
cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-70 Vol. 3B

PERFORMANCE MONITORING EVENTS

51H 08H L1D.ALL_M_REPLACEMENT Cache lines in M state evicted out of L1D due to
Snoop HitM or dirty line replacement.

59H 20H PARTIAL_RAT_STALLS.FLAGS_
MERGE_UOP

Increments the number of flags-merge uops in flight
each cycle. Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALLS.SLOW_
LEA_WINDOW

Cycles with at least one slow LEA uop allocated.

59H 80H PARTIAL_RAT_STALLS.MUL_SI
NGLE_UOP

Number of Multiply packed/scalar single precision
uops allocated.

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless
HTT.

5BH 0FH RESOURCE_STALLS2.ALL_PRF
_CONTROL

Cycles stalled due to control structures full for
physical registers.

5BH 40H RESOURCE_STALLS2.BOB_FUL
L

Cycles Allocator is stalled due Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.OOO_RS
RC

Cycles stalled due to out of order resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTA
NDING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS busy by DSB. Set Cmask = 1 to count
cycles MS is busy. Set Cmask=1 and Edge =1 to
count MS activations.

Can combine Umask 08H
and 10H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS is busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H
and 20H.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-71

PERFORMANCE MONITORING EVENTS

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H and 30H.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page
walks.

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 41H BR_INST_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken macro conditional branches.

88H 81H BR_INST_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired conditional branches.

88H 82H BR_INST_EXEC.TAKEN_DIRECT
_JUMP

Taken speculative and retired conditional branches
excluding calls and indirects.

88H 84H BR_INST_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired indirect branches
excluding calls and returns.

88H 88H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_RETURN

Taken speculative and retired indirect branches that
are returns.

88H 90H BR_INST_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired direct near calls.

88H A0H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired indirect near calls.

88H C1H BR_INST_EXEC.ALL_CONDITIO
NAL

Speculative and retired conditional branches.

88H C2H BR_INST_EXEC.ALL_DIRECT_J
UMP

Speculative and retired conditional branches
excluding calls and indirects.

88H C4H BR_INST_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired indirect branches excluding
calls and returns.

88H C8H BR_INST_EXEC.ALL_INDIRECT
_NEAR_RETURN

Speculative and retired indirect branches that are
returns.

88H D0H BR_INST_EXEC.ALL_NEAR_CA
LL

Speculative and retired direct near calls.

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Speculative and retired branches.

89H 41H BR_MISP_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken mispredicted macro conditional branches.

89H 81H BR_MISP_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired mispredicted
conditional branches.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-72 Vol. 3B

PERFORMANCE MONITORING EVENTS

89H 84H BR_MISP_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired mispredicted indirect
branches excluding calls and returns.

89H 88H BR_MISP_EXEC.TAKEN_RETUR
N_NEAR

Taken speculative and retired mispredicted indirect
branches that are returns.

89H 90H BR_MISP_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired mispredicted direct
near calls.

89H A0H BR_MISP_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired mispredicted indirect
near calls.

89H C1H BR_MISP_EXEC.ALL_CONDITIO
NAL

Speculative and retired mispredicted conditional
branches.

89H C4H BR_MISP_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired mispredicted indirect
branches excluding calls and returns.

89H D0H BR_MISP_EXEC.ALL_NEAR_CA
LL

Speculative and retired mispredicted direct near
calls.

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Speculative and retired mispredicted branches.

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back-end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 02H RESOURCE_STALLS.LB Counts the cycles of stall due to lack of load buffers.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FCSW Cycles stalled due to writing the FPU control word.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per
core.

PMC0-3 only.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-73

PERFORMANCE MONITORING EVENTS

A3H 05H CYCLE_ACTIVITY.STALL_CYCLE
S_L2_PENDING

PMC0-3 only.

A3H 06H CYCLE_ACTIVITY.STALL_CYCLE
S_L1D_PENDING

PMC2 only.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 02H DSB_FILL.OTHER_CANCEL Cases of cancelling valid DSB fill not because of
exceeding way limit.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes; includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

PMC0-3 only regardless
HTT.

B1H 02H UOPS_DISPATCHED.CORE Counts total number of uops to be dispatched per-
core each cycle.

Do not need to set ANY.

B2H 01H OFFCORE_REQUESTS_BUFFER
.SQ_FULL

Offcore requests buffer cannot take more entries
for this thread core.

B6H 01H AGU_BYPASS_CANCEL.COUNT Counts executed load operations with all the
following traits: 1. Addressing of the format [base +
offset], 2. The offset is between 1 and 2047, 3. The
address specified in the base register is in one page
and the address [base+offset] is in another page.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

BFH 05H L1D_BLOCKS.BANK_CONFLICT
_CYCLES

Cycles when dispatched loads are cancelled due to
L1D bank conflicts with other load ports.

Cmask=1.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only; must quiesce
other PMCs.

C1H 02H OTHER_ASSISTS.ITLB_MISS_R
ETIRED

Instructions that experienced an ITLB miss.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-74 Vol. 3B

PERFORMANCE MONITORING EVENTS

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call
instructions retired.

Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 assists due to output value.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-75

PERFORMANCE MONITORING EVENTS

CAH 04H FP_ASSIST.X87_INPUT Number of X87 assists due to input value.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.
PMC3 only.

Specify threshold in MSR
3F6H.

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.3.4.4.3.

D0H 11H MEM_UOPS_RETIRED.STLB_MI
SS_LOADS

Retired load uops that miss the STLB. Supports PEBS. PMC0-3
only regardless HTT.

D0H 12H MEM_UOPS_RETIRED.STLB_MI
SS_STORES

Retired store uops that miss the STLB. Supports PEBS. PMC0-3
only regardless HTT.

D0H 21H MEM_UOPS_RETIRED.LOCK_LO
ADS

Retired load uops with locked access. Supports PEBS. PMC0-3
only regardless HTT.

D0H 41H MEM_UOPS_RETIRED.SPLIT_L
OADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 42H MEM_UOPS_RETIRED.SPLIT_S
TORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 81H MEM_UOPS_RETIRED.ALL_LOA
DS

All retired load uops. Supports PEBS. PMC0-3
only regardless HTT.

D0H 82H MEM_UOPS_RETIRED.ALL_STO
RES

All retired store uops. Supports PEBS. PMC0-3
only regardless HTT.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS. PMC0-3
only regardless HTT.

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS.

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops which data sources were data hits
in LLC without snoops required.

Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Retired load uops which data sources were data
missed LLC (excluding unknown data source).

Supports PEBS.

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-76 Vol. 3B

PERFORMANCE MONITORING EVENTS

Non-architecture performance monitoring events in the processor core that are applicable only to Intel processors
with CPUID signature of DisplayFamily_DisplayModel 06_2AH are listed in Table 19-16.

E6H 01H BACLEARS.ANY Counts the number of times the front end is re-
steered, mainly when the BPU cannot provide a
correct prediction and this is corrected by other
branch handling mechanisms at the front end.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that access L2 cache. Including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by L2 prefetch.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by L2 prefetch.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ.

Table 19-16. Performance Events applicable only to the Processor core for 2nd Generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit and
cross-core snoop missed in on-pkg core cache.

Supports PEBS. PMC0-
3 only regardless HTT.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and
cross-core snoop hits in on-pkg core cache.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared LLC.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in LLC
without snoops required.

Supports PEBS.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-77

PERFORMANCE MONITORING EVENTS

D4H 02H MEM_LOAD_UOPS_MISC_RETI
RED.LLC_MISS

Retired load uops with unknown information as data
source in cache serviced the load.

Supports PEBS. PMC0-
3 only regardless HTT.

B7H/BBH 01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0,
1) programmed using MSR 01A6H/01A7H with values
shown in the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 10003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 300400244H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0091H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 300400091H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 300400240H

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 300400090H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0120H

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 2003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 300400120H

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 3004003F7H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 2003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 300400122H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 300400004H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 300400001H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0002H

Table 19-16. Performance Events applicable only to the Processor core for 2nd Generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-78 Vol. 3B

PERFORMANCE MONITORING EVENTS

Non-architecture performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 family (and Intel Core i7-3930 processor) based on Intel microarchitecture code name Sandy Bridge,
with CPUID signature of DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-17.

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 2003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 300400002H

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 18000H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 300400040H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 300400010H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 2003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 300400020H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 300400200H

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 300400080H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 2003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 300400100H

Table 19-17. Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Additional Configuration: Disable BL bypass and direct2core, and if the memory
is remotely homed. The count is not reliable If the memory is locally homed.

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Additional Configuration: Disable BL bypass. Supports PEBS.

Table 19-16. Performance Events applicable only to the Processor core for 2nd Generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-79

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Intel microarchitecture code name Sandy Bridge.
Processors with CPUID signature of DisplayFamily_DisplayModel 06_2AH support performance events listed in
Table 19-18.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Additional Configuration: Disable BL bypass and direct2core. Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Additional Configuration: Disable bypass. Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Additional Configuration: Disable bypass. Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Additional Configuration: Disable bypass. Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Additional Configuration: Disable bypass. Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources were data
missed LLC but serviced by local DRAM. Supports
PEBS.

Disable BL bypass and
direct2core (see MSR
3C9H).

D3H 04H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.REMOTE_DRAM

Retired load uops which data sources were data
missed LLC but serviced by remote DRAM. Supports
PEBS.

Disable BL bypass and
direct2core (see MSR
3C9H).

B7H/BB
H

01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0,
1) programmed using MSR 01A6H/01A7H with values
shown in the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_DRAM_N 600400004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_DRAM_N 67F800004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HITM_N 107FC00004H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DRAM_N 67FC00001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_DRAM_N 600400001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_DRAM_N 67F800001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HITM_N 107FC00001H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0040H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM_N 67FC00010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DRAM_N 600400010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_DRAM_N 67F800010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HITM_N 107FC00010H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00200H

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00080H

Table 19-17. Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-80 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-18. Performance Events In the Processor Uncore for 2nd Generation
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with
one of the umask
values of 20H, 40H,
80H.

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due
to external snoop request.

Must combine with at
least one of 01H, 02H,
04H, 08H, 10H.22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due
to processor core memory request.

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due
to LLC eviction.

34H 01H UNC_CBO_CACHE_LOOKUP.M LLC lookup request that access cache and found line in
M-state.

Must combine with
one of the umask
values of 10H, 20H,
40H, 80H.

34H 02H UNC_CBO_CACHE_LOOKUP.E LLC lookup request that access cache and found line in
E-state.

34H 04H UNC_CBO_CACHE_LOOKUP.S LLC lookup request that access cache and found line in
S-state.

34H 08H UNC_CBO_CACHE_LOOKUP.I LLC lookup request that access cache and found line in
I-state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including
uncacheable, non-coherent requests. Must combine
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests
waiting for data returning from the memory controller.
Accounts for coherent and non-coherent requests
initiated by IA cores, processor graphic units, or LLC.

Counter 0 only.

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent
requests initiated by IA cores, processor graphic units,
or LLC.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include
full, partial, and LLC evictions.

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of LLC evictions allocated.

Vol. 3B 19-81

PERFORMANCE MONITORING EVENTS

19.9 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ I7 PROCESSOR
FAMILY AND INTEL® XEON® PROCESSOR FAMILY

Processors based on the Intel microarchitecture code name Nehalem support the architectural and model-specific
performance monitoring events listed in Table 19-1 and Table 19-19. The events in Table 19-19 generally applies to
processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_1AH,
06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID signature of
DisplayFamily_DisplayModel 06_2EH have a small number of events that are not supported in processors with
CPUID signature 06_1AH, 06_1EH, and 06_1FH. These events are noted in the comment column.

In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 06_1AH, 06_1EH, 06_1FH) also
support the following model-specific, product-specific uncore performance monitoring events listed in Table 19-20.

Fixed counters in the core PMU support the architecture events defined in Table 19-2.

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in
Coherency Tracker.

Counter 0 only.

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:
1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO*

events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer drains.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement
block code. The following loads need to be executed
at retirement and wait for all senior stores on the
same thread to be drained: load splitting across 4K
boundary (page split), load accessing uncacheable
(UC or WC) memory, load lock, and load with page
table in UC or WC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Counts number of completed page walks due to load
miss in the STLB.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low
part of the linear to physical address translation
was missed.

08H 80H DTLB_LOAD_MISSES.LARGE_W
ALK_COMPLETED

Counts number of completed large page walks due
to load miss in the STLB.

Table 19-18. Performance Events In the Processor Uncore for 2nd Generation
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

19-82 Vol. 3B

PERFORMANCE MONITORING EVENTS

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an
architecturally-visible load retired on the
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an
architecturally-visible store retired on the
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the
latency specified with ld_lat facility.

In conjunction with ld_lat
facility.

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that
missed the DTLB. The DTLB miss is not counted if
the store operation causes a fault. Does not counter
prefetches. Counts both primary and secondary
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register
Allocation Table to the Reservation Station, i.e. the
UOPs issued from the front end to the back end.

0EH 01H UOPS_ISSUED.STALLED_CYCLE
S

Counts the number of cycles no Uops issued by the
Register Allocation Table to the Reservation
Station, i.e. the UOPs issued from the front end to
the back end.

Set “invert=1, cmask =
1“.

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued
from the Register Allocation Table to the
Reservation Station.

0FH 01H MEM_UNCORE_RETIRED.L3_D
ATA_MISS_UNKNOWN

Counts number of memory load instructions retired
where the memory reference missed L3 and data
source is unknown.

Available only for CPUID
signature 06_2EH.

0FH 02H MEM_UNCORE_RETIRED.OTHE
R_CORE_L2_HITM

Counts number of memory load instructions retired
where the memory reference hit modified data in a
sibling core residing on the same socket.

0FH 08H MEM_UNCORE_RETIRED.REMO
TE_CACHE_LOCAL_HOME_HIT

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and HIT in a remote socket's cache. Only
counts locally homed lines.

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and was remotely homed. This includes
both DRAM access and HITM in a remote socket's
cache for remotely homed lines.

0FH 20H MEM_UNCORE_RETIRED.LOCA
L_DRAM

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and required a local socket memory
reference. This includes locally homed cachelines
that were in a modified state in another socket.

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and to perform I/O.

Available only for CPUID
signature 06_2EH.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-83

PERFORMANCE MONITORING EVENTS

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops
Executed. The number of FADD, FSUB, FCOM,
FMULs, integer MULs and IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs. This event does
not distinguish an FADD used in the middle of a
transcendental flow from a separate FADD
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply
operations.

12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical
operations.

12H 20H SIMD_INT_128.PACKED_ARITH Counts number of 128 bit SIMD integer arithmetic
operations.

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the
Reservation Station that bypass the Memory Order
Buffer.

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the
stage latch. If an RS dispatch cannot bypass to LB, it
has another chance to dispatch from the one-cycle
delayed staging latch before it is written into the
LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation
Station.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-84 Vol. 3B

PERFORMANCE MONITORING EVENTS

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy
executing divide or square root operations. The
divide can be integer, X87 or Streaming SIMD
Extensions (SSE). The square root operation can be
either X87 or SSE.

Set 'edge =1, invert=1, cmask=1' to count the
number of divides.

Count may be incorrect
When SMT is on.

14H 02H ARITH.MUL Counts the number of multiply operations executed.
This includes integer as well as floating point
multiply operations but excludes DPPS mul and
MPSAD.

Count may be incorrect
When SMT is on.

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the
instruction queue every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that require decoder
0 to be decoded. Usually, this means that the
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was
decoded.

1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during
which instructions are written to the instruction
queue. Dividing this counter by the number of
instructions written to the instruction queue
(INST_QUEUE_WRITES) yields the average number
of instructions decoded each cycle. If this number is
less than four and the pipe stalls, this indicates that
the decoder is failing to decode enough instructions
per cycle to sustain the 4-wide pipeline.

If SSE* instructions that
are 6 bytes or longer
arrive one after another,
then front end
throughput may limit
execution speed.

20H 01H LSD_OVERFLOW Counts number of loops that can’t stream from the
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2
loads include both L1D demand misses as well as
L1D prefetches. L2 loads can be rejected for various
reasons. Only non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache.
L2 loads include both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both
L1D demand misses as well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.
Count includes WC memory requests, where the
data is not fetched but the permission to write the
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-85

PERFORMANCE MONITORING EVENTS

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests
include both L1D demand RFO misses as well as
L1D RFO prefetches.

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches
include both L1I demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.

24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss. L2 demand loads are both L1D demand
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the S (shared) state. L2
demand loads are both L1D demand misses and L1D
prefetches.

26H 04H L2_DATA_RQSTS.DEMAND.E_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the E (exclusive) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the M (modified) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand
loads are both L1D demand misses and L1D
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the S (shared) state. A
prefetch RFO will miss on an S state line, while a
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the E (exclusive) state.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-86 Vol. 3B

PERFORMANCE MONITORING EVENTS

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e., a cache miss. The L1D prefetcher does
not issue a RFO prefetch.

This is a demand RFO
request.

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the S (shared) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the M (modified) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the
cache line to be loaded is in either the S, E or M
states. The L1D prefetcher does not issue a RFO
prefetch.

This is a demand RFO
request.

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests. The L1D
prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the I (invalid)
state, for example, a cache miss.

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the E
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the M
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in either the S,
E, or M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the I (invalid) state,
i.e., a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the E (exclusive)
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the M (modified)
state.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-87

PERFORMANCE MONITORING EVENTS

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFERENCE This event counts requests originating from the
core that reference a cache line in the last level
cache. The event count includes speculative traffic
but excludes cache line fills due to a L2 hardware-
prefetch. Because cache hierarchy, cache sizes and
other implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache. The event count
may include speculative traffic but excludes cache
line fills due to L2 hardware-prefetches. Because
cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not
halted.

See Table 19-1.

40H 01H L1D_CACHE_LD.I_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the I (invalid) state, i.e.
the read request missed the cache.

Counter 0, 1 only.

40H 02H L1D_CACHE_LD.S_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only.

40H 04H L1D_CACHE_LD.E_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only.

40H 08H L1D_CACHE_LD.M_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only.

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only.

41H 02H L1D_CACHE_ST.S_STATE Counts L1 data cache store RFO requests where the
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only.

41H 04H L1D_CACHE_ST.E_STATE Counts L1 data cache store RFO requests where the
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only.

41H 08H L1D_CACHE_ST.M_STATE Counts L1 data cache store RFO requests where
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only.

42H 01H L1D_CACHE_LOCK.HIT Counts retired load locks that hit in the L1 data
cache or hit in an already allocated fill buffer. The
lock portion of the load lock transaction must hit in
the L1D.

The initial load will pull
the lock into the L1 data
cache. Counter 0, 1 only.

42H 02H L1D_CACHE_LOCK.S_STATE Counts L1 data cache retired load locks that hit the
target cache line in the shared state.

Counter 0, 1 only.

42H 04H L1D_CACHE_LOCK.E_STATE Counts L1 data cache retired load locks that hit the
target cache line in the exclusive state.

Counter 0, 1 only.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-88 Vol. 3B

PERFORMANCE MONITORING EVENTS

42H 08H L1D_CACHE_LOCK.M_STATE Counts L1 data cache retired load locks that hit the
target cache line in the modified state.

Counter 0, 1 only.

43H 01H L1D_ALL_REF.ANY Counts all references (uncached, speculated and
retired) to the L1 data cache, including all loads and
stores with any memory types. The event counts
memory accesses only when they are actually
performed. For example, a load blocked by unknown
store address and later performed is only counted
once.

The event does not
include non-memory
accesses, such as I/O
accesses. Counter 0, 1
only.

43H 02H L1D_ALL_REF.CACHEABLE Counts all data reads and writes (speculated and
retired) from cacheable memory, including locked
operations.

Counter 0, 1 only.

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which
causes a page walk.

49H 02H DTLB_MISSES.WALK_COMPLET
ED

Counts number of misses in the STLB which
resulted in a completed page walk.

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that
hit in the second level TLB. This event is only
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of
address, includes references to 2M pages because
2M pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of misses in the STLB which
resulted in a completed page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache
while a previous SSE prefetch instruction to the
same cache line has started prefetching but has not
yet finished.

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests
dispatched out of the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that
miss the L1D. There are two prefetchers in the L1D.
A streamer, which predicts lines sequentially after
this one should be fetched, and the IP prefetcher
that remembers access patterns for the current
instruction. The streamer prefetcher stops on an
L1D hit, while the IP prefetcher does not.

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by
the Finite State Machine and pushed into the
prefetch FIFO. Some of the prefetch requests are
dropped due to overwrites or competition between
the IP index prefetcher and streamer prefetcher.
The prefetch FIFO contains 4 entries.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data
cache.

Counter 0, 1 only.

51H 02H L1D.M_REPL Counts the number of modified lines brought into
the L1 data cache.

Counter 0, 1 only.

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Counter 0, 1 only.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-89

PERFORMANCE MONITORING EVENTS

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only.

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock
speculated instructions accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_FB_HIT Counts the number of cacheable load lock
speculated or retired instructions accepted into the
fill buffer.

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.
A lock is asserted when there is a locked memory
access, due to uncacheable memory, a locked
operation that spans two cache lines, or a page walk
from an uncacheable page table.

Counter 0, 1 only. L1D
and L2 locks have a very
high performance
penalty and it is highly
recommended to avoid
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1
instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I
cache. This includes instruction cache misses,
streaming buffer misses, victim cache misses and
uncacheable fetches. An instruction fetch miss is
counted only once and not once for every cycle it is
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB
which resulted in a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to
length changing prefixes: 66, 67 or REX.W (for Intel
64) instructions which change the length of the
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand
Prediction Unit (PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch
instructions executed, but not necessarily retired.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-90 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NON
_CALL

Counts the number of executed indirect near
branch instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non-call near branch instructions
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions,
excluding non-call branch, executed.

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register
and memory indirect, executed.

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed, but not
necessarily retired.

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily
retired). This includes only instructions and not
micro-op branches. Frequent branching is not
necessarily a major performance issue. However
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near
branch instructions executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near
branch instructions, excluding calls and indirect
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non-call near branches
executed, but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NEA
R_CALL

Counts mispredicted indirect near calls executed,
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed,
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch
instructions that were executed, but not
necessarily retired.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-91

PERFORMANCE MONITORING EVENTS

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related
stalls. Includes register renaming buffer entries,
memory buffer entries. In addition to resource
related stalls, this event counts some other events.
Includes stalls arising during branch misprediction
recovery, such as if retirement of the mispredicted
branch is delayed and stalls arising while store
buffer is draining from synchronizing operations.

Does not include stalls
due to SuperQ (off core)
queue full, too many
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer
for load operation.

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the
number of instructions in the pipeline waiting for
execution reaches the limit the processor can
handle. A high count of this event indicates that
there are long latency operations in the pipe
(possibly load and store operations that miss the L2
cache, or instructions dependent upon instructions
further down the pipeline that have yet to retire.

When RS is full, new
instructions cannot enter
the reservation station
and start execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a
resource related stall will occur due to the number
of store instructions reaching the limit of the
pipeline, (i.e. all store buffers are used). The stall
ends when a store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU)
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring
to close to a previous MXCSR rename. The MXCSR
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are
macro-fused but not necessarily executed or
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by
the Instruction Queue. The IQ is also responsible for
providing conditional branch prediction direction
based on a static scheme and dynamic data
provided by the L2 Branch Prediction Unit. If the
conditional branch target is not found in the Target
Array and the IQ predicts that the branch is taken,
then the IQ will force the Branch Address Calculator
to issue a BACLEAR. Each BACLEAR asserted by the
BAC generates approximately an 8 cycle bubble in
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop
stream detector.

Use cmask=1 and invert
to count cycles.

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-92 Vol. 3B

PERFORMANCE MONITORING EVENTS

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of uops executed that were issued
on port 0. Port 0 handles integer arithmetic, SIMD
and FP add uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of uops executed that were issued
on port 1. Port 1 handles integer arithmetic, SIMD,
integer shift, FP multiply and FP divide uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of uops executed that were issued
on port 2. Port 2 handles the load uops. This is a
core count only and cannot be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of uops executed that were issued
on port 3. Port 3 handles store uops. This is a core
count only and cannot be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of uops executed that where issued
on port 4. Port 4 handles the value to be stored for
the store uops issued on port 3. This is a core count
only and cannot be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES_NO_PORT5

Counts cycles when the uops executed were issued
from any ports except port 5. Use Cmask=1 for
active cycles; Cmask=0 for weighted cycles. Use
CMask=1, Invert=1 to count P0-4 stalled cycles. Use
Cmask=1, Edge=1, Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of uops executed that where issued
on port 5.

B1H 3FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES

Counts cycles when the uops are executing. Use
Cmask=1 for active cycles; Cmask=0 for weighted
cycles. Use CMask=1, Invert=1 to count P0-4 stalled
cycles. Use Cmask=1, Edge=1, Invert=1 to count P0-
4 stalls.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of uops executed that where issued
on port 0, 1, or 5.

Use cmask=1, invert=1
to count stall cycles.

B1H 80H UOPS_EXECUTED.PORT234 Counts number of uops executed that where issued
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.1.1.3, “Off-core Response
Performance Monitoring in the Processor Core”.

Requires programming
MSR 01A6H.

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.6.3, “Performance Monitoring
(Processors Based on Intel NetBurst®
Microarchitecture)”.

Requires programming
MSR 01A7H.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-93

PERFORMANCE MONITORING EVENTS

C0H 00H INST_RETIRED.ANY_P See Table 19-1.

Notes: INST_RETIRED.ANY is counted by a
designated fixed counter. INST_RETIRED.ANY_P is
counted by a programmable counter and is an
architectural performance event. Event is
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting
executions of
GETSEC/VM entry/VM
Exit/MWait will not count
as retired instructions.

C0H 02H INST_RETIRED.X87 Counts the number of MMX instructions retired.

C0H 04H INST_RETIRED.MMX Counts the number of floating point computational
operations retired: floating point computational
operations executed by the assist handler and sub-
operations of complex floating point instructions
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count
of 8 per cycle). Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as repeat
instructions, floating point transcendental
instructions, and assists.

Use cmask=1 and invert
to count active cycles or
stalled cycles.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section. Self-modifying code causes a
severe penalty in all Intel 64 and IA-32 processors.
The modified cache line is written back to the L2
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near
unconditional calls retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near
unconditional retired calls.

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating point
Uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD scalar single-precision floating point
Uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating point
Uops retired.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-94 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating point
Uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data
cache.

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own,
unshared lines in the L3 cache.

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling
core's L2 (on die core). Since the L3 is inclusive of all
cores on the package, this is an L3 hit. This counts
both clean and modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3
cache. The load was satisfied by a remote socket,
local memory or an IOH.

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D
and the address is located in an allocated line fill
buffer and will soon be committed to cache. This is
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load
operation causes a fault. This event counts loads
from cacheable memory only. The event does not
count loads by software prefetches. Counts both
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following
any MMX instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a
floating-point instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX
instructions and from MMX instructions to floating
point instructions. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but
not necessarily executed or retired).

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the
Microcode Sequencer, MS. The MS delivers uops
when the instruction is more than 4 uops long or a
microcode assist is occurring.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-95

PERFORMANCE MONITORING EVENTS

D1H 04H UOPS_DECODED.ESP_FOLDING Counts number of stack pointer (ESP) instructions
decoded: push, pop, call, ret, etc. ESP instructions do
not generate a Uop to increment or decrement ESP.
Instead, they update an ESP_Offset register that
keeps track of the delta to the current value of the
ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync
operations where an ESP instruction is corrected by
adding the ESP offset register to the current value
of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which
execution stalled due to several reasons, one of
which is a partial flag register stall. A partial register
stall may occur when two conditions are met: 1) an
instruction modifies some, but not all, of the flags in
the flag register and 2) the next instruction, which
depends on flags, depends on flags that were not
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction
execution latency became longer than the defined
latency because the instruction used a register that
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops
to enter the out-of-order pipeline. Note that, at this
stage in the pipeline, additional stalls may occur at
the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops
retry entering the execution pipe in the next cycle
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to
microarchitecturally required serialization.
Microcode scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due
to: Cycles when ROB read port stalls occurred,
which did not allow new micro-ops to enter the
execution pipe. Cycles when partial register stalls
occurred. Cycles when flag stalls occurred. Cycles
floating-point unit (FPU) status word stalls occurred.
To count each of these conditions separately use
the events: RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of
renaming resources for the ES, DS, FS, and GS
segment registers. If a segment is renamed but not
retired and a second update to the same segment
occurs, a stall occurs in the front end of the pipeline
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment
register is renamed.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-96 Vol. 3B

PERFORMANCE MONITORING EVENTS

DBH 01H UOP_UNFUSION Counts unfusion events due to floating-point
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded.

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediction Unit
missed predicting a call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is
resteered, mainly when the Branch Prediction Unit
cannot provide a correct prediction and this is
corrected by the Branch Address Calculator at the
front end. This can occur if the code has many
branches such that they cannot be consumed by
the BPU. Each BACLEAR asserted by the BAC
generates approximately an 8 cycle bubble in the
instruction fetch pipeline. The effect on total
execution time depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears
(BACLEAR) asserted due to conditional branch
instructions in which there was a target hit but the
direction was wrong. Each BACLEAR asserted by
the BAC generates approximately an 8 cycle bubble
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears:
BPU predicted a taken branch after incorrectly
assuming that it was not taken.

The BPU clear leads to 2
cycle bubble in the front
end.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to
Most Recently Used conflicts. The PBU clear leads
to a 3 cycle bubble in the front end.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or
demand loads.

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETCH Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO,
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the
L2 cache in the S (shared) state.

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the
L2 cache in the E (exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the
L2 cache.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand
request.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-97

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Intel microarchitecture code name Nehalem.
Processors with CPUID signature of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table 19-20.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CLE
AN

Counts L2 clean cache line evicted by a prefetch
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full. Neither of the
threads on this core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations
executed that required micro-code assist
intervention. Assists are required in the following
cases: SSE instructions (denormal input when the
DAZ flag is off or underflow result when the FTZ
flag is off); x87 instructions (NaN or denormal are
loaded to a register or used as input from memory,
division by 0 or underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist
when the output value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist
when the input value (one of the source operands
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move
operations.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-98 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FULL.READ_
TRACKER

Uncore cycles Global Queue read tracker is full.

00H 02H UNC_GQ_CYCLES_FULL.WRITE
_TRACKER

Uncore cycles Global Queue write tracker is full.

00H 04H UNC_GQ_CYCLES_FULL.PEER_
PROBE_TRACKER

Uncore cycles Global Queue peer probe tracker is full.
The peer probe tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NOT_EMPTY
.READ_TRACKER

Uncore cycles were Global Queue read tracker has at
least one valid entry.

01H 02H UNC_GQ_CYCLES_NOT_EMPTY
.WRITE_TRACKER

Uncore cycles were Global Queue write tracker has at
least one valid entry.

01H 04H UNC_GQ_CYCLES_NOT_EMPTY
.PEER_PROBE_TRACKER

Uncore cycles were Global Queue peer probe tracker
has at least one valid entry. The peer probe tracker
queue tracks IOH and remote socket snoops.

03H 01H UNC_GQ_ALLOC.READ_TRACK
ER

Counts the number of tread tracker allocate to
deallocate entries. The GQ read tracker allocate to
deallocate occupancy count is divided by the count to
obtain the average read tracker latency.

03H 02H UNC_GQ_ALLOC.RT_L3_MISS Counts the number GQ read tracker entries for which a
full cache line read has missed the L3. The GQ read
tracker L3 miss to fill occupancy count is divided by
this count to obtain the average cache line read L3
miss latency. The latency represents the time after
which the L3 has determined that the cache line has
missed. The time between a GQ read tracker allocation
and the L3 determining that the cache line has missed
is the average L3 hit latency. The total L3 cache line
read miss latency is the hit latency + L3 miss latency.

03H 04H UNC_GQ_ALLOC.RT_TO_L3_RE
SP

Counts the number of GQ read tracker entries that are
allocated in the read tracker queue that hit or miss the
L3. The GQ read tracker L3 hit occupancy count is
divided by this count to obtain the average L3 hit
latency.

03H 08H UNC_GQ_ALLOC.RT_TO_RTID_
ACQUIRED

Counts the number of GQ read tracker entries that are
allocated in the read tracker, have missed in the L3
and have not acquired a Request Transaction ID. The
GQ read tracker L3 miss to RTID acquired occupancy
count is divided by this count to obtain the average
latency for a read L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_TO_RTID
_ACQUIRED

Counts the number of GQ write tracker entries that
are allocated in the write tracker, have missed in the
L3 and have not acquired a Request Transaction ID.
The GQ write tracker L3 miss to RTID occupancy count
is divided by this count to obtain the average latency
for a write L3 miss to acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRITE_TRAC
KER

Counts the number of GQ write tracker entries that
are allocated in the write tracker queue that miss the
L3. The GQ write tracker occupancy count is divided by
this count to obtain the average L3 write miss latency.

Vol. 3B 19-99

PERFORMANCE MONITORING EVENTS

03H 40H UNC_GQ_ALLOC.PEER_PROBE
_TRACKER

Counts the number of GQ peer probe tracker (snoop)
entries that are allocated in the peer probe tracker
queue that miss the L3. The GQ peer probe occupancy
count is divided by this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM_QPI Cycles Global Queue Quickpath Interface input data
port is busy importing data from the Quickpath
Interface. Each cycle the input port can transfer 8 or
16 bytes of data.

04H 02H UNC_GQ_DATA.FROM_QMC Cycles Global Queue Quickpath Memory Interface input
data port is busy importing data from the Quickpath
Memory Interface. Each cycle the input port can
transfer 8 or 16 bytes of data.

04H 04H UNC_GQ_DATA.FROM_L3 Cycles GQ L3 input data port is busy importing data
from the Last Level Cache. Each cycle the input port
can transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM_CORES_
02

Cycles GQ Core 0 and 2 input data port is busy
importing data from processor cores 0 and 2. Each
cycle the input port can transfer 32 bytes of data.

04H 10H UNC_GQ_DATA.FROM_CORES_
13

Cycles GQ Core 1 and 3 input data port is busy
importing data from processor cores 1 and 3. Each
cycle the input port can transfer 32 bytes of data.

05H 01H UNC_GQ_DATA.TO_QPI_QMC Cycles GQ QPI and QMC output data port is busy
sending data to the Quickpath Interface or Quickpath
Memory Interface. Each cycle the output port can
transfer 32 bytes of data.

05H 02H UNC_GQ_DATA.TO_L3 Cycles GQ L3 output data port is busy sending data to
the Last Level Cache. Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_CORES Cycles GQ Core output data port is busy sending data
to the Cores. Each cycle the output port can transfer
32 bytes of data.

06H 01H UNC_SNP_RESP_TO_LOCAL_H
OME.I_STATE

Number of snoop responses to the local home that L3
does not have the referenced cache line.

06H 02H UNC_SNP_RESP_TO_LOCAL_H
OME.S_STATE

Number of snoop responses to the local home that L3
has the referenced line cached in the S state.

06H 04H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_S_STATE

Number of responses to code or data read snoops to
the local home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the local
home in the S state.

06H 08H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_I_STATE

Number of responses to read invalidate snoops to the
local home that the L3 has the referenced cache line in
the M state. The L3 cache line state is invalidated and
the line is forwarded to the local home in the M state.

06H 10H UNC_SNP_RESP_TO_LOCAL_H
OME.CONFLICT

Number of conflict snoop responses sent to the local
home.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-100 Vol. 3B

PERFORMANCE MONITORING EVENTS

06H 20H UNC_SNP_RESP_TO_LOCAL_H
OME.WB

Number of responses to code or data read snoops to
the local home that the L3 has the referenced line
cached in the M state.

07H 01H UNC_SNP_RESP_TO_REMOTE
_HOME.I_STATE

Number of snoop responses to a remote home that L3
does not have the referenced cache line.

07H 02H UNC_SNP_RESP_TO_REMOTE
_HOME.S_STATE

Number of snoop responses to a remote home that L3
has the referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_REMOTE
_HOME.FWD_S_STATE

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the remote
home in the S state.

07H 08H UNC_SNP_RESP_TO_REMOTE
_HOME.FWD_I_STATE

Number of responses to read invalidate snoops to a
remote home that the L3 has the referenced cache
line in the M state. The L3 cache line state is
invalidated and the line is forwarded to the remote
home in the M state.

07H 10H UNC_SNP_RESP_TO_REMOTE
_HOME.CONFLICT

Number of conflict snoop responses sent to the local
home.

07H 20H UNC_SNP_RESP_TO_REMOTE
_HOME.WB

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced line
cached in the M state.

07H 24H UNC_SNP_RESP_TO_REMOTE
_HOME.HITM

Number of HITM snoop responses to a remote home.

08H 01H UNC_L3_HITS.READ Number of code read, data read and RFO requests that
hit in the L3.

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that hit in the L3.
Writebacks from the cores will always result in L3 hits
due to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote sockets that hit
in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and RFO requests that
miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that miss the L3.
Should always be zero as writebacks from the cores
will always result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote sockets that
miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss the L3.

0AH 01H UNC_L3_LINES_IN.M_STATE Counts the number of L3 lines allocated in M state. The
only time a cache line is allocated in the M state is
when the line was forwarded in M state is forwarded
due to a Snoop Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_STATE Counts the number of L3 lines allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_STATE Counts the number of L3 lines allocated in S state.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-101

PERFORMANCE MONITORING EVENTS

0AH 08H UNC_L3_LINES_IN.F_STATE Counts the number of L3 lines allocated in F state.

0AH 0FH UNC_L3_LINES_IN.ANY Counts the number of L3 lines allocated in any state.

0BH 01H UNC_L3_LINES_OUT.M_STATE Counts the number of L3 lines victimized that were in
the M state. When the victim cache line is in M state,
the line is written to its home cache agent which can
be either local or remote.

0BH 02H UNC_L3_LINES_OUT.E_STATE Counts the number of L3 lines victimized that were in
the E state.

0BH 04H UNC_L3_LINES_OUT.S_STATE Counts the number of L3 lines victimized that were in
the S state.

0BH 08H UNC_L3_LINES_OUT.I_STATE Counts the number of L3 lines victimized that were in
the I state.

0BH 10H UNC_L3_LINES_OUT.F_STATE Counts the number of L3 lines victimized that were in
the F state.

0BH 1FH UNC_L3_LINES_OUT.ANY Counts the number of L3 lines victimized in any state.

20H 01H UNC_QHL_REQUESTS.IOH_RE
ADS

Counts number of Quickpath Home Logic read
requests from the IOH.

20H 02H UNC_QHL_REQUESTS.IOH_WR
ITES

Counts number of Quickpath Home Logic write
requests from the IOH.

20H 04H UNC_QHL_REQUESTS.REMOTE
_READS

Counts number of Quickpath Home Logic read
requests from a remote socket.

20H 08H UNC_QHL_REQUESTS.REMOTE
_WRITES

Counts number of Quickpath Home Logic write
requests from a remote socket.

20H 10H UNC_QHL_REQUESTS.LOCAL_
READS

Counts number of Quickpath Home Logic read
requests from the local socket.

20H 20H UNC_QHL_REQUESTS.LOCAL_
WRITES

Counts number of Quickpath Home Logic write
requests from the local socket.

21H 01H UNC_QHL_CYCLES_FULL.IOH Counts uclk cycles all entries in the Quickpath Home
Logic IOH are full.

21H 02H UNC_QHL_CYCLES_FULL.REM
OTE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker are full.

21H 04H UNC_QHL_CYCLES_FULL.LOCA
L

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker are full.

22H 01H UNC_QHL_CYCLES_NOT_EMPT
Y.IOH

Counts uclk cycles all entries in the Quickpath Home
Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_NOT_EMPT
Y.REMOTE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker is busy.

22H 04H UNC_QHL_CYCLES_NOT_EMPT
Y.LOCAL

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker is busy.

23H 01H UNC_QHL_OCCUPANCY.IOH QHL IOH tracker allocate to deallocate read occupancy.

23H 02H UNC_QHL_OCCUPANCY.REMOT
E

QHL remote tracker allocate to deallocate read
occupancy.

23H 04H UNC_QHL_OCCUPANCY.LOCAL QHL local tracker allocate to deallocate read
occupancy.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-102 Vol. 3B

PERFORMANCE MONITORING EVENTS

24H 02H UNC_QHL_ADDRESS_CONFLIC
TS.2WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 2 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

24H 04H UNC_QHL_ADDRESS_CONFLIC
TS.3WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 3 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

25H 01H UNC_QHL_CONFLICT_CYCLES.I
OH

Counts cycles the Quickpath Home Logic IOH Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

25H 02H UNC_QHL_CONFLICT_CYCLES.
REMOTE

Counts cycles the Quickpath Home Logic Remote
Tracker contains two or more requests with an
address conflict. A max of 3 requests can be in conflict.

25H 04H UNC_QHL_CONFLICT_CYCLES.
LOCAL

Counts cycles the Quickpath Home Logic Local Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

26H 01H UNC_QHL_TO_QMC_BYPASS Counts number or requests to the Quickpath Memory
Controller that bypass the Quickpath Home Logic. All
local accesses can be bypassed. For remote requests,
only read requests can be bypassed.

27H 01H UNC_QMC_NORMAL_FULL.RE
AD.CH0

Uncore cycles all the entries in the DRAM channel 0
medium or low priority queue are occupied with read
requests.

27H 02H UNC_QMC_NORMAL_FULL.RE
AD.CH1

Uncore cycles all the entries in the DRAM channel 1
medium or low priority queue are occupied with read
requests.

27H 04H UNC_QMC_NORMAL_FULL.RE
AD.CH2

Uncore cycles all the entries in the DRAM channel 2
medium or low priority queue are occupied with read
requests.

27H 08H UNC_QMC_NORMAL_FULL.WRI
TE.CH0

Uncore cycles all the entries in the DRAM channel 0
medium or low priority queue are occupied with write
requests.

27H 10H UNC_QMC_NORMAL_FULL.WRI
TE.CH1

Counts cycles all the entries in the DRAM channel 1
medium or low priority queue are occupied with write
requests.

27H 20H UNC_QMC_NORMAL_FULL.WRI
TE.CH2

Uncore cycles all the entries in the DRAM channel 2
medium or low priority queue are occupied with write
requests.

28H 01H UNC_QMC_ISOC_FULL.READ.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous
read requests.

28H 02H UNC_QMC_ISOC_FULL.READ.C
H1

Counts cycles all the entries in the DRAM channel
1high priority queue are occupied with isochronous
read requests.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-103

PERFORMANCE MONITORING EVENTS

28H 04H UNC_QMC_ISOC_FULL.READ.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous
read requests.

28H 08H UNC_QMC_ISOC_FULL.WRITE.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous
write requests.

28H 10H UNC_QMC_ISOC_FULL.WRITE.C
H1

Counts cycles all the entries in the DRAM channel 1
high priority queue are occupied with isochronous
write requests.

28H 20H UNC_QMC_ISOC_FULL.WRITE.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous
write requests.

29H 01H UNC_QMC_BUSY.READ.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
0.

29H 02H UNC_QMC_BUSY.READ.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
1.

29H 04H UNC_QMC_BUSY.READ.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
2.

29H 08H UNC_QMC_BUSY.WRITE.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
0.

29H 10H UNC_QMC_BUSY.WRITE.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
1.

29H 20H UNC_QMC_BUSY.WRITE.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
2.

2AH 01H UNC_QMC_OCCUPANCY.CH0 IMC channel 0 normal read request occupancy.

2AH 02H UNC_QMC_OCCUPANCY.CH1 IMC channel 1 normal read request occupancy.

2AH 04H UNC_QMC_OCCUPANCY.CH2 IMC channel 2 normal read request occupancy.

2BH 01H UNC_QMC_ISSOC_OCCUPANCY.
CH0

IMC channel 0 issoc read request occupancy.

2BH 02H UNC_QMC_ISSOC_OCCUPANCY.
CH1

IMC channel 1 issoc read request occupancy.

2BH 04H UNC_QMC_ISSOC_OCCUPANCY.
CH2

IMC channel 2 issoc read request occupancy.

2BH 07H UNC_QMC_ISSOC_READS.ANY IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_READS.C
H0

Counts the number of Quickpath Memory Controller
channel 0 medium and low priority read requests. The
QMC channel 0 normal read occupancy divided by this
count provides the average QMC channel 0 read
latency.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-104 Vol. 3B

PERFORMANCE MONITORING EVENTS

2CH 02H UNC_QMC_NORMAL_READS.C
H1

Counts the number of Quickpath Memory Controller
channel 1 medium and low priority read requests. The
QMC channel 1 normal read occupancy divided by this
count provides the average QMC channel 1 read
latency.

2CH 04H UNC_QMC_NORMAL_READS.C
H2

Counts the number of Quickpath Memory Controller
channel 2 medium and low priority read requests. The
QMC channel 2 normal read occupancy divided by this
count provides the average QMC channel 2 read
latency.

2CH 07H UNC_QMC_NORMAL_READS.A
NY

Counts the number of Quickpath Memory Controller
medium and low priority read requests. The QMC
normal read occupancy divided by this count provides
the average QMC read latency.

2DH 01H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH0

Counts the number of Quickpath Memory Controller
channel 0 high priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH1

Counts the number of Quickpath Memory Controller
channel 1 high priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH2

Counts the number of Quickpath Memory Controller
channel 2 high priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRIORITY_RE
ADS.ANY

Counts the number of Quickpath Memory Controller
high priority isochronous read requests.

2EH 01H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH0

Counts the number of Quickpath Memory Controller
channel 0 critical priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH1

Counts the number of Quickpath Memory Controller
channel 1 critical priority isochronous read requests.

2EH 04H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH2

Counts the number of Quickpath Memory Controller
channel 2 critical priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_PRIORIT
Y_READS.ANY

Counts the number of Quickpath Memory Controller
critical priority isochronous read requests.

2FH 01H UNC_QMC_WRITES.FULL.CH0 Counts number of full cache line writes to DRAM
channel 0.

2FH 02H UNC_QMC_WRITES.FULL.CH1 Counts number of full cache line writes to DRAM
channel 1.

2FH 04H UNC_QMC_WRITES.FULL.CH2 Counts number of full cache line writes to DRAM
channel 2.

2FH 07H UNC_QMC_WRITES.FULL.ANY Counts number of full cache line writes to DRAM.

2FH 08H UNC_QMC_WRITES.PARTIAL.C
H0

Counts number of partial cache line writes to DRAM
channel 0.

2FH 10H UNC_QMC_WRITES.PARTIAL.C
H1

Counts number of partial cache line writes to DRAM
channel 1.

2FH 20H UNC_QMC_WRITES.PARTIAL.C
H2

Counts number of partial cache line writes to DRAM
channel 2.

2FH 38H UNC_QMC_WRITES.PARTIAL.A
NY

Counts number of partial cache line writes to DRAM.

30H 01H UNC_QMC_CANCEL.CH0 Counts number of DRAM channel 0 cancel requests.

30H 02H UNC_QMC_CANCEL.CH1 Counts number of DRAM channel 1 cancel requests.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-105

PERFORMANCE MONITORING EVENTS

30H 04H UNC_QMC_CANCEL.CH2 Counts number of DRAM channel 2 cancel requests.

30H 07H UNC_QMC_CANCEL.ANY Counts number of DRAM cancel requests.

31H 01H UNC_QMC_PRIORITY_UPDATE
S.CH0

Counts number of DRAM channel 0 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send
a priority update to QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY_UPDATE
S.CH1

Counts number of DRAM channel 1 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY_UPDATE
S.CH2

Counts number of DRAM channel 2 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send
a priority update to QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY_UPDATE
S.ANY

Counts number of DRAM priority updates. A priority
update occurs when an ISOC high or critical request is
received by the QHL and there is a matching request
with normal priority that has already been issued to
the QMC. In this instance, the QHL will send a priority
update to QMC to expedite the request.

33H 04H UNC_QHL_FRC_ACK_CNFLTS.L
OCAL

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
local home.

40H 01H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_0

Counts cycles the Quickpath outbound link 0 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 02H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_0

Counts cycles the Quickpath outbound link 0 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 04H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_0

Counts cycles the Quickpath outbound link 0 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 08H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_1

Counts cycles the Quickpath outbound link 1 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-106 Vol. 3B

PERFORMANCE MONITORING EVENTS

40H 10H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_1

Counts cycles the Quickpath outbound link 1 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 20H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_1

Counts cycles the Quickpath outbound link 1 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 07H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 38H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 01H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_0

Counts cycles the Quickpath outbound link 0 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 04H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 08H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_1

Counts cycles the Quickpath outbound link 1 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 10H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-107

PERFORMANCE MONITORING EVENTS

41H 20H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 07H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 38H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

42H 02H UNC_QPI_TX_HEADER.BUSY.LI
NK_0

Number of cycles that the header buffer in the
Quickpath Interface outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADER.BUSY.LI
NK_1

Number of cycles that the header buffer in the
Quickpath Interface outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_0

Number of cycles that snoop packets incoming to the
Quickpath Interface link 0 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

43H 02H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_1

Number of cycles that snoop packets incoming to the
Quickpath Interface link 1 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

60H 01H UNC_DRAM_OPEN.CH0 Counts number of DRAM Channel 0 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

60H 02H UNC_DRAM_OPEN.CH1 Counts number of DRAM Channel 1 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

60H 04H UNC_DRAM_OPEN.CH2 Counts number of DRAM Channel 2 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

61H 01H UNC_DRAM_PAGE_CLOSE.CH0 DRAM channel 0 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 02H UNC_DRAM_PAGE_CLOSE.CH1 DRAM channel 1 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_CLOSE.CH2 DRAM channel 2 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-108 Vol. 3B

PERFORMANCE MONITORING EVENTS

62H 01H UNC_DRAM_PAGE_MISS.CH0 Counts the number of precharges (PRE) that were
issued to DRAM channel 0 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_MISS.CH1 Counts the number of precharges (PRE) that were
issued to DRAM channel 1 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 04H UNC_DRAM_PAGE_MISS.CH2 Counts the number of precharges (PRE) that were
issued to DRAM channel 2 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_CAS.CH0 Counts the number of times a read CAS command was
issued on DRAM channel 0.

63H 02H UNC_DRAM_READ_CAS.AUTO
PRE_CH0

Counts the number of times a read CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

63H 04H UNC_DRAM_READ_CAS.CH1 Counts the number of times a read CAS command was
issued on DRAM channel 1.

63H 08H UNC_DRAM_READ_CAS.AUTO
PRE_CH1

Counts the number of times a read CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

63H 10H UNC_DRAM_READ_CAS.CH2 Counts the number of times a read CAS command was
issued on DRAM channel 2.

63H 20H UNC_DRAM_READ_CAS.AUTO
PRE_CH2

Counts the number of times a read CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

64H 01H UNC_DRAM_WRITE_CAS.CH0 Counts the number of times a write CAS command was
issued on DRAM channel 0.

64H 02H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH0

Counts the number of times a write CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

64H 04H UNC_DRAM_WRITE_CAS.CH1 Counts the number of times a write CAS command was
issued on DRAM channel 1.

64H 08H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH1

Counts the number of times a write CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

64H 10H UNC_DRAM_WRITE_CAS.CH2 Counts the number of times a write CAS command was
issued on DRAM channel 2.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-109

PERFORMANCE MONITORING EVENTS

Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH have a distinct uncore sub-
system that is significantly different from the uncore found in processors with CPUID signature 06_1AH, 06_1EH,
and 06_1FH. Model-specific performance monitoring events for its uncore will be available in future documenta-
tion.

19.10 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON
INTEL® MICROARCHITECTURE CODE NAME WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support the architectural and model-
specific performance monitoring events listed in Table 19-1 and Table 19-21. Table 19-21 applies to processors with
CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH. In addition,
these processors (CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH) also support the following
model-specific, product-specific uncore performance monitoring events listed in Table 19-22. Fixed counters
support the architecture events defined in Table 19-2.

64H 20H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH2

Counts the number of times a write CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

65H 01H UNC_DRAM_REFRESH.CH0 Counts number of DRAM channel 0 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 02H UNC_DRAM_REFRESH.CH1 Counts number of DRAM channel 1 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 04H UNC_DRAM_REFRESH.CH2 Counts number of DRAM channel 2 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

66H 01H UNC_DRAM_PRE_ALL.CH0 Counts number of DRAM Channel 0 precharge-all
(PREALL) commands that close all open pages in a
rank. PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 02H UNC_DRAM_PRE_ALL.CH1 Counts number of DRAM Channel 1 precharge-all
(PREALL) commands that close all open pages in a
rank. PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 04H UNC_DRAM_PRE_ALL.CH2 Counts number of DRAM Channel 2 precharge-all
(PREALL) commands that close all open pages in a
rank. PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-110 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERLAP_STOR
E

Loads that partially overlap an earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.STORE All store referenced with misaligned address.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement
block code. The following loads need to be executed
at retirement and wait for all senior stores on the
same thread to be drained: load splitting across 4K
boundary (page split), load accessing uncacheable
(UC or WC) memory, load lock, and load with page
table in UC or WC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_C
OMPLETED

Counts number of completed page walks due to load
miss in the STLB.

08H 04H DTLB_LOAD_MISSES.WALK_CY
CLES

Cycles PMH is busy with a page walk due to a load
miss in the STLB.

08H 10H DTLB_LOAD_MISSES.STLB_HI
T

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low
part of the linear to physical address translation
was missed.

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an
architecturally-visible load retired on the
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an
architecturally-visible store retired on the
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the
latency specified with ld_lat facility.

In conjunction with ld_lat
facility.

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that
missed the DTLB. The DTLB miss is not counted if
the store operation causes a fault. Does not counter
prefetches. Counts both primary and secondary
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register
Allocation Table to the Reservation Station, i.e. the
UOPs issued from the front end to the back end.

0EH 01H UOPS_ISSUED.STALLED_CYCL
ES

Counts the number of cycles no uops issued by the
Register Allocation Table to the Reservation
Station, i.e. the UOPs issued from the front end to
the back end.

Set “invert=1, cmask =
1“.

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued
from the Register Allocation Table to the
Reservation Station.

Vol. 3B 19-111

PERFORMANCE MONITORING EVENTS

0FH 01H MEM_UNCORE_RETIRED.UNK
NOWN_SOURCE

Load instructions retired with unknown LLC miss
(Precise Event).

Applicable to one and
two sockets.

0FH 02H MEM_UNCORE_RETIRED.OHTE
R_CORE_L2_HIT

Load instructions retired that HIT modified data in
sibling core (Precise Event).

Applicable to one and
two sockets.

0FH 04H MEM_UNCORE_RETIRED.REMO
TE_HITM

Load instructions retired that HIT modified data in
remote socket (Precise Event).

Applicable to two
sockets only.

0FH 08H MEM_UNCORE_RETIRED.LOCA
L_DRAM_AND_REMOTE_CACH
E_HIT

Load instructions retired local dram and remote
cache HIT data sources (Precise Event).

Applicable to one and
two sockets.

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Load instructions retired remote DRAM and remote
home-remote cache HITM (Precise Event).

Applicable to two
sockets only.

0FH 20H MEM_UNCORE_RETIRED.OTHE
R_LLC_MISS

Load instructions retired other LLC miss (Precise
Event).

Applicable to two
sockets only.

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Load instructions retired I/O (Precise Event). Applicable to one and
two sockets.

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops
Executed. The number of FADD, FSUB, FCOM,
FMULs, integer MULs and IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs. This event does
not distinguish an FADD used in the middle of a
transcendental flow from a separate FADD
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply
operations.

12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical
operations.

12H 20H SIMD_INT_128.PACKED_ARIT
H

Counts number of 128 bit SIMD integer arithmetic
operations.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-112 Vol. 3B

PERFORMANCE MONITORING EVENTS

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the
Reservation Station that bypass the Memory Order
Buffer.

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the
stage latch. If an RS dispatch cannot bypass to LB, it
has another chance to dispatch from the one-cycle
delayed staging latch before it is written into the
LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation
Station.

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy
executing divide or square root operations. The
divide can be integer, X87 or Streaming SIMD
Extensions (SSE). The square root operation can be
either X87 or SSE. Set 'edge =1, invert=1, cmask=1'
to count the number of divides.

Count may be incorrect
When SMT is on.

14H 02H ARITH.MUL Counts the number of multiply operations executed.
This includes integer as well as floating point
multiply operations but excludes DPPS mul and
MPSAD.

Count may be incorrect
When SMT is on.

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the
instruction queue every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that require decoder
0 to be decoded. Usually, this means that the
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was
decoded.

1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during
which instructions are written to the instruction
queue. Dividing this counter by the number of
instructions written to the instruction queue
(INST_QUEUE_WRITES) yields the average number
of instructions decoded each cycle. If this number is
less than four and the pipe stalls, this indicates that
the decoder is failing to decode enough instructions
per cycle to sustain the 4-wide pipeline.

If SSE* instructions that
are 6 bytes or longer
arrive one after another,
then front end
throughput may limit
execution speed.

20H 01H LSD_OVERFLOW Number of loops that cannot stream from the
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2
loads include both L1D demand misses as well as
L1D prefetches. L2 loads can be rejected for various
reasons. Only non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache.
L2 loads include both L1D demand misses as well as
L1D prefetches.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-113

PERFORMANCE MONITORING EVENTS

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both
L1D demand misses as well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.
Count includes WC memory requests, where the
data is not fetched but the permission to write the
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests
include both L1D demand RFO misses as well as L1D
RFO prefetches.

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches
include both L1I demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.

24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss. L2 demand loads are both L1D demand
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the S (shared) state. L2
demand loads are both L1D demand misses and L1D
prefetches.

26H 04H L2_DATA_RQSTS.DEMAND.E_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the E (exclusive) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the M (modified) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-114 Vol. 3B

PERFORMANCE MONITORING EVENTS

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand
loads are both L1D demand misses and L1D
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the S (shared) state. A
prefetch RFO will miss on an S state line, while a
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e., a cache miss. The L1D prefetcher does
not issue a RFO prefetch.

This is a demand RFO
request.

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the S (shared) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the M (modified) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the
cache line to be loaded is in either the S, E or M
states. The L1D prefetcher does not issue a RFO
prefetch.

This is a demand RFO
request.

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests. The L1D
prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e., a cache miss.

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the E
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the M
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in either the S,
E, or M state.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-115

PERFORMANCE MONITORING EVENTS

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the I (invalid) state,
i.e., a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the E (exclusive)
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the M (modified)
state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache misses. Because
cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

2EH 4FH L3_LAT_CACHE.REFERENCE Counts uncore Last Level Cache references.
Because cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not
halted.

See Table 19-1.

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which
causes a page walk.

49H 02H DTLB_MISSES.WALK_COMPLE
TED

Counts number of misses in the STLB which
resulted in a completed page walk.

49H 04H DTLB_MISSES.WALK_CYCLES Counts cycles of page walk due to misses in the
STLB.

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that
hit in the second level TLB. This event is only
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of
address, includes references to 2M pages because
2M pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due
to misses in the STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache
while a previous SSE prefetch instruction to the
same cache line has started prefetching but has not
yet finished.

Counter 0, 1 only.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-116 Vol. 3B

PERFORMANCE MONITORING EVENTS

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests
dispatched out of the prefetch FIFO.

Counter 0, 1 only.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that
miss the L1D. There are two prefetchers in the L1D.
A streamer, which predicts lines sequentially after
this one should be fetched, and the IP prefetcher
that remembers access patterns for the current
instruction. The streamer prefetcher stops on an
L1D hit, while the IP prefetcher does not.

Counter 0, 1 only.

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by
the Finite State Machine and pushed into the
prefetch FIFO. Some of the prefetch requests are
dropped due to overwrites or competition between
the IP index prefetcher and streamer prefetcher.
The prefetch FIFO contains 4 entries.

Counter 0, 1 only.

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data
cache.

Counter 0, 1 only.

51H 02H L1D.M_REPL Counts the number of modified lines brought into
the L1 data cache.

Counter 0, 1 only.

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Counter 0, 1 only.

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only.

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock
speculated instructions accepted into the fill buffer.

60H 01H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_DATA

Counts weighted cycles of offcore demand data
read requests. Does not include L2 prefetch
requests.

Counter 0.

60H 02H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_CODE

Counts weighted cycles of offcore demand code
read requests. Does not include L2 prefetch
requests.

Counter 0.

60H 04H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.RFO

Counts weighted cycles of offcore demand RFO
requests. Does not include L2 prefetch requests.

Counter 0.

60H 08H OFFCORE_REQUESTS_OUTST
ANDING.ANY.READ

Counts weighted cycles of offcore read requests of
any kind. Include L2 prefetch requests.

Counter 0.

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.
A lock is asserted when there is a locked memory
access, due to uncacheable memory, a locked
operation that spans two cache lines, or a page walk
from an uncacheable page table. This event does
not cause locks, it merely detects them.

Counter 0, 1 only. L1D
and L2 locks have a very
high performance
penalty and it is highly
recommended to avoid
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1
instruction cache.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-117

PERFORMANCE MONITORING EVENTS

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I
cache. This includes instruction cache misses,
streaming buffer misses, victim cache misses and
uncacheable fetches. An instruction fetch miss is
counted only once and not once for every cycle it is
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB
which resulted in a completed page walk.

85H 04H ITLB_MISSES.WALK_CYCLES Counts ITLB miss page walk cycles.

85H 10H ITLB_MISSES.STLB_HIT Counts number of ITLB first level miss but second
level hits.

85H 80H ITLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due
to misses in the STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to
length changing prefixes: 66, 67 or REX.W (for Intel
64) instructions which change the length of the
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand
Prediction Unit (PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch
instructions executed, but not necessarily retired.

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed indirect near branch
instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non-call near branch instructions
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions,
excluding non-call branch, executed.

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register
and memory indirect, executed.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-118 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed, but not
necessarily retired.

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily
retired). This includes only instructions and not
micro-op branches. Frequent branching is not
necessarily a major performance issue. However
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near
branch instructions executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near
branch instructions, excluding calls and indirect
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non-call near branches
executed, but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NE
AR_CALL

Counts mispredicted indirect near calls executed,
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed,
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch
instructions that were executed, but not
necessarily retired.

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related
stalls. Includes register renaming buffer entries,
memory buffer entries. In addition to resource
related stalls, this event counts some other events.
Includes stalls arising during branch misprediction
recovery, such as if retirement of the mispredicted
branch is delayed and stalls arising while store
buffer is draining from synchronizing operations.

Does not include stalls
due to SuperQ (off core)
queue full, too many
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer
for load operation.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-119

PERFORMANCE MONITORING EVENTS

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the
number of instructions in the pipeline waiting for
execution reaches the limit the processor can
handle. A high count of this event indicates that
there are long latency operations in the pipe
(possibly load and store operations that miss the L2
cache, or instructions dependent upon instructions
further down the pipeline that have yet to retire.

When RS is full, new
instructions cannot enter
the reservation station
and start execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a
resource related stall will occur due to the number
of store instructions reaching the limit of the
pipeline, (i.e. all store buffers are used). The stall
ends when a store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU)
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring
to close to a previous MXCSR rename. The MXCSR
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are
macro-fused but not necessarily executed or
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by
the Instruction Queue. The IQ is also responsible for
providing conditional branch prediction direction
based on a static scheme and dynamic data
provided by the L2 Branch Prediction Unit. If the
conditional branch target is not found in the Target
Array and the IQ predicts that the branch is taken,
then the IQ will force the Branch Address Calculator
to issue a BACLEAR. Each BACLEAR asserted by the
BAC generates approximately an 8 cycle bubble in
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop
stream detector.

Use cmask=1 and invert
to count cycles.

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUESTS.DEMAN
D.READ_DATA

Counts number of offcore demand data read
requests. Does not count L2 prefetch requests.

B0H 02H OFFCORE_REQUESTS.DEMAN
D.READ_CODE

Counts number of offcore demand code read
requests. Does not count L2 prefetch requests.

B0H 04H OFFCORE_REQUESTS.DEMAN
D.RFO

Counts number of offcore demand RFO requests.
Does not count L2 prefetch requests.

B0H 08H OFFCORE_REQUESTS.ANY.REA
D

Counts number of offcore read requests. Includes
L2 prefetch requests.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-120 Vol. 3B

PERFORMANCE MONITORING EVENTS

B0H 10H OFFCORE_REQUESTS.ANY.RFO Counts number of offcore RFO requests. Includes L2
prefetch requests.

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore.

B0H 80H OFFCORE_REQUESTS.ANY Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of uops executed that were issued
on port 0. Port 0 handles integer arithmetic, SIMD
and FP add uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of uops executed that were issued
on port 1. Port 1 handles integer arithmetic, SIMD,
integer shift, FP multiply and FP divide uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of uops executed that were issued
on port 2. Port 2 handles the load uops. This is a
core count only and cannot be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of uops executed that were issued
on port 3. Port 3 handles store uops. This is a core
count only and cannot be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of uops executed that where issued
on port 4. Port 4 handles the value to be stored for
the store uops issued on port 3. This is a core count
only and cannot be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES_NO_PORT5

Counts number of cycles there are one or more
uops being executed and were issued on ports 0-4.
This is a core count only and cannot be collected per
thread.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of uops executed that where issued
on port 5.

B1H 3FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES

Counts number of cycles there are one or more
uops being executed on any ports. This is a core
count only and cannot be collected per thread.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of uops executed that where issued
on port 0, 1, or 5.

Use cmask=1, invert=1
to count stall cycles.

B1H 80H UOPS_EXECUTED.PORT234 Counts number of uops executed that where issued
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests.

B3H 01H SNOOPQ_REQUESTS_OUTSTA
NDING.DATA

Counts weighted cycles of snoopq requests for
data. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B3H 02H SNOOPQ_REQUESTS_OUTSTA
NDING.INVALIDATE

Counts weighted cycles of snoopq invalidate
requests. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B3H 04H SNOOPQ_REQUESTS_OUTSTA
NDING.CODE

Counts weighted cycles of snoopq requests for
code. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B4H 01H SNOOPQ_REQUESTS.CODE Counts the number of snoop code requests.

B4H 02H SNOOPQ_REQUESTS.DATA Counts the number of snoop data requests.

B4H 04H SNOOPQ_REQUESTS.INVALID
ATE

Counts the number of snoop invalidate requests.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-121

PERFORMANCE MONITORING EVENTS

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.1.1.3, “Off-core Response
Performance Monitoring in the Processor Core”.

Requires programming
MSR 01A6H.

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.1.1.3, “Off-core Response
Performance Monitoring in the Processor Core”.

Use MSR 01A7H.

C0H 00H INST_RETIRED.ANY_P See Table 19-1.

Notes: INST_RETIRED.ANY is counted by a
designated fixed counter. INST_RETIRED.ANY_P is
counted by a programmable counter and is an
architectural performance event. Event is
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting
executions of
GETSEC/VM entry/VM
Exit/MWait will not count
as retired instructions.

C0H 02H INST_RETIRED.X87 Counts the number of floating point computational
operations retired: floating point computational
operations executed by the assist handler and sub-
operations of complex floating point instructions
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count
of 8 per cycle). Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as repeat
instructions, floating point transcendental
instructions, and assists.

Use cmask=1 and invert
to count active cycles or
stalled cycles.

C2H 02H UOPS_RETIRED.RETIRE_SLOT
S

Counts the number of retirement slots used each
cycle.

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section. Self-modifying code causes a
severe penalty in all Intel 64 and IA-32 processors.
The modified cache line is written back to the L2
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near
unconditional calls retired.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-122 Vol. 3B

PERFORMANCE MONITORING EVENTS

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Counts mispredicted conditional retired calls.

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near
unconditional retired calls.

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Counts all mispredicted retired calls.

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating-point
uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD scalar single-precision floating-point
uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating-point
uops retired.

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating-point
uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data
cache.

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own,
unshared lines in the L3 cache.

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling
core's L2 (on die core). Since the L3 is inclusive of all
cores on the package, this is an L3 hit. This counts
both clean and modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3
cache. The load was satisfied by a remote socket,
local memory or an IOH.

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D
and the address is located in an allocated line fill
buffer and will soon be committed to cache. This is
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load
operation causes a fault. This event counts loads
from cacheable memory only. The event does not
count loads by software prefetches. Counts both
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following
any MMX instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-123

PERFORMANCE MONITORING EVENTS

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a
floating-point instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX
instructions and from MMX instructions to floating
point instructions. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but not
necessarily executed or retired).

D1H 01H UOPS_DECODED.STALL_CYCLE
S

Counts the cycles of decoder stalls. INV=1, Cmask=
1.

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the
Microcode Sequencer, MS. The MS delivers uops
when the instruction is more than 4 uops long or a
microcode assist is occurring.

D1H 04H UOPS_DECODED.ESP_FOLDIN
G

Counts number of stack pointer (ESP) instructions
decoded: push, pop, call, ret, etc. ESP instructions do
not generate a Uop to increment or decrement ESP.
Instead, they update an ESP_Offset register that
keeps track of the delta to the current value of the
ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync
operations where an ESP instruction is corrected by
adding the ESP offset register to the current value
of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which
execution stalled due to several reasons, one of
which is a partial flag register stall. A partial register
stall may occur when two conditions are met: 1) an
instruction modifies some, but not all, of the flags in
the flag register and 2) the next instruction, which
depends on flags, depends on flags that were not
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction
execution latency became longer than the defined
latency because the instruction used a register that
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops
to enter the out-of-order pipeline. Note that, at this
stage in the pipeline, additional stalls may occur at
the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops
retry entering the execution pipe in the next cycle
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to
microarchitecturally required serialization.
Microcode scoreboarding stalls.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-124 Vol. 3B

PERFORMANCE MONITORING EVENTS

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due
to: Cycles when ROB read port stalls occurred,
which did not allow new micro-ops to enter the
execution pipe, Cycles when partial register stalls
occurred, Cycles when flag stalls occurred, Cycles
floating-point unit (FPU) status word stalls occurred.
To count each of these conditions separately use
the events: RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of
renaming resources for the ES, DS, FS, and GS
segment registers. If a segment is renamed but not
retired and a second update to the same segment
occurs, a stall occurs in the front end of the pipeline
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment
register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to floating point
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded.

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediction Unit
missed predicting a call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is
resteered, mainly when the Branch Prediction Unit
cannot provide a correct prediction and this is
corrected by the Branch Address Calculator at the
front end. This can occur if the code has many
branches such that they cannot be consumed by
the BPU. Each BACLEAR asserted by the BAC
generates approximately an 8 cycle bubble in the
instruction fetch pipeline. The effect on total
execution time depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears
(BACLEAR) asserted due to conditional branch
instructions in which there was a target hit but the
direction was wrong. Each BACLEAR asserted by
the BAC generates approximately an 8 cycle bubble
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears:
BPU predicted a taken branch after incorrectly
assuming that it was not taken.

The BPU clear leads to 2
cycle bubble in the front
end.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to
Most Recently Used conflicts. The PBU clear leads
to a 3 cycle bubble in the front end.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or
demand loads.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-125

PERFORMANCE MONITORING EVENTS

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETC
H

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO,
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the L2
cache in the S (shared) state.

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the L2
cache in the E (exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the L2
cache.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand
request.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CL
EAN

Counts L2 clean cache line evicted by a prefetch
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU hints sent to
L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full. Neither of the
threads on this core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations
executed that required micro-code assist
intervention. Assists are required in the following
cases: SSE instructions, (Denormal input when the
DAZ flag is off or Underflow result when the FTZ
flag is off): x87 instructions, (NaN or denormal are
loaded to a register or used as input from memory,
Division by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist
when the output value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist
when the input value (one of the source operands
to an FP instruction) is invalid.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-126 Vol. 3B

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events of the uncore sub-system for processors with CPUID signature of
DisplayFamily_DisplayModel 06_25H, 06_2CH, and 06_1FH support performance events listed in Table 19-22.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move
operations.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FULL.READ_
TRACKER

Uncore cycles Global Queue read tracker is full.

00H 02H UNC_GQ_CYCLES_FULL.WRITE
_TRACKER

Uncore cycles Global Queue write tracker is full.

00H 04H UNC_GQ_CYCLES_FULL.PEER_
PROBE_TRACKER

Uncore cycles Global Queue peer probe tracker is full.
The peer probe tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NOT_EMPTY
.READ_TRACKER

Uncore cycles were Global Queue read tracker has at
least one valid entry.

01H 02H UNC_GQ_CYCLES_NOT_EMPTY
.WRITE_TRACKER

Uncore cycles were Global Queue write tracker has at
least one valid entry.

01H 04H UNC_GQ_CYCLES_NOT_EMPTY
.PEER_PROBE_TRACKER

Uncore cycles were Global Queue peer probe tracker
has at least one valid entry. The peer probe tracker
queue tracks IOH and remote socket snoops.

02H 01H UNC_GQ_OCCUPANCY.READ_T
RACKER

Increments the number of queue entries (code read,
data read, and RFOs) in the tread tracker. The GQ read
tracker allocate to deallocate occupancy count is
divided by the count to obtain the average read tracker
latency.

03H 01H UNC_GQ_ALLOC.READ_TRACK
ER

Counts the number of tread tracker allocate to
deallocate entries. The GQ read tracker allocate to
deallocate occupancy count is divided by the count to
obtain the average read tracker latency.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-127

PERFORMANCE MONITORING EVENTS

03H 02H UNC_GQ_ALLOC.RT_L3_MISS Counts the number GQ read tracker entries for which a
full cache line read has missed the L3. The GQ read
tracker L3 miss to fill occupancy count is divided by
this count to obtain the average cache line read L3
miss latency. The latency represents the time after
which the L3 has determined that the cache line has
missed. The time between a GQ read tracker allocation
and the L3 determining that the cache line has missed
is the average L3 hit latency. The total L3 cache line
read miss latency is the hit latency + L3 miss latency.

03H 04H UNC_GQ_ALLOC.RT_TO_L3_RE
SP

Counts the number of GQ read tracker entries that are
allocated in the read tracker queue that hit or miss the
L3. The GQ read tracker L3 hit occupancy count is
divided by this count to obtain the average L3 hit
latency.

03H 08H UNC_GQ_ALLOC.RT_TO_RTID_
ACQUIRED

Counts the number of GQ read tracker entries that are
allocated in the read tracker, have missed in the L3 and
have not acquired a Request Transaction ID. The GQ
read tracker L3 miss to RTID acquired occupancy count
is divided by this count to obtain the average latency
for a read L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_TO_RTID_
ACQUIRED

Counts the number of GQ write tracker entries that are
allocated in the write tracker, have missed in the L3
and have not acquired a Request Transaction ID. The
GQ write tracker L3 miss to RTID occupancy count is
divided by this count to obtain the average latency for
a write L3 miss to acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRITE_TRAC
KER

Counts the number of GQ write tracker entries that are
allocated in the write tracker queue that miss the L3.
The GQ write tracker occupancy count is divided by
this count to obtain the average L3 write miss latency.

03H 40H UNC_GQ_ALLOC.PEER_PROBE
_TRACKER

Counts the number of GQ peer probe tracker (snoop)
entries that are allocated in the peer probe tracker
queue that miss the L3. The GQ peer probe occupancy
count is divided by this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM_QPI Cycles Global Queue Quickpath Interface input data
port is busy importing data from the Quickpath
Interface. Each cycle the input port can transfer 8 or
16 bytes of data.

04H 02H UNC_GQ_DATA.FROM_QMC Cycles Global Queue Quickpath Memory Interface input
data port is busy importing data from the Quickpath
Memory Interface. Each cycle the input port can
transfer 8 or 16 bytes of data.

04H 04H UNC_GQ_DATA.FROM_L3 Cycles GQ L3 input data port is busy importing data
from the Last Level Cache. Each cycle the input port
can transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM_CORES_
02

Cycles GQ Core 0 and 2 input data port is busy
importing data from processor cores 0 and 2. Each
cycle the input port can transfer 32 bytes of data.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-128 Vol. 3B

PERFORMANCE MONITORING EVENTS

04H 10H UNC_GQ_DATA.FROM_CORES_
13

Cycles GQ Core 1 and 3 input data port is busy
importing data from processor cores 1 and 3. Each
cycle the input port can transfer 32 bytes of data.

05H 01H UNC_GQ_DATA.TO_QPI_QMC Cycles GQ QPI and QMC output data port is busy
sending data to the Quickpath Interface or Quickpath
Memory Interface. Each cycle the output port can
transfer 32 bytes of data.

05H 02H UNC_GQ_DATA.TO_L3 Cycles GQ L3 output data port is busy sending data to
the Last Level Cache. Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_CORES Cycles GQ Core output data port is busy sending data
to the Cores. Each cycle the output port can transfer
32 bytes of data.

06H 01H UNC_SNP_RESP_TO_LOCAL_H
OME.I_STATE

Number of snoop responses to the local home that L3
does not have the referenced cache line.

06H 02H UNC_SNP_RESP_TO_LOCAL_H
OME.S_STATE

Number of snoop responses to the local home that L3
has the referenced line cached in the S state.

06H 04H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_S_STATE

Number of responses to code or data read snoops to
the local home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the local
home in the S state.

06H 08H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_I_STATE

Number of responses to read invalidate snoops to the
local home that the L3 has the referenced cache line in
the M state. The L3 cache line state is invalidated and
the line is forwarded to the local home in the M state.

06H 10H UNC_SNP_RESP_TO_LOCAL_H
OME.CONFLICT

Number of conflict snoop responses sent to the local
home.

06H 20H UNC_SNP_RESP_TO_LOCAL_H
OME.WB

Number of responses to code or data read snoops to
the local home that the L3 has the referenced line
cached in the M state.

07H 01H UNC_SNP_RESP_TO_REMOTE_
HOME.I_STATE

Number of snoop responses to a remote home that L3
does not have the referenced cache line.

07H 02H UNC_SNP_RESP_TO_REMOTE_
HOME.S_STATE

Number of snoop responses to a remote home that L3
has the referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_REMOTE_
HOME.FWD_S_STATE

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the remote
home in the S state.

07H 08H UNC_SNP_RESP_TO_REMOTE_
HOME.FWD_I_STATE

Number of responses to read invalidate snoops to a
remote home that the L3 has the referenced cache
line in the M state. The L3 cache line state is
invalidated and the line is forwarded to the remote
home in the M state.

07H 10H UNC_SNP_RESP_TO_REMOTE_
HOME.CONFLICT

Number of conflict snoop responses sent to the local
home.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-129

PERFORMANCE MONITORING EVENTS

07H 20H UNC_SNP_RESP_TO_REMOTE_
HOME.WB

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced line
cached in the M state.

07H 24H UNC_SNP_RESP_TO_REMOTE_
HOME.HITM

Number of HITM snoop responses to a remote home.

08H 01H UNC_L3_HITS.READ Number of code read, data read and RFO requests that
hit in the L3.

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that hit in the L3.
Writebacks from the cores will always result in L3 hits
due to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote sockets that hit
in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and RFO requests that
miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that miss the L3.
Should always be zero as writebacks from the cores
will always result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote sockets that
miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss the L3.

0AH 01H UNC_L3_LINES_IN.M_STATE Counts the number of L3 lines allocated in M state. The
only time a cache line is allocated in the M state is
when the line was forwarded in M state is forwarded
due to a Snoop Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_STATE Counts the number of L3 lines allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_STATE Counts the number of L3 lines allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_STATE Counts the number of L3 lines allocated in F state.

0AH 0FH UNC_L3_LINES_IN.ANY Counts the number of L3 lines allocated in any state.

0BH 01H UNC_L3_LINES_OUT.M_STATE Counts the number of L3 lines victimized that were in
the M state. When the victim cache line is in M state,
the line is written to its home cache agent which can
be either local or remote.

0BH 02H UNC_L3_LINES_OUT.E_STATE Counts the number of L3 lines victimized that were in
the E state.

0BH 04H UNC_L3_LINES_OUT.S_STATE Counts the number of L3 lines victimized that were in
the S state.

0BH 08H UNC_L3_LINES_OUT.I_STATE Counts the number of L3 lines victimized that were in
the I state.

0BH 10H UNC_L3_LINES_OUT.F_STATE Counts the number of L3 lines victimized that were in
the F state.

0BH 1FH UNC_L3_LINES_OUT.ANY Counts the number of L3 lines victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOTO_S Counts the number of remote snoops that have
requested a cache line be set to the S state.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-130 Vol. 3B

PERFORMANCE MONITORING EVENTS

0CH 02H UNC_GQ_SNOOP.GOTO_I Counts the number of remote snoops that have
requested a cache line be set to the I state.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
E

Counts the number of remote snoops that have
requested a cache line be set to the S state from E
state.

Requires writing MSR
301H with mask = 2H.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
F

Counts the number of remote snoops that have
requested a cache line be set to the S state from F
(forward) state.

Requires writing MSR
301H with mask = 8H.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
M

Counts the number of remote snoops that have
requested a cache line be set to the S state from M
state.

Requires writing MSR
301H with mask = 1H.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
S

Counts the number of remote snoops that have
requested a cache line be set to the S state from S
state.

Requires writing MSR
301H with mask = 4H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
E

Counts the number of remote snoops that have
requested a cache line be set to the I state from E
state.

Requires writing MSR
301H with mask = 2H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
F

Counts the number of remote snoops that have
requested a cache line be set to the I state from F
(forward) state.

Requires writing MSR
301H with mask = 8H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
M

Counts the number of remote snoops that have
requested a cache line be set to the I state from M
state.

Requires writing MSR
301H with mask = 1H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
S

Counts the number of remote snoops that have
requested a cache line be set to the I state from S
state.

Requires writing MSR
301H with mask = 4H.

20H 01H UNC_QHL_REQUESTS.IOH_RE
ADS

Counts number of Quickpath Home Logic read requests
from the IOH.

20H 02H UNC_QHL_REQUESTS.IOH_WRI
TES

Counts number of Quickpath Home Logic write
requests from the IOH.

20H 04H UNC_QHL_REQUESTS.REMOTE
_READS

Counts number of Quickpath Home Logic read requests
from a remote socket.

20H 08H UNC_QHL_REQUESTS.REMOTE
_WRITES

Counts number of Quickpath Home Logic write
requests from a remote socket.

20H 10H UNC_QHL_REQUESTS.LOCAL_
READS

Counts number of Quickpath Home Logic read requests
from the local socket.

20H 20H UNC_QHL_REQUESTS.LOCAL_
WRITES

Counts number of Quickpath Home Logic write
requests from the local socket.

21H 01H UNC_QHL_CYCLES_FULL.IOH Counts uclk cycles all entries in the Quickpath Home
Logic IOH are full.

21H 02H UNC_QHL_CYCLES_FULL.REMO
TE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker are full.

21H 04H UNC_QHL_CYCLES_FULL.LOCA
L

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker are full.

22H 01H UNC_QHL_CYCLES_NOT_EMPT
Y.IOH

Counts uclk cycles all entries in the Quickpath Home
Logic IOH is busy.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-131

PERFORMANCE MONITORING EVENTS

22H 02H UNC_QHL_CYCLES_NOT_EMPT
Y.REMOTE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker is busy.

22H 04H UNC_QHL_CYCLES_NOT_EMPT
Y.LOCAL

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker is busy.

23H 01H UNC_QHL_OCCUPANCY.IOH QHL IOH tracker allocate to deallocate read occupancy.

23H 02H UNC_QHL_OCCUPANCY.REMOT
E

QHL remote tracker allocate to deallocate read
occupancy.

23H 04H UNC_QHL_OCCUPANCY.LOCAL QHL local tracker allocate to deallocate read
occupancy.

24H 02H UNC_QHL_ADDRESS_CONFLIC
TS.2WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 2 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

24H 04H UNC_QHL_ADDRESS_CONFLIC
TS.3WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 3 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

25H 01H UNC_QHL_CONFLICT_CYCLES.I
OH

Counts cycles the Quickpath Home Logic IOH Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

25H 02H UNC_QHL_CONFLICT_CYCLES.
REMOTE

Counts cycles the Quickpath Home Logic Remote
Tracker contains two or more requests with an
address conflict. A max of 3 requests can be in conflict.

25H 04H UNC_QHL_CONFLICT_CYCLES.L
OCAL

Counts cycles the Quickpath Home Logic Local Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

26H 01H UNC_QHL_TO_QMC_BYPASS Counts number or requests to the Quickpath Memory
Controller that bypass the Quickpath Home Logic. All
local accesses can be bypassed. For remote requests,
only read requests can be bypassed.

28H 01H UNC_QMC_ISOC_FULL.READ.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous read
requests.

28H 02H UNC_QMC_ISOC_FULL.READ.C
H1

Counts cycles all the entries in the DRAM channel
1high priority queue are occupied with isochronous
read requests.

28H 04H UNC_QMC_ISOC_FULL.READ.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous read
requests.

28H 08H UNC_QMC_ISOC_FULL.WRITE.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous
write requests.

28H 10H UNC_QMC_ISOC_FULL.WRITE.C
H1

Counts cycles all the entries in the DRAM channel 1
high priority queue are occupied with isochronous
write requests.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-132 Vol. 3B

PERFORMANCE MONITORING EVENTS

28H 20H UNC_QMC_ISOC_FULL.WRITE.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous
write requests.

29H 01H UNC_QMC_BUSY.READ.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
0.

29H 02H UNC_QMC_BUSY.READ.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
1.

29H 04H UNC_QMC_BUSY.READ.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
2.

29H 08H UNC_QMC_BUSY.WRITE.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
0.

29H 10H UNC_QMC_BUSY.WRITE.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
1.

29H 20H UNC_QMC_BUSY.WRITE.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
2.

2AH 01H UNC_QMC_OCCUPANCY.CH0 IMC channel 0 normal read request occupancy.

2AH 02H UNC_QMC_OCCUPANCY.CH1 IMC channel 1 normal read request occupancy.

2AH 04H UNC_QMC_OCCUPANCY.CH2 IMC channel 2 normal read request occupancy.

2AH 07H UNC_QMC_OCCUPANCY.ANY Normal read request occupancy for any channel.

2BH 01H UNC_QMC_ISSOC_OCCUPANCY.
CH0

IMC channel 0 issoc read request occupancy.

2BH 02H UNC_QMC_ISSOC_OCCUPANCY.
CH1

IMC channel 1 issoc read request occupancy.

2BH 04H UNC_QMC_ISSOC_OCCUPANCY.
CH2

IMC channel 2 issoc read request occupancy.

2BH 07H UNC_QMC_ISSOC_READS.ANY IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_READS.C
H0

Counts the number of Quickpath Memory Controller
channel 0 medium and low priority read requests. The
QMC channel 0 normal read occupancy divided by this
count provides the average QMC channel 0 read
latency.

2CH 02H UNC_QMC_NORMAL_READS.C
H1

Counts the number of Quickpath Memory Controller
channel 1 medium and low priority read requests. The
QMC channel 1 normal read occupancy divided by this
count provides the average QMC channel 1 read
latency.

2CH 04H UNC_QMC_NORMAL_READS.C
H2

Counts the number of Quickpath Memory Controller
channel 2 medium and low priority read requests. The
QMC channel 2 normal read occupancy divided by this
count provides the average QMC channel 2 read
latency.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-133

PERFORMANCE MONITORING EVENTS

2CH 07H UNC_QMC_NORMAL_READS.A
NY

Counts the number of Quickpath Memory Controller
medium and low priority read requests. The QMC
normal read occupancy divided by this count provides
the average QMC read latency.

2DH 01H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH0

Counts the number of Quickpath Memory Controller
channel 0 high priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH1

Counts the number of Quickpath Memory Controller
channel 1 high priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH2

Counts the number of Quickpath Memory Controller
channel 2 high priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRIORITY_RE
ADS.ANY

Counts the number of Quickpath Memory Controller
high priority isochronous read requests.

2EH 01H UNC_QMC_CRITICAL_PRIORITY
_READS.CH0

Counts the number of Quickpath Memory Controller
channel 0 critical priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_PRIORITY
_READS.CH1

Counts the number of Quickpath Memory Controller
channel 1 critical priority isochronous read requests.

2EH 04H UNC_QMC_CRITICAL_PRIORITY
_READS.CH2

Counts the number of Quickpath Memory Controller
channel 2 critical priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_PRIORITY
_READS.ANY

Counts the number of Quickpath Memory Controller
critical priority isochronous read requests.

2FH 01H UNC_QMC_WRITES.FULL.CH0 Counts number of full cache line writes to DRAM
channel 0.

2FH 02H UNC_QMC_WRITES.FULL.CH1 Counts number of full cache line writes to DRAM
channel 1.

2FH 04H UNC_QMC_WRITES.FULL.CH2 Counts number of full cache line writes to DRAM
channel 2.

2FH 07H UNC_QMC_WRITES.FULL.ANY Counts number of full cache line writes to DRAM.

2FH 08H UNC_QMC_WRITES.PARTIAL.C
H0

Counts number of partial cache line writes to DRAM
channel 0.

2FH 10H UNC_QMC_WRITES.PARTIAL.C
H1

Counts number of partial cache line writes to DRAM
channel 1.

2FH 20H UNC_QMC_WRITES.PARTIAL.C
H2

Counts number of partial cache line writes to DRAM
channel 2.

2FH 38H UNC_QMC_WRITES.PARTIAL.A
NY

Counts number of partial cache line writes to DRAM.

30H 01H UNC_QMC_CANCEL.CH0 Counts number of DRAM channel 0 cancel requests.

30H 02H UNC_QMC_CANCEL.CH1 Counts number of DRAM channel 1 cancel requests.

30H 04H UNC_QMC_CANCEL.CH2 Counts number of DRAM channel 2 cancel requests.

30H 07H UNC_QMC_CANCEL.ANY Counts number of DRAM cancel requests.

31H 01H UNC_QMC_PRIORITY_UPDATE
S.CH0

Counts number of DRAM channel 0 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-134 Vol. 3B

PERFORMANCE MONITORING EVENTS

31H 02H UNC_QMC_PRIORITY_UPDATE
S.CH1

Counts number of DRAM channel 1 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY_UPDATE
S.CH2

Counts number of DRAM channel 2 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY_UPDATE
S.ANY

Counts number of DRAM priority updates. A priority
update occurs when an ISOC high or critical request is
received by the QHL and there is a matching request
with normal priority that has already been issued to
the QMC. In this instance, the QHL will send a priority
update to QMC to expedite the request.

32H 01H UNC_IMC_RETRY.CH0 Counts number of IMC DRAM channel 0 retries. DRAM
retry only occurs when configured in RAS mode.

32H 02H UNC_IMC_RETRY.CH1 Counts number of IMC DRAM channel 1 retries. DRAM
retry only occurs when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH2 Counts number of IMC DRAM channel 2 retries. DRAM
retry only occurs when configured in RAS mode.

32H 07H UNC_IMC_RETRY.ANY Counts number of IMC DRAM retries from any channel.
DRAM retry only occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_CNFLTS.I
OH

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
IOH.

33H 02H UNC_QHL_FRC_ACK_CNFLTS.R
EMOTE

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
remote home.

33H 04H UNC_QHL_FRC_ACK_CNFLTS.L
OCAL

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
local home.

33H 07H UNC_QHL_FRC_ACK_CNFLTS.A
NY

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IOH_ORDER Counts number of occurrences a request was put to
sleep due to IOH ordering (write after read) conflicts.
While in the sleep state, the request is not eligible to
be scheduled to the QMC.

34H 02H UNC_QHL_SLEEPS.REMOTE_O
RDER

Counts number of occurrences a request was put to
sleep due to remote socket ordering (write after read)
conflicts. While in the sleep state, the request is not
eligible to be scheduled to the QMC.

34H 04H UNC_QHL_SLEEPS.LOCAL_ORD
ER

Counts number of occurrences a request was put to
sleep due to local socket ordering (write after read)
conflicts. While in the sleep state, the request is not
eligible to be scheduled to the QMC.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-135

PERFORMANCE MONITORING EVENTS

34H 08H UNC_QHL_SLEEPS.IOH_CONFLI
CT

Counts number of occurrences a request was put to
sleep due to IOH address conflicts. While in the sleep
state, the request is not eligible to be scheduled to the
QMC.

34H 10H UNC_QHL_SLEEPS.REMOTE_C
ONFLICT

Counts number of occurrences a request was put to
sleep due to remote socket address conflicts. While in
the sleep state, the request is not eligible to be
scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.LOCAL_CON
FLICT

Counts number of occurrences a request was put to
sleep due to local socket address conflicts. While in the
sleep state, the request is not eligible to be scheduled
to the QMC.

35H 01H UNC_ADDR_OPCODE_MATCH.I
OH

Counts number of requests from the IOH,
address/opcode of request is qualified by mask value
written to MSR 396H. The following mask values are
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address
by writing MSR 396H
with mask supported
mask value.

35H 02H UNC_ADDR_OPCODE_MATCH.R
EMOTE

Counts number of requests from the remote socket,
address/opcode of request is qualified by mask value
written to MSR 396H. The following mask values are
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address
by writing MSR 396H
with mask supported
mask value.

35H 04H UNC_ADDR_OPCODE_MATCH.L
OCAL

Counts number of requests from the local socket,
address/opcode of request is qualified by mask value
written to MSR 396H. The following mask values are
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address
by writing MSR 396H
with mask supported
mask value.

40H 01H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_0

Counts cycles the Quickpath outbound link 0 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 02H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_0

Counts cycles the Quickpath outbound link 0 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-136 Vol. 3B

PERFORMANCE MONITORING EVENTS

40H 04H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_0

Counts cycles the Quickpath outbound link 0 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 08H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_1

Counts cycles the Quickpath outbound link 1 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 10H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_1

Counts cycles the Quickpath outbound link 1 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 20H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_1

Counts cycles the Quickpath outbound link 1 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 07H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 38H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 01H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_0

Counts cycles the Quickpath outbound link 0 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 04H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-137

PERFORMANCE MONITORING EVENTS

41H 08H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_1

Counts cycles the Quickpath outbound link 1 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 10H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 20H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 07H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 38H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

42H 01H UNC_QPI_TX_HEADER.FULL.LI
NK_0

Number of cycles that the header buffer in the
Quickpath Interface outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADER.BUSY.LI
NK_0

Number of cycles that the header buffer in the
Quickpath Interface outbound link 0 is busy.

42H 04H UNC_QPI_TX_HEADER.FULL.LI
NK_1

Number of cycles that the header buffer in the
Quickpath Interface outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADER.BUSY.LI
NK_1

Number of cycles that the header buffer in the
Quickpath Interface outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_0

Number of cycles that snoop packets incoming to the
Quickpath Interface link 0 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

43H 02H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_1

Number of cycles that snoop packets incoming to the
Quickpath Interface link 1 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

60H 01H UNC_DRAM_OPEN.CH0 Counts number of DRAM Channel 0 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-138 Vol. 3B

PERFORMANCE MONITORING EVENTS

60H 02H UNC_DRAM_OPEN.CH1 Counts number of DRAM Channel 1 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

60H 04H UNC_DRAM_OPEN.CH2 Counts number of DRAM Channel 2 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

61H 01H UNC_DRAM_PAGE_CLOSE.CH0 DRAM channel 0 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 02H UNC_DRAM_PAGE_CLOSE.CH1 DRAM channel 1 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_CLOSE.CH2 DRAM channel 2 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

62H 01H UNC_DRAM_PAGE_MISS.CH0 Counts the number of precharges (PRE) that were
issued to DRAM channel 0 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_MISS.CH1 Counts the number of precharges (PRE) that were
issued to DRAM channel 1 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 04H UNC_DRAM_PAGE_MISS.CH2 Counts the number of precharges (PRE) that were
issued to DRAM channel 2 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_CAS.CH0 Counts the number of times a read CAS command was
issued on DRAM channel 0.

63H 02H UNC_DRAM_READ_CAS.AUTO
PRE_CH0

Counts the number of times a read CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

63H 04H UNC_DRAM_READ_CAS.CH1 Counts the number of times a read CAS command was
issued on DRAM channel 1.

63H 08H UNC_DRAM_READ_CAS.AUTO
PRE_CH1

Counts the number of times a read CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

63H 10H UNC_DRAM_READ_CAS.CH2 Counts the number of times a read CAS command was
issued on DRAM channel 2.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-139

PERFORMANCE MONITORING EVENTS

63H 20H UNC_DRAM_READ_CAS.AUTO
PRE_CH2

Counts the number of times a read CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

64H 01H UNC_DRAM_WRITE_CAS.CH0 Counts the number of times a write CAS command was
issued on DRAM channel 0.

64H 02H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH0

Counts the number of times a write CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

64H 04H UNC_DRAM_WRITE_CAS.CH1 Counts the number of times a write CAS command was
issued on DRAM channel 1.

64H 08H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH1

Counts the number of times a write CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

64H 10H UNC_DRAM_WRITE_CAS.CH2 Counts the number of times a write CAS command was
issued on DRAM channel 2.

64H 20H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH2

Counts the number of times a write CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

65H 01H UNC_DRAM_REFRESH.CH0 Counts number of DRAM channel 0 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 02H UNC_DRAM_REFRESH.CH1 Counts number of DRAM channel 1 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 04H UNC_DRAM_REFRESH.CH2 Counts number of DRAM channel 2 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

66H 01H UNC_DRAM_PRE_ALL.CH0 Counts number of DRAM Channel 0 precharge-all
(PREALL) commands that close all open pages in a rank.
PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 02H UNC_DRAM_PRE_ALL.CH1 Counts number of DRAM Channel 1 precharge-all
(PREALL) commands that close all open pages in a rank.
PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 04H UNC_DRAM_PRE_ALL.CH2 Counts number of DRAM Channel 2 precharge-all
(PREALL) commands that close all open pages in a rank.
PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

67H 01H UNC_DRAM_THERMAL_THROT
TLED

Uncore cycles DRAM was throttled due to its
temperature being above the thermal throttling
threshold.

80H 01H UNC_THERMAL_THROTTLING_
TEMP.CORE_0

Cycles that the PCU records that core 0 is above the
thermal throttling threshold temperature.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-140 Vol. 3B

PERFORMANCE MONITORING EVENTS

80H 02H UNC_THERMAL_THROTTLING_
TEMP.CORE_1

Cycles that the PCU records that core 1 is above the
thermal throttling threshold temperature.

80H 04H UNC_THERMAL_THROTTLING_
TEMP.CORE_2

Cycles that the PCU records that core 2 is above the
thermal throttling threshold temperature.

80H 08H UNC_THERMAL_THROTTLING_
TEMP.CORE_3

Cycles that the PCU records that core 3 is above the
thermal throttling threshold temperature.

81H 01H UNC_THERMAL_THROTTLED_
TEMP.CORE_0

Cycles that the PCU records that core 0 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

81H 02H UNC_THERMAL_THROTTLED_
TEMP.CORE_1

Cycles that the PCU records that core 1 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

81H 04H UNC_THERMAL_THROTTLED_
TEMP.CORE_2

Cycles that the PCU records that core 2 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

81H 08H UNC_THERMAL_THROTTLED_
TEMP.CORE_3

Cycles that the PCU records that core 3 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

82H 01H UNC_PROCHOT_ASSERTION Number of system assertions of PROCHOT indicating
the entire processor has exceeded the thermal limit.

83H 01H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_0

Cycles that the PCU records that core 0 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

83H 02H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_1

Cycles that the PCU records that core 1 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

83H 04H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_2

Cycles that the PCU records that core 2 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

83H 08H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_3

Cycles that the PCU records that core 3 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

84H 01H UNC_TURBO_MODE.CORE_0 Uncore cycles that core 0 is operating in turbo mode.

84H 02H UNC_TURBO_MODE.CORE_1 Uncore cycles that core 1 is operating in turbo mode.

84H 04H UNC_TURBO_MODE.CORE_2 Uncore cycles that core 2 is operating in turbo mode.

84H 08H UNC_TURBO_MODE.CORE_3 Uncore cycles that core 3 is operating in turbo mode.

85H 02H UNC_CYCLES_UNHALTED_L3_
FLL_ENABLE

Uncore cycles that at least one core is unhalted and all
L3 ways are enabled.

86H 01H UNC_CYCLES_UNHALTED_L3_
FLL_DISABLE

Uncore cycles that at least one core is unhalted and all
L3 ways are disabled.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-141

PERFORMANCE MONITORING EVENTS

19.11 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR
5200, 5400 SERIES AND INTEL® CORE™2 EXTREME PROCESSORS QX
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architectural and model-specific
performance monitoring events listed in Table 19-1 and Table 19-25. In addition, they also support the following
model-specific performance monitoring events listed in Table 19-23. Fixed counters support the architecture
events defined in Table 19-24.

19.12 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR
3000, 3200, 5100, 5300 SERIES AND INTEL® CORE™2 DUO PROCESSORS

Processors based on the Intel® Core™ microarchitecture support architectural and model-specific performance
monitoring events.

Fixed-function performance counters are introduced first on processors based on Intel Core microarchitecture.
Table 19-24 lists pre-defined performance events that can be counted using fixed-function performance counters.

Table 19-23. Performance Events for Processors Based on Enhanced Intel Core Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_HOST Instruction retired while in VMX root operations.

D2H 10H RAT_STAALS.OTHER_SERIALIZ
ATION_STALLS

This event counts the number of stalls due to other
RAT resource serialization not counted by Umask
value 0FH.

Table 19-24. Fixed-Function Performance Counter and Pre-defined Performance Events
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIXED_CTR0

309H Inst_Retired.Any This event counts the number of instructions that
retire execution. For instructions that consist of
multiple micro-ops, this event counts the retirement
of the last micro-op of the instruction. The counter
continues counting during hardware interrupts, traps,
and inside interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIXED_CTR1

30AH CPU_CLK_UNHALTED.CORE This event counts the number of core cycles while the
core is not in a halt state. The core enters the halt
state when it is running the HLT instruction. This
event is a component in many key event ratios.

The core frequency may change from time to time
due to transitions associated with Enhanced Intel
SpeedStep Technology or TM2. For this reason this
event may have a changing ratio with regards to time.

When the core frequency is constant, this event can
approximate elapsed time while the core was not in
halt state.

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIXED_CTR2

30BH CPU_CLK_UNHALTED.REF This event counts the number of reference cycles
when the core is not in a halt state and not in a TM
stop-clock state. The core enters the halt state when
it is running the HLT instruction or the MWAIT
instruction.

19-142 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-25 lists general-purpose model-specific performance monitoring events supported in processors based on
Intel® Core™ microarchitecture. For convenience, Table 19-25 also includes architectural events and describes
minor model-specific behavior where applicable. Software must use a general-purpose performance counter to
count events listed in Table 19-25.

This event is not affected by core frequency changes
(e.g., P states) but counts at the same frequency as
the time stamp counter. This event can approximate
elapsed time while the core was not in halt state and
not in a TM stop-clock state.

This event has a constant ratio with the
CPU_CLK_UNHALTED.BUS event.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture
Event
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked by a
preceding store with
unknown address.

This event indicates that loads are blocked by preceding
stores. A load is blocked when there is a preceding store to
an address that is not yet calculated. The number of events
is greater or equal to the number of load operations that
were blocked.

If the load and the store are always to different addresses,
check why the memory disambiguation mechanism is not
working. To avoid such blocks, increase the distance
between the store and the following load so that the store
address is known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked by a
preceding store with
unknown data.

This event indicates that loads are blocked by preceding
stores. A load is blocked when there is a preceding store to
the same address and the stored data value is not yet
known. The number of events is greater or equal to the
number of load operations that were blocked.

To avoid such blocks, increase the distance between the
store and the dependent load, so that the store data is
known at the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that partially
overlap an earlier
store, or 4-Kbyte
aliased with a previous
store.

This event indicates that loads are blocked due to a variety
of reasons. Some of the triggers for this event are when a
load is blocked by a preceding store, in one of the following:

• Some of the loaded byte locations are written by the
preceding store and some are not.

• The load is from bytes written by the preceding store,
the store is aligned to its size and either:

• The load’s data size is one or two bytes and it is not
aligned to the store.

• The load’s data size is of four or eight bytes and the load
is misaligned.

Table 19-24. Fixed-Function Performance Counter and Pre-defined Performance Events (Contd.)
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

Vol. 3B 19-143

PERFORMANCE MONITORING EVENTS

• The load is from bytes written by the preceding store,
the store is misaligned and the load is not aligned on the
beginning of the store.

• The load is split over an eight byte boundary (excluding
16-byte loads).

• The load and store have the same offset relative to the
beginning of different 4-KByte pages. This case is also
called 4-KByte aliasing.

• In all these cases the load is blocked until after the
blocking store retires and the stored data is committed to
the cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked until
retirement.

This event indicates that load operations were blocked until
retirement. The number of events is greater or equal to the
number of load operations that were blocked.
This includes mainly uncacheable loads and split loads (loads
that cross the cache line boundary) but may include other
cases where loads are blocked until retirement.

03H 20H LOAD_BLOCK.L1D Loads blocked by the
L1 data cache.

This event indicates that loads are blocked due to one or
more reasons. Some triggers for this event are:

• The number of L1 data cache misses exceeds the
maximum number of outstanding misses supported by
the processor. This includes misses generated as result of
demand fetches, software prefetches or hardware
prefetches.

• Cache line split loads.
• Partial reads, such as reads to un-cacheable memory, I/O

instructions and more.
• A locked load operation is in progress. The number of

events is greater or equal to the number of load
operations that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while stores are
blocked due to store
buffer drain.

This event counts every cycle during which the store buffer
is draining. This includes:

• Serializing operations such as CPUID
• Synchronizing operations such as XCHG
• Interrupt acknowledgment
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while store is
waiting for a
preceding store to be
globally observed.

This event counts the total duration, in number of cycles,
which stores are waiting for a preceding stored cache line to
be observed by other cores.
This situation happens as a result of the strong store
ordering behavior, as defined in “Memory Ordering,” Chapter
8, Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

The stall may occur and be noticeable if there are many
cases when a store either misses the L1 data cache or hits a
cache line in the Shared state. If the store requires a bus
transaction to read the cache line then the stall ends when
snoop response for the bus transaction arrives.

04H 08H STORE_BLOCK.
SNOOP

A store is blocked due
to a conflict with an
external or internal
snoop.

This event counts the number of cycles the store port was
used for snooping the L1 data cache and a store was stalled
by the snoop. The store is typically resubmitted one cycle
later.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-144 Vol. 3B

PERFORMANCE MONITORING EVENTS

06H 00H SEGMENT_REG_
LOADS

Number of segment
register loads.

This event counts the number of segment register load
operations. Instructions that load new values into segment
registers cause a penalty.

This event indicates performance issues in 16-bit code. If
this event occurs frequently, it may be useful to calculate
the number of instructions retired per segment register
load. If the resulting calculation is low (on average a small
number of instructions are executed between segment
register loads), then the code’s segment register usage
should be optimized.

As a result of branch misprediction, this event is speculative
and may include segment register loads that do not actually
occur. However, most segment register loads are internally
serialized and such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD
Extensions (SSE)
Prefetch NTA
instructions executed.

This event counts the number of times the SSE instruction
prefetchNTA is executed.

This instruction prefetches the data to the L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD
Extensions (SSE)
PrefetchT0
instructions executed.

This event counts the number of times the SSE instruction
prefetchT0 is executed. This instruction prefetches the data
to the L1 data cache and L2 cache.

07H 02H SSE_PRE_EXEC.L2 Streaming SIMD
Extensions (SSE)
PrefetchT1 and
PrefetchT2
instructions executed.

This event counts the number of times the SSE instructions
prefetchT1 and prefetchT2 are executed. These
instructions prefetch the data to the L2 cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD
Extensions (SSE)
Weakly-ordered store
instructions executed.

This event counts the number of times SSE non-temporal
store instructions are executed.

08H 01H DTLB_MISSES.
ANY

Memory accesses that
missed the DTLB.

This event counts the number of Data Table Lookaside
Buffer (DTLB) misses. The count includes misses detected
as a result of speculative accesses.

Typically a high count for this event indicates that the code
accesses a large number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses due to
load operations.

This event counts the number of Data Table Lookaside
Buffer (DTLB) misses due to load operations.

This count includes misses detected as a result of
speculative accesses.

08H 04H DTLB_MISSES.L0_MISS_LD L0 DTLB misses due to
load operations.

This event counts the number of level 0 Data Table
Lookaside Buffer (DTLB0) misses due to load operations.

This count includes misses detected as a result of
speculative accesses. Loads that miss that DTLB0 and hit
the DTLB1 can incur two-cycle penalty.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-145

PERFORMANCE MONITORING EVENTS

08H 08H DTLB_MISSES.
MISS_ST

TLB misses due to
store operations.

This event counts the number of Data Table Lookaside
Buffer (DTLB) misses due to store operations.

This count includes misses detected as a result of
speculative accesses. Address translation for store
operations is performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.RESET

Memory
disambiguation reset
cycles.

This event counts the number of cycles during which
memory disambiguation misprediction occurs. As a result
the execution pipeline is cleaned and execution of the
mispredicted load instruction and all succeeding instructions
restarts.

This event occurs when the data address accessed by a load
instruction, collides infrequently with preceding stores, but
usually there is no collision. It happens rarely, and may have
a penalty of about 20 cycles.

09H 02H MEMORY_DISAMBIGUATIO
N.SUCCESS

Number of loads
successfully
disambiguated.

This event counts the number of load operations that were
successfully disambiguated. Loads are preceded by a store
with an unknown address, but they are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of page-walks
executed.

This event counts the number of page-walks executed due
to either a DTLB or ITLB miss.

The page walk duration, PAGE_WALKS.CYCLES, divided by
number of page walks is the average duration of a page
walk. The average can hint whether most of the page-walks
are satisfied by the caches or cause an L2 cache miss.

0CH 02H PAGE_WALKS.
CYCLES

Duration of page-
walks in core cycles.

This event counts the duration of page-walks in core cycles.
The paging mode in use typically affects the duration of
page walks.

Page walk duration divided by number of page walks is the
average duration of page-walks. The average can hint at
whether most of the page-walks are satisfied by the caches
or cause an L2 cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point
computational micro-
ops executed.

This event counts the number of floating point
computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point assists. This event counts the number of floating point operations
executed that required micro-code assist intervention.
Assists are required in the following cases:

• Streaming SIMD Extensions (SSE) instructions:

• Denormal input when the DAZ (Denormals Are Zeros) flag
is off

• Underflow result when the FTZ (Flush To Zero) flag is off
• X87 instructions:
• NaN or denormal are loaded to a register or used as input

from memory
• Division by 0
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply operations
executed.

This event counts the number of multiply operations
executed. This includes integer as well as floating point
multiply operations.

Use IA32_PMC1 only.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-146 Vol. 3B

PERFORMANCE MONITORING EVENTS

13H 00H DIV Divide operations
executed.

This event counts the number of divide operations
executed. This includes integer divides, floating point
divides and square-root operations executed.

Use IA32_PMC1 only.

14H 00H CYCLES_DIV
_BUSY

Cycles the divider
busy.

This event counts the number of cycles the divider is busy
executing divide or square root operations. The divide can
be integer, X87 or Streaming SIMD Extensions (SSE). The
square root operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the divider is
busy and all other
execution units are
idle.

This event counts the number of cycles the divider is busy
(with a divide or a square root operation) and no other
execution unit or load operation is in progress.

Load operations are assumed to hit the L1 data cache. This
event considers only micro-ops dispatched after the divider
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass to FP
operation.

This event counts the number of times floating point
operations use data immediately after the data was
generated by a non-floating point execution unit. Such cases
result in one penalty cycle due to data bypass between the
units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass to
SIMD operation.

This event counts the number of times SIMD operations use
data immediately after the data was generated by a non-
SIMD execution unit. Such cases result in one penalty cycle
due to data bypass between the units.

Use IA32_PMC1 only.

19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass to
load operation.

This event counts the number of delayed bypass penalty
cycles that a load operation incurred.

When load operations use data immediately after the data
was generated by an integer execution unit, they may
(pending on certain dynamic internal conditions) incur one
penalty cycle due to delayed data bypass between the units.

Use IA32_PMC1 only.

21H See
Table
18-61

L2_ADS.(Core) Cycles L2 address bus
is in use.

This event counts the number of cycles the L2 address bus
is being used for accesses to the L2 cache or bus queue. It
can count occurrences for this core or both cores.

23H See
Table
18-61

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2
transfers data to the
core.

This event counts the number of cycles during which the L2
data bus is busy transferring data from the L2 cache to the
core. It counts for all L1 cache misses (data and instruction)
that hit the L2 cache.

This event can count occurrences for this core or both cores.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-147

PERFORMANCE MONITORING EVENTS

24H Combin
ed mask
from
Table
18-61
and
Table
18-63

L2_LINES_IN.
(Core, Prefetch)

L2 cache misses. This event counts the number of cache lines allocated in the
L2 cache. Cache lines are allocated in the L2 cache as a
result of requests from the L1 data and instruction caches
and the L2 hardware prefetchers to cache lines that are
missing in the L2 cache.

This event can count occurrences for this core or both cores.
It can also count demand requests and L2 hardware
prefetch requests together or separately.

25H See
Table
18-61

L2_M_LINES_IN.
(Core)

L2 cache line
modifications.

This event counts whenever a modified cache line is written
back from the L1 data cache to the L2 cache.

This event can count occurrences for this core or both cores.

26H See
Table
18-61
and
Table
18-63

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines evicted. This event counts the number of L2 cache lines evicted.

This event can count occurrences for this core or both cores.
It can also count evictions due to demand requests and L2
hardware prefetch requests together or separately.

27H See
Table
18-61
and
Table
18-63

L2_M_LINES_OUT.(Core,
Prefetch)

Modified lines evicted
from the L2 cache.

This event counts the number of L2 modified cache lines
evicted. These lines are written back to memory unless they
also exist in a modified-state in one of the L1 data caches.

This event can count occurrences for this core or both cores.
It can also count evictions due to demand requests and L2
hardware prefetch requests together or separately.

28H Com-
bined
mask
from
Table
18-61
and
Table
18-64

L2_IFETCH.(Core, Cache
Line State)

L2 cacheable
instruction fetch
requests.

This event counts the number of instruction cache line
requests from the IFU. It does not include fetch requests
from uncacheable memory. It does not include ITLB miss
accesses.

This event can count occurrences for this core or both cores.
It can also count accesses to cache lines at different MESI
states.

29H Combin
ed mask
from
Table
18-61,
Table
18-63,
and
Table
18-64

L2_LD.(Core, Prefetch,
Cache Line State)

L2 cache reads. This event counts L2 cache read requests coming from the
L1 data cache and L2 prefetchers.

The event can count occurrences:

• For this core or both cores.
• Due to demand requests and L2 hardware prefetch

requests together or separately.
• Of accesses to cache lines at different MESI states.

2AH See
Table
18-61
and
Table
18-64

L2_ST.(Core, Cache Line
State)

L2 store requests. This event counts all store operations that miss the L1 data
cache and request the data from the L2 cache.

The event can count occurrences for this core or both cores.
It can also count accesses to cache lines at different MESI
states.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-148 Vol. 3B

PERFORMANCE MONITORING EVENTS

2BH See
Table
18-61
and
Table
18-64

L2_LOCK.(Core, Cache Line
State)

L2 locked accesses. This event counts all locked accesses to cache lines that
miss the L1 data cache.

The event can count occurrences for this core or both cores.
It can also count accesses to cache lines at different MESI
states.

2EH See
Table
18-61,
Table
18-63,
and
Table
18-64

L2_RQSTS.(Core, Prefetch,
Cache Line State)

L2 cache requests. This event counts all completed L2 cache requests. This
includes L1 data cache reads, writes, and locked accesses,
L1 data prefetch requests, instruction fetches, and all L2
hardware prefetch requests.

This event can count occurrences:

• For this core or both cores.
• Due to demand requests and L2 hardware prefetch

requests together, or separately.
• Of accesses to cache lines at different MESI states.

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache demand
requests from this
core that missed the
L2.

This event counts all completed L2 cache demand requests
from this core that miss the L2 cache. This includes L1 data
cache reads, writes, and locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache demand
requests from this
core.

This event counts all completed L2 cache demand requests
from this core. This includes L1 data cache reads, writes,
and locked accesses, L1 data prefetch requests, and
instruction fetches.

This is an architectural performance event.

30H See
Table
18-61,
Table
18-63,
and
Table
18-64

L2_REJECT_BUSQ.(Core,
Prefetch, Cache Line State)

Rejected L2 cache
requests.

This event indicates that a pending L2 cache request that
requires a bus transaction is delayed from moving to the bus
queue. Some of the reasons for this event are:

• The bus queue is full.
• The bus queue already holds an entry for a cache line in

the same set.
The number of events is greater or equal to the number of
requests that were rejected.

• For this core or both cores.
• Due to demand requests and L2 hardware prefetch

requests together, or separately.
• Of accesses to cache lines at different MESI states.

32H See
Table
18-61

L2_NO_REQ.(Core) Cycles no L2 cache
requests are pending.

This event counts the number of cycles that no L2 cache
requests were pending from a core. When using the
BOTH_CORE modifier, the event counts only if none of the
cores have a pending request. The event counts also when
one core is halted and the other is not halted.

The event can count occurrences for this core or both cores.

3AH 00H EIST_TRANS Number of Enhanced
Intel SpeedStep
Technology (EIST)
transitions.

This event counts the number of transitions that include a
frequency change, either with or without voltage change.
This includes Enhanced Intel SpeedStep Technology (EIST)
and TM2 transitions.

The event is incremented only while the counting core is in
C0 state. Since transitions to higher-numbered CxE states
and TM2 transitions include a frequency change or voltage
transition, the event is incremented accordingly.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-149

PERFORMANCE MONITORING EVENTS

3BH C0H THERMAL_TRIP Number of thermal
trips.

This event counts the number of thermal trips. A thermal
trip occurs whenever the processor temperature exceeds
the thermal trip threshold temperature.

Following a thermal trip, the processor automatically
reduces frequency and voltage. The processor checks the
temperature every millisecond and returns to normal when
the temperature falls below the thermal trip threshold
temperature.

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles when core
is not halted.

This event counts the number of core cycles while the core
is not in a halt state. The core enters the halt state when it
is running the HLT instruction. This event is a component in
many key event ratios.

The core frequency may change due to transitions
associated with Enhanced Intel SpeedStep Technology or
TM2. For this reason, this event may have a changing ratio in
regard to time.

When the core frequency is constant, this event can give
approximate elapsed time while the core not in halt state.

This is an architectural performance event.

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles when core
is not halted.

This event counts the number of bus cycles while the core is
not in the halt state. This event can give a measurement of
the elapsed time while the core was not in the halt state.
The core enters the halt state when it is running the HLT
instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is the maximum bus
to processor frequency ratio.

Non-halted bus cycles are a component in many key event
ratios.

3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles when core
is active and the other
is halted.

This event counts the number of bus cycles during which
the core remains non-halted and the other core on the
processor is halted.

This event can be used to determine the amount of
parallelism exploited by an application or a system. Divide
this event count by the bus frequency to determine the
amount of time that only one core was in use.

40H See
Table
18-64

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable data
reads.

This event counts the number of data reads from cacheable
memory. Locked reads are not counted.

41H See
Table
18-64

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable data
writes.

This event counts the number of data writes to cacheable
memory. Locked writes are not counted.

42H See
Table
18-64

L1D_CACHE_
LOCK.(Cache Line State)

L1 data cacheable
locked reads.

This event counts the number of locked data reads from
cacheable memory.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-150 Vol. 3B

PERFORMANCE MONITORING EVENTS

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1 data
cacheable locked
operation.

This event counts the number of cycles during which any
cache line is locked by any locking instruction.

Locking happens at retirement and therefore the event does
not occur for instructions that are speculatively executed.
Locking duration is shorter than locked instruction execution
duration.

43H 01H L1D_ALL_REF All references to the
L1 data cache.

This event counts all references to the L1 data cache,
including all loads and stores with any memory types.

The event counts memory accesses only when they are
actually performed. For example, a load blocked by unknown
store address and later performed is only counted once.

The event includes non-cacheable accesses, such as I/O
accesses.

43H 02H L1D_ALL_
CACHE_REF

L1 Data cacheable
reads and writes.

This event counts the number of data reads and writes from
cacheable memory, including locked operations.

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines allocated
in the L1 data cache.

This event counts the number of lines brought into the L1
data cache.

46H 00H L1D_M_REPL Modified cache lines
allocated in the L1
data cache.

This event counts the number of modified lines brought into
the L1 data cache.

47H 00H L1D_M_EVICT Modified cache lines
evicted from the L1
data cache.

This event counts the number of modified lines evicted from
the L1 data cache, whether due to replacement or by snoop
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of
outstanding L1 data
cache misses at any
cycle.

This event counts the number of outstanding L1 data cache
misses at any cycle. An L1 data cache miss is outstanding
from the cycle on which the miss is determined until the
first chunk of data is available. This event counts:

• All cacheable demand requests.
• L1 data cache hardware prefetch requests.
• Requests to write through memory.
• Requests to write combine memory.
Uncacheable requests are not counted. The count of this
event divided by the number of L1 data cache misses,
L1D_REPL, is the average duration in core cycles of an L1
data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split loads
from the L1 data
cache.

This event counts the number of load operations that span
two cache lines. Such load operations are also called split
loads. Split load operations are executed at retirement.

49H 02H L1D_SPLIT.
STORES

Cache line split stores
to the L1 data cache.

This event counts the number of store operations that span
two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD
Extensions (SSE)
Prefetch NTA
instructions missing all
cache levels.

This event counts the number of times the SSE instructions
prefetchNTA were executed and missed all cache levels.

Due to speculation an executed instruction might not retire.
This instruction prefetches the data to the L1 data cache.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-151

PERFORMANCE MONITORING EVENTS

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD
Extensions (SSE)
PrefetchT0
instructions missing all
cache levels.

This event counts the number of times the SSE instructions
prefetchT0 were executed and missed all cache levels.

Due to speculation executed instruction might not retire.
The prefetchT0 instruction prefetches data to the L2 cache
and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD
Extensions (SSE)
PrefetchT1 and
PrefetchT2
instructions missing all
cache levels.

This event counts the number of times the SSE instructions
prefetchT1 and prefetchT2 were executed and missed all
cache levels.

Due to speculation, an executed instruction might not retire.
The prefetchT1 and PrefetchNT2 instructions prefetch data
to the L2 cache.

4CH 00H LOAD_HIT_PRE Load operations
conflicting with a
software prefetch to
the same address.

This event counts load operations sent to the L1 data cache
while a previous Streaming SIMD Extensions (SSE) prefetch
instruction to the same cache line has started prefetching
but has not yet finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache prefetch
requests.

This event counts the number of times the L1 data cache
requested to prefetch a data cache line. Requests can be
rejected when the L2 cache is busy and resubmitted later or
lost.

All requests are counted, including those that are rejected.

60H See
Table
18-61
and
Table
18-62.

BUS_REQUEST_
OUTSTANDING.
(Core and Bus Agents)

Outstanding cacheable
data read bus
requests duration.

This event counts the number of pending full cache line read
transactions on the bus occurring in each cycle. A read
transaction is pending from the cycle it is sent on the bus
until the full cache line is received by the processor.

The event counts only full-line cacheable read requests from
either the L1 data cache or the L2 prefetchers. It does not
count Read for Ownership transactions, instruction byte
fetch transactions, or any other bus transaction.

61H See
Table
18-62.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus Not
Ready signals
asserted.

This event counts the number of Bus Not Ready (BNR)
signals that the processor asserts on the bus to suspend
additional bus requests by other bus agents.

A bus agent asserts the BNR signal when the number of
data and snoop transactions is close to the maximum that
the bus can handle. To obtain the number of bus cycles
during which the BNR signal is asserted, multiply the event
count by two.

While this signal is asserted, new transactions cannot be
submitted on the bus. As a result, transaction latency may
have higher impact on program performance.

62H See
Table
18-62.

BUS_DRDY_
CLOCKS.(Bus Agents)

Bus cycles when data
is sent on the bus.

This event counts the number of bus cycles during which
the DRDY (Data Ready) signal is asserted on the bus. The
DRDY signal is asserted when data is sent on the bus. With
the 'THIS_AGENT' mask this event counts the number of bus
cycles during which this agent (the processor) writes data
on the bus back to memory or to other bus agents. This
includes all explicit and implicit data writebacks, as well as
partial writes.

With the 'ALL_AGENTS' mask, this event counts the number
of bus cycles during which any bus agent sends data on the
bus. This includes all data reads and writes on the bus.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-152 Vol. 3B

PERFORMANCE MONITORING EVENTS

63H See
Table
18-61
and
Table
18-62.

BUS_LOCK_
CLOCKS.(Core and Bus
Agents)

Bus cycles when a
LOCK signal asserted.

This event counts the number of bus cycles, during which
the LOCK signal is asserted on the bus. A LOCK signal is
asserted when there is a locked memory access, due to:

• Uncacheable memory.
• Locked operation that spans two cache lines.
• Page-walk from an uncacheable page table.
Bus locks have a very high performance penalty and it is
highly recommended to avoid such accesses.

64H See
Table
18-61.

BUS_DATA_
RCV.(Core)

Bus cycles while
processor receives
data.

This event counts the number of bus cycles during which
the processor is busy receiving data.

65H See
Table
18-61
and
Table
18-62.

BUS_TRANS_BRD.(Core
and Bus Agents)

Burst read bus
transactions.

This event counts the number of burst read transactions
including:

• L1 data cache read misses (and L1 data cache hardware
prefetches).

• L2 hardware prefetches by the DPL and L2 streamer.
• IFU read misses of cacheable lines.
It does not include RFO transactions.

66H See
Table
18-61
and
Table
18-62.

BUS_TRANS_RFO.(Core
and Bus Agents)

RFO bus transactions. This event counts the number of Read For Ownership (RFO)
bus transactions, due to store operations that miss the L1
data cache and the L2 cache. It also counts RFO bus
transactions due to locked operations.

67H See
Table
18-61
and
Table
18-62.

BUS_TRANS_WB.
(Core and Bus Agents)

Explicit writeback bus
transactions.

This event counts all explicit writeback bus transactions due
to dirty line evictions. It does not count implicit writebacks
due to invalidation by a snoop request.

68H See
Table
18-61
and
Table
18-62.

BUS_TRANS_
IFETCH.(Core and Bus
Agents)

Instruction-fetch bus
transactions.

This event counts all instruction fetch full cache line bus
transactions.

69H See
Table
18-61
and
Table
18-62.

BUS_TRANS_
INVAL.(Core and Bus
Agents)

Invalidate bus
transactions.

This event counts all invalidate transactions. Invalidate
transactions are generated when:

• A store operation hits a shared line in the L2 cache.
• A full cache line write misses the L2 cache or hits a

shared line in the L2 cache.

6AH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
PWR.(Core and Bus Agents)

Partial write bus
transaction.

This event counts partial write bus transactions.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-153

PERFORMANCE MONITORING EVENTS

6BH See
Table
18-61
and
Table
18-62.

BUS_TRANS
_P.(Core and Bus Agents)

Partial bus
transactions.

This event counts all (read and write) partial bus
transactions.

6CH See
Table
18-61
and
Table
18-62.

BUS_TRANS_IO.(Core and
Bus Agents)

IO bus transactions. This event counts the number of completed I/O bus
transactions as a result of IN and OUT instructions. The
count does not include memory mapped IO.

6DH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
DEF.(Core and Bus Agents)

Deferred bus
transactions.

This event counts the number of deferred transactions.

6EH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
BURST.(Core and Bus
Agents)

Burst (full cache-line)
bus transactions.

This event counts burst (full cache line) transactions
including:

• Burst reads.
• RFOs.
• Explicit writebacks.
• Write combine lines.

6FH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
MEM.(Core and Bus Agents)

Memory bus
transactions.

This event counts all memory bus transactions including:

• Burst transactions.
• Partial reads and writes - invalidate transactions.
The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_IVAL.

70H See
Table
18-61
and
Table
18-62.

BUS_TRANS_
ANY.(Core and Bus Agents)

All bus transactions. This event counts all bus transactions. This includes:

• Memory transactions.
• IO transactions (non memory-mapped).
• Deferred transaction completion.
• Other less frequent transactions, such as interrupts.

77H See
Table
18-61
and
Table
18-65.

EXT_SNOOP.
(Bus Agents, Snoop
Response)

External snoops. This event counts the snoop responses to bus transactions.
Responses can be counted separately by type and by bus
agent.

With the 'THIS_AGENT' mask, the event counts snoop
responses from this processor to bus transactions sent by
this processor. With the 'ALL_AGENTS' mask the event
counts all snoop responses seen on the bus.

78H See
Table
18-61
and
Table
18-66.

CMP_SNOOP.(Core, Snoop
Type)

L1 data cache
snooped by other core.

This event counts the number of times the L1 data cache is
snooped for a cache line that is needed by the other core in
the same processor. The cache line is either missing in the
L1 instruction or data caches of the other core, or is
available for reading only and the other core wishes to write
the cache line.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-154 Vol. 3B

PERFORMANCE MONITORING EVENTS

The snoop operation may change the cache line state. If the
other core issued a read request that hit this core in E state,
typically the state changes to S state in this core. If the
other core issued a read for ownership request (due a write
miss or hit to S state) that hits this core's cache line in E or S
state, this typically results in invalidation of the cache line in
this core. If the snoop hits a line in M state, the state is
changed at a later opportunity.

These snoops are performed through the L1 data cache
store port. Therefore, frequent snoops may conflict with
extensive stores to the L1 data cache, which may increase
store latency and impact performance.

7AH See
Table
18-62.

BUS_HIT_DRV.

(Bus Agents)

HIT signal asserted. This event counts the number of bus cycles during which
the processor drives the HIT# pin to signal HIT snoop
response.

7BH See
Table
18-62.

BUS_HITM_DRV.

(Bus Agents)

HITM signal asserted. This event counts the number of bus cycles during which
the processor drives the HITM# pin to signal HITM snoop
response.

7DH See
Table
18-61.

BUSQ_EMPTY.

(Core)

Bus queue empty. This event counts the number of cycles during which the
core did not have any pending transactions in the bus queue.
It also counts when the core is halted and the other core is
not halted.

This event can count occurrences for this core or both cores.

7EH See
Table
18-61
and
Table
18-62.

SNOOP_STALL_
DRV.(Core and Bus Agents)

Bus stalled for snoops. This event counts the number of times that the bus snoop
stall signal is asserted. To obtain the number of bus cycles
during which snoops on the bus are prohibited, multiply the
event count by two.

During the snoop stall cycles, no new bus transactions
requiring a snoop response can be initiated on the bus. A
bus agent asserts a snoop stall signal if it cannot response
to a snoop request within three bus cycles.

7FH See
Table
18-61.

BUS_IO_WAIT.
(Core)

IO requests waiting in
the bus queue.

This event counts the number of core cycles during which IO
requests wait in the bus queue. With the SELF modifier this
event counts IO requests per core.

With the BOTH_CORE modifier, this event increments by one
for any cycle for which there is a request from either core.

80H 00H L1I_READS Instruction fetches. This event counts all instruction fetches, including
uncacheable fetches that bypass the Instruction Fetch Unit
(IFU).

81H 00H L1I_MISSES Instruction Fetch Unit
misses.

This event counts all instruction fetches that miss the
Instruction Fetch Unit (IFU) or produce memory requests.
This includes uncacheable fetches.

An instruction fetch miss is counted only once and not once
for every cycle it is outstanding.

82H 02H ITLB.SMALL_MISS ITLB small page
misses.

This event counts the number of instruction fetches from
small pages that miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page
misses.

This event counts the number of instruction fetches from
large pages that miss the ITLB.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-155

PERFORMANCE MONITORING EVENTS

82H 40H ITLB.FLUSH ITLB flushes. This event counts the number of ITLB flushes. This usually
happens upon CR3 or CR0 writes, which are executed by
the operating system during process switches.

82H 12H ITLB.MISSES ITLB misses. This event counts the number of instruction fetches from
either small or large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during which
the instruction queue
is full.

This event counts the number of cycles during which the
instruction queue is full. In this situation, the core front end
stops fetching more instructions. This is an indication of
very long stalls in the back-end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during which
instruction fetches
stalled.

This event counts the number of cycles for which an
instruction fetch stalls, including stalls due to any of the
following reasons:

• Instruction Fetch Unit cache misses.
• Instruction TLB misses.
• Instruction TLB faults.

87H 00H ILD_STALL Instruction Length
Decoder stall cycles
due to a length
changing prefix.

This event counts the number of cycles during which the
instruction length decoder uses the slow length decoder.
Usually, instruction length decoding is done in one cycle.
When the slow decoder is used, instruction decoding
requires 6 cycles.

The slow decoder is used in the following cases:

• Operand override prefix (66H) preceding an instruction
with immediate data.

• Address override prefix (67H) preceding an instruction
with a modr/m in real, big real, 16-bit protected or 32-bit
protected modes.

To avoid instruction length decoding stalls, generate code
using imm8 or imm32 values instead of imm16 values. If
you must use an imm16 value, store the value in a register
using “mov reg, imm32” and use the register format of the
instruction.

88H 00H BR_INST_EXEC Branch instructions
executed.

This event counts all executed branches (not necessarily
retired). This includes only instructions and not micro-op
branches.

Frequent branching is not necessarily a major performance
issue. However frequent branch mispredictions may be a
problem.

89H 00H BR_MISSP_EXEC Mispredicted branch
instructions executed.

This event counts the number of mispredicted branch
instructions that were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch instructions
mispredicted at
decoding.

This event counts the number of branch instructions that
were mispredicted at decoding.

8BH 00H BR_CND_EXEC Conditional branch
instructions executed.

This event counts the number of conditional branch
instructions executed, but not necessarily retired.

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted
conditional branch
instructions executed.

This event counts the number of mispredicted conditional
branch instructions that were executed.

8DH 00H BR_IND_EXEC Indirect branch
instructions executed.

This event counts the number of indirect branch instructions
that were executed.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-156 Vol. 3B

PERFORMANCE MONITORING EVENTS

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted indirect
branch instructions
executed.

This event counts the number of mispredicted indirect
branch instructions that were executed.

8FH 00H BR_RET_EXEC RET instructions
executed.

This event counts the number of RET instructions that were
executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted RET
instructions executed.

This event counts the number of mispredicted RET
instructions that were executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET instructions
executed mispredicted
at decoding.

This event counts the number of RET instructions that were
executed and were mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL instructions
executed.

This event counts the number of CALL instructions
executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted CALL
instructions executed.

This event counts the number of mispredicted CALL
instructions that were executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL
instructions executed.

This event counts the number of indirect CALL instructions
that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch predicted
taken with bubble 1.

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2
together count the number of times a taken branch
prediction incurred a one-cycle penalty. The penalty incurs
when:

• Too many taken branches are placed together. To avoid
this, unroll loops and add a non-taken branch in the
middle of the taken sequence.

• The branch target is unaligned. To avoid this, align the
branch target.

98H 00H BR_TKN_
BUBBLE_2

Branch predicted
taken with bubble 2.

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2
together count the number of times a taken branch
prediction incurred a one-cycle penalty. The penalty incurs
when:

• Too many taken branches are placed together. To avoid
this, unroll loops and add a non-taken branch in the
middle of the taken sequence.

• The branch target is unaligned. To avoid this, align the
branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops dispatched
for execution.

This event counts the number of micro-ops dispatched for
execution. Up to six micro-ops can be dispatched in each
cycle.

A1H 01H RS_UOPS_
DISPATCHED.PORT0

Cycles micro-ops
dispatched for
execution on port 0.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Issue Ports are described in
Intel® 64 and IA-32 Architectures Optimization Reference
Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT1

Cycles micro-ops
dispatched for
execution on port 1.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

A1H 04H RS_UOPS_
DISPATCHED.PORT2

Cycles micro-ops
dispatched for
execution on port 2.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-157

PERFORMANCE MONITORING EVENTS

A1H 08H RS_UOPS_
DISPATCHED.PORT3

Cycles micro-ops
dispatched for
execution on port 3.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

A1H 10H RS_UOPS_
DISPATCHED.PORT4

Cycles micro-ops
dispatched for
execution on port 4.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

A1H 20H RS_UOPS_
DISPATCHED.PORT5

Cycles micro-ops
dispatched for
execution on port 5.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

AAH 01H MACRO_INSTS.
DECODED

Instructions decoded. This event counts the number of instructions decoded (but
not necessarily executed or retired).

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC Instructions
decoded.

This event counts the number of complex instructions
decoded. Complex instructions usually have more than four
micro-ops. Only one complex instruction can be decoded at a
time.

ABH 01H ESP.SYNCH ESP register content
synchron-ization.

This event counts the number of times that the ESP register
is explicitly used in the address expression of a load or store
operation, after it is implicitly used, for example by a push or
a pop instruction.

ESP synch micro-op uses resources from the rename pipe-
stage and up to retirement. The expected ratio of this event
divided by the number of ESP implicit changes is 0,2. If the
ratio is higher, consider rearranging your code to avoid ESP
synchronization events.

ABH 02H ESP.ADDITIONS ESP register automatic
additions.

This event counts the number of ESP additions performed
automatically by the decoder. A high count of this event is
good, since each automatic addition performed by the
decoder saves a micro-op from the execution units.

To maximize the number of ESP additions performed
automatically by the decoder, choose instructions that
implicitly use the ESP, such as PUSH, POP, CALL, and RET
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops
executed (excluding
stores).

This event counts all the SIMD micro-ops executed. It does
not count MOVQ and MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated
arithmetic micro-ops
executed.

This event counts the number of SIMD saturated arithmetic
micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed multiply
micro-ops executed.

This event counts the number of SIMD packed multiply
micro-ops executed.

B3H 02H SIMD_UOP_TYPE_EXEC.SHI
FT

SIMD packed shift
micro-ops executed.

This event counts the number of SIMD packed shift micro-
ops executed.

B3H 04H SIMD_UOP_TYPE_EXEC.PA
CK

SIMD pack micro-ops
executed.

This event counts the number of SIMD pack micro-ops
executed.

B3H 08H SIMD_UOP_TYPE_EXEC.UN
PACK

SIMD unpack micro-
ops executed.

This event counts the number of SIMD unpack micro-ops
executed.

B3H 10H SIMD_UOP_TYPE_EXEC.LO
GICAL

SIMD packed logical
micro-ops executed.

This event counts the number of SIMD packed logical micro-
ops executed.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-158 Vol. 3B

PERFORMANCE MONITORING EVENTS

B3H 20H SIMD_UOP_TYPE_EXEC.ARI
THMETIC

SIMD packed
arithmetic micro-ops
executed.

This event counts the number of SIMD packed arithmetic
micro-ops executed.

C0H 00H INST_RETIRED.
ANY_P

Instructions retired. This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-
ops, this event counts the retirement of the last micro-op of
the instruction. The counter continues counting during
hardware interrupts, traps, and inside interrupt handlers.

INST_RETIRED.ANY_P is an architectural performance
event.

C0H 01H INST_RETIRED.
LOADS

Instructions retired,
which contain a load.

This event counts the number of instructions retired that
contain a load operation.

C0H 02H INST_RETIRED.
STORES

Instructions retired,
which contain a store.

This event counts the number of instructions retired that
contain a store operation.

C0H 04H INST_RETIRED.
OTHER

Instructions retired,
with no load or store
operation.

This event counts the number of instructions retired that do
not contain a load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH instructions
retired.

This event counts the number of FXCH instructions retired.
Modern compilers generate more efficient code and are less
likely to use this instruction. If you obtain a high count for
this event consider recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired floating-point
computational
operations (precise
event).

This event counts the number of floating-point
computational operations retired. It counts:

• Floating point computational operations executed by the
assist handler.

• Sub-operations of complex floating-point instructions like
transcendental instructions.

This event does not count:

• Floating-point computational operations that cause traps
or assists.

• Floating-point loads and stores.
When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op or
load+indirect branch
retired.

This event counts the number of retired micro-ops that
fused a load with another operation. This includes:

• Fusion of a load and an arithmetic operation, such as with
the following instruction: ADD EAX, [EBX] where the
content of the memory location specified by EBX register
is loaded, added to EXA register, and the result is stored
in EAX.

• Fusion of a load and a branch in an indirect branch
operation, such as with the following instructions:

• JMP [RDI+200]
• RET
• Fusion decreases the number of micro-ops in the

processor pipeline. A high value for this event count
indicates that the code is using the processor resources
effectively.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-159

PERFORMANCE MONITORING EVENTS

C2H 02H UOPS_RETIRED.
STD_STA

Fused store address +
data retired.

This event counts the number of store address calculations
that are fused with store data emission into one micro-op.
Traditionally, each store operation required two micro-ops.

This event counts fusion of retired micro-ops only. Fusion
decreases the number of micro-ops in the processor
pipeline. A high value for this event count indicates that the
code is using the processor resources effectively.

C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired instruction
pairs fused into one
micro-op.

This event counts the number of times CMP or TEST
instructions were fused with a conditional branch
instruction into one micro-op. It counts fusion by retired
micro-ops only.

Fusion decreases the number of micro-ops in the processor
pipeline. A high value for this event count indicates that the
code uses the processor resources more effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-ops
retired.

This event counts the total number of retired fused micro-
ops. The counts include the following fusion types:

• Fusion of load operation with an arithmetic operation or
with an indirect branch (counted by event
UOPS_RETIRED.LD_IND_BR)

• Fusion of store address and data (counted by event
UOPS_RETIRED.STD_STA)

• Fusion of CMP or TEST instruction with a conditional
branch instruction (counted by event
UOPS_RETIRED.MACRO_FUSION)

Fusion decreases the number of micro-ops in the processor
pipeline. A high value for this event count indicates that the
code is using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused micro-ops
retired.

This event counts the number of micro-ops retired that
were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops retired. This event counts the number of micro-ops retired. The
processor decodes complex macro instructions into a
sequence of simpler micro-ops. Most instructions are
composed of one or two micro-ops.

Some instructions are decoded into longer sequences such
as repeat instructions, floating point transcendental
instructions, and assists. In some cases micro-op sequences
are fused or whole instructions are fused into one micro-op.

See other UOPS_RETIRED events for differentiating retired
fused and non-fused micro-ops.

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying Code
detected.

This event counts the number of times that a program
writes to a code section. Self-modifying code causes a
severe penalty in all Intel 64 and IA-32 processors.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-160 Vol. 3B

PERFORMANCE MONITORING EVENTS

C3H 04H MACHINE_NUKES.MEM_OR
DER

Execution pipeline
restart due to memory
ordering conflict or
memory
disambiguation
misprediction.

This event counts the number of times the pipeline is
restarted due to either multi-threaded memory ordering
conflicts or memory disambiguation misprediction.

A multi-threaded memory ordering conflict occurs when a
store, which is executed in another core, hits a load that is
executed out of order in this core but not yet retired. As a
result, the load needs to be restarted to satisfy the memory
ordering model.

See Chapter 8, “Multiple-Processor Management” in the
Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

To count memory disambiguation mispredictions, use the
event MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.ANY Retired branch
instructions.

This event counts the number of branch instructions retired.
This is an architectural performance event.

C4H 01H BR_INST_RETIRED.PRED_N
OT_
TAKEN

Retired branch
instructions that were
predicted not-taken.

This event counts the number of branch instructions retired
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MISPRE
D_NOT_
TAKEN

Retired branch
instructions that were
mispredicted not-
taken.

This event counts the number of branch instructions retired
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRED_T
AKEN

Retired branch
instructions that were
predicted taken.

This event counts the number of branch instructions retired
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MISPRE
D_TAKEN

Retired branch
instructions that were
mispredicted taken.

This event counts the number of branch instructions retired
that were mispredicted and taken.

C4H 0CH BR_INST_RETIRED.TAKEN Retired taken branch
instructions.

This event counts the number of branches retired that were
taken.

C5H 00H BR_INST_RETIRED.MISPRE
D

Retired mispredicted
branch instructions.
(precise event)

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa.

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during which
interrupts are
disabled.

This event counts the number of cycles during which
interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during which
interrupts are pending
and disabled.

This event counts the number of cycles during which there
are pending interrupts but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_SINGLE

Retired SSE packed-
single instructions.

This event counts the number of SSE packed-single
instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_SINGLE

Retired SSE scalar-
single instructions.

This event counts the number of SSE scalar-single
instructions retired.

C7H 04H SIMD_INST_
RETIRED.PACKED_DOUBLE

Retired SSE2 packed-
double instructions.

This event counts the number of SSE2 packed-double
instructions retired.

C7H 08H SIMD_INST_
RETIRED.SCALAR_DOUBLE

Retired SSE2 scalar-
double instructions.

This event counts the number of SSE2 scalar-double
instructions retired.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-161

PERFORMANCE MONITORING EVENTS

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2 vector
integer instructions.

This event counts the number of SSE2 vector integer
instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired Streaming
SIMD instructions
(precise event).

This event counts the overall number of retired SIMD
instructions that use XMM registers. To count each type of
SIMD instruction separately, use the following events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

C8H 00H HW_INT_RCV Hardware interrupts
received.

This event counts the number of hardware interrupts
received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired instructions
that missed the ITLB.

This event counts the number of retired instructions that
missed the ITLB when they were fetched.

CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired computational
SSE packed-single
instructions.

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions
perform arithmetic computations (for example: add, multiply
and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired computational
SSE scalar-single
instructions.

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions
perform arithmetic computations (for example: add, multiply
and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired computational
SSE2 packed-double
instructions.

This event counts the number of computational SSE2
packed-double instructions retired. Computational
instructions perform arithmetic computations (for example:
add, multiply and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

CAH 08H SIMD_COMP_INST_RETIRE
D.SCALAR_DOUBLE

Retired computational
SSE2 scalar-double
instructions.

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions
perform arithmetic computations (for example: add, multiply
and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-162 Vol. 3B

PERFORMANCE MONITORING EVENTS

CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads that miss
the L1 data cache
(precise event).

This event counts the number of retired load operations
that missed the L1 data cache. This includes loads from
cache lines that are currently being fetched, due to a
previous L1 data cache miss to the same cache line.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache line
missed by retired
loads (precise event).

This event counts the number of load operations that miss
the L1 data cache and send a request to the L2 cache to
fetch the missing cache line. That is the missing cache line
fetching has not yet started.

The event count is equal to the number of cache lines
fetched from the L2 cache by retired loads.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

The event might not be counted if the load is blocked (see
LOAD_BLOCK events).

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads that miss
the L2 cache (precise
event).

This event counts the number of retired load operations
that missed the L2 cache.

This event counts loads from cacheable memory only. It
does not count loads by software prefetches.

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-163

PERFORMANCE MONITORING EVENTS

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_MISS

L2 cache line missed
by retired loads
(precise event).

This event counts the number of load operations that miss
the L2 cache and result in a bus request to fetch the missing
cache line. That is the missing cache line fetching has not
yet started.

This event count is equal to the number of cache lines
fetched from memory by retired loads.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

The event might not be counted if the load is blocked (see
LOAD_BLOCK events).

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads that miss
the DTLB (precise
event).

This event counts the number of retired loads that missed
the DTLB. The DTLB miss is not counted if the load
operation causes a fault.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_TO_MMX Transitions from
Floating Point to MMX
Instructions.

This event counts the first MMX instructions following a
floating-point instruction. Use this event to estimate the
penalties for the transitions between floating-point and
MMX states.

CCH 02H FP_MMX_TRANS_TO_FP Transitions from MMX
Instructions to
Floating Point
Instructions.

This event counts the first floating-point instructions
following any MMX instruction. Use this event to estimate
the penalties for the transitions between floating-point and
MMX states.

CDH 00H SIMD_ASSIST SIMD assists invoked. This event counts the number of SIMD assists invoked. SIMD
assists are invoked when an EMMS instruction is executed,
changing the MMX state in the floating point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD Instructions
retired.

This event counts the number of retired SIMD instructions
that use MMX registers.

CFH 00H SIMD_SAT_INSTR_RETIRED Saturated arithmetic
instructions retired.

This event counts the number of saturated arithmetic SIMD
instructions that retired.

D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port stalls
cycles.

This event counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops to enter
the out-of-order pipeline.

Note that, at this stage in the pipeline, additional stalls may
occur at the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops retry
entering the execution pipe in the next cycle and the ROB-
read-port stall is counted again.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-164 Vol. 3B

PERFORMANCE MONITORING EVENTS

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register stall
cycles.

This event counts the number of cycles instruction
execution latency became longer than the defined latency
because the instruction uses a register that was partially
written by previous instructions.

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles. This event counts the number of cycles during which
execution stalled due to several reasons, one of which is a
partial flag register stall.

A partial register stall may occur when two conditions are
met:

• An instruction modifies some, but not all, of the flags in
the flag register.

• The next instruction, which depends on flags, depends on
flags that were not modified by this instruction.

D2H 08H RAT_STALLS.
FPSW

FPU status word stall. This event indicates that the FPU status word (FPSW) is
written. To obtain the number of times the FPSW is written
divide the event count by 2.

The FPSW is written by instructions with long latency; a
small count may indicate a high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall cycles. This event counts the number of stall cycles due to
conditions described by:

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_
STALLS.ES

Segment rename stalls
- ES.

This event counts the number of stalls due to the lack of
renaming resources for the ES segment register. If a
segment is renamed, but not retired and a second update to
the same segment occurs, a stall occurs in the front end of
the pipeline until the renamed segment retires.

D4H 02H SEG_RENAME_
STALLS.DS

Segment rename stalls
- DS.

This event counts the number of stalls due to the lack of
renaming resources for the DS segment register. If a
segment is renamed, but not retired and a second update to
the same segment occurs, a stall occurs in the front end of
the pipeline until the renamed segment retires.

D4H 04H SEG_RENAME_
STALLS.FS

Segment rename stalls
- FS.

This event counts the number of stalls due to the lack of
renaming resources for the FS segment register.

If a segment is renamed, but not retired and a second
update to the same segment occurs, a stall occurs in the
front end of the pipeline until the renamed segment retires.

D4H 08H SEG_RENAME_
STALLS.GS

Segment rename stalls
- GS.

This event counts the number of stalls due to the lack of
renaming resources for the GS segment register.

If a segment is renamed, but not retired and a second
update to the same segment occurs, a stall occurs in the
front end of the pipeline until the renamed segment retires.

D4H 0FH SEG_RENAME_
STALLS.ANY

Any (ES/DS/FS/GS)
segment rename stall.

This event counts the number of stalls due to the lack of
renaming resources for the ES, DS, FS, and GS segment
registers.

If a segment is renamed but not retired and a second update
to the same segment occurs, a stall occurs in the front end
of the pipeline until the renamed segment retires.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-165

PERFORMANCE MONITORING EVENTS

D5H 01H SEG_REG_
RENAMES.ES

Segment renames -
ES.

This event counts the number of times the ES segment
register is renamed.

D5H 02H SEG_REG_
RENAMES.DS

Segment renames -
DS.

This event counts the number of times the DS segment
register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment renames -
FS.

This event counts the number of times the FS segment
register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment renames -
GS.

This event counts the number of times the GS segment
register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any (ES/DS/FS/GS)
segment rename.

This event counts the number of times any of the four
segment registers (ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during which
the ROB full.

This event counts the number of cycles when the number of
instructions in the pipeline waiting for retirement reaches
the limit the processor can handle.

A high count for this event indicates that there are long
latency operations in the pipe (possibly load and store
operations that miss the L2 cache, and other instructions
that depend on these cannot execute until the former
instructions complete execution). In this situation new
instructions cannot enter the pipe and start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during which
the RS full.

This event counts the number of cycles when the number of
instructions in the pipeline waiting for execution reaches
the limit the processor can handle.

A high count of this event indicates that there are long
latency operations in the pipe (possibly load and store
operations that miss the L2 cache, and other instructions
that depend on these cannot execute until the former
instructions complete execution). In this situation new
instructions cannot enter the pipe and start execution.

DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during which
the pipeline has
exceeded load or store
limit or waiting to
commit all stores.

This event counts the number of cycles while resource-
related stalls occur due to:

• The number of load instructions in the pipeline reached
the limit the processor can handle. The stall ends when a
loading instruction retires.

• The number of store instructions in the pipeline reached
the limit the processor can handle. The stall ends when a
storing instruction commits its data to the cache or
memory.

• There is an instruction in the pipe that can be executed
only when all previous stores complete and their data is
committed in the caches or memory. For example, the
SFENCE and MFENCE instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled due to
FPU control word
write.

This event counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU) control
word.

DCH 10H RESOURCE_
STALLS.BR_MISS_CLEAR

Cycles stalled due to
branch misprediction.

This event counts the number of cycles after a branch
misprediction is detected at execution until the branch and
all older micro-ops retire. During this time new micro-ops
cannot enter the out-of-order pipeline.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-166 Vol. 3B

PERFORMANCE MONITORING EVENTS

DCH 1FH RESOURCE_
STALLS.ANY

Resource related
stalls.

This event counts the number of cycles while resource-
related stalls occurs for any conditions described by the
following events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch instructions
decoded.

This event counts the number of branch instructions
decoded.

E4H 00H BOGUS_BR Bogus branches. This event counts the number of byte sequences that were
mistakenly detected as taken branch instructions.

This results in a BACLEAR event. This occurs mainly after
task switches.

E6H 00H BACLEARS BACLEARS asserted. This event counts the number of times the front end is
resteered, mainly when the BPU cannot provide a correct
prediction and this is corrected by other branch handling
mechanisms at the front and. This can occur if the code has
many branches such that they cannot be consumed by the
BPU.

Each BACLEAR asserted costs approximately 7 cycles of
instruction fetch. The effect on total execution time
depends on the surrounding code.

F0H 00H PREF_RQSTS_UP Upward prefetches
issued from DPL.

This event counts the number of upward prefetches issued
from the Data Prefetch Logic (DPL) to the L2 cache. A
prefetch request issued to the L2 cache cannot be cancelled
and the requested cache line is fetched to the L2 cache.

F8H 00H PREF_RQSTS_DN Downward prefetches
issued from DPL.

This event counts the number of downward prefetches
issued from the Data Prefetch Logic (DPL) to the L2 cache. A
prefetch request issued to the L2 cache cannot be cancelled
and the requested cache line is fetched to the L2 cache.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-167

PERFORMANCE MONITORING EVENTS

19.13 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
GOLDMONT PLUS MICROARCHITECTURE

Intel Atom processors based on the Goldmont Plus microarchitecture support the architectural performance moni-
toring events listed in Table 19-1 and fixed-function performance events using a fixed counter. They also support
the following performance monitoring events listed in Table 19-27. These events apply to processors with CPUID
signature of 06_7AH. In addition, processors based on the Goldmont Plus microarchitecture also support the
events listed in Table 19-27 (see Section 19.14, “Performance Monitoring Events for Processors Based on the Gold-
mont Microarchitecture”). For an event listed in Table 19-27 that also appears in the model-specific tables of prior
generations, Table 19-27 supersedes prior generation tables.

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Intel® Xeon®
processor 5500 Series,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

In Goldmont Plus microarchitecture, performance monitoring events that support Processor Event Based Sampling
(PEBS) and PEBS records that contain processor state information that are associated with at-retirement tagging
are marked by “Precise Event”.

Table 19-26. Performance Events for the Goldmont Plus Microarchitecture
Event
Num.

Umask
Value Event Name Description Comment

00H 01H INST_RETIRED.ANY Counts the number of instructions that retire execution. For
instructions that consist of multiple uops, this event counts the
retirement of the last uop of the instruction. The counter continues
counting during hardware interrupts, traps, and inside interrupt
handlers. This event uses fixed counter 0. You cannot collect a PEBS
record for this event.

Fixed Event,
Precise Event,
Not Reduced
Skid

08H 02H DTLB_LOAD_MISSES.W
ALK_COMPLETED_4K

Counts page walks completed due to demand data loads (including SW
prefetches) whose address translations missed in all TLB levels and
were mapped to 4K pages. The page walks can end with or without a
page fault.

08H 04H DTLB_LOAD_MISSES.W
ALK_COMPLETED_2M_
4M

Counts page walks completed due to demand data loads (including SW
prefetches) whose address translations missed in all TLB levels and
were mapped to 2M or 4M pages. The page walks can end with or
without a page fault.

08H 08H DTLB_LOAD_MISSES.W
ALK_COMPLETED_1GB

Counts page walks completed due to demand data loads (including SW
prefetches) whose address translations missed in all TLB levels and
were mapped to 1GB pages. The page walks can end with or without a
page fault.

08H 10H DTLB_LOAD_MISSES.W
ALK_PENDING

Counts once per cycle for each page walk occurring due to a load
(demand data loads or SW prefetches). Includes cycles spent traversing
the Extended Page Table (EPT). Average cycles per walk can be
calculated by dividing by the number of walks.

49H 02H DTLB_STORE_MISSES.W
ALK_COMPLETED_4K

Counts page walks completed due to demand data stores whose
address translations missed in the TLB and were mapped to 4K pages.
The page walks can end with or without a page fault.

49H 04H DTLB_STORE_MISSES.W
ALK_COMPLETED_2M_
4M

Counts page walks completed due to demand data stores whose
address translations missed in the TLB and were mapped to 2M or 4M
pages. The page walks can end with or without a page fault.

49H 08H DTLB_STORE_MISSES.W
ALK_COMPLETED_1GB

Counts page walks completed due to demand data stores whose
address translations missed in the TLB and were mapped to 1GB pages.
The page walks can end with or without a page fault.

49H 10H DTLB_STORE_MISSES.W
ALK_PENDING

Counts once per cycle for each page walk occurring due to a demand
data store. Includes cycles spent traversing the Extended Page Table
(EPT). Average cycles per walk can be calculated by dividing by the
number of walks.

19-168 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.14 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
GOLDMONT MICROARCHITECTURE

Intel Atom processors based on the Goldmont microarchitecture support the architectural performance monitoring
events listed in Table 19-1 and fixed-function performance events using a fixed counter. In addition, they also
support the following model-specific performance monitoring events listed in Table 19-27. These events apply to
processors with CPUID signatures of 06_5CH, 06_5FH, and 06_7AH.

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Intel® Xeon®
processor 5500 Series,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

In Goldmont microarchitecture, performance monitoring events that support Processor Event Based Sampling
(PEBS) and PEBS records that contain processor state information that are associated with at-retirement tagging
are marked by “Precise Event”.

4FH 10H EPT.WALK_PENDING Counts once per cycle for each page walk only while traversing the
Extended Page Table (EPT), and does not count during the rest of the
translation. The EPT is used for translating Guest-Physical Addresses to
Physical Addresses for Virtual Machine Monitors (VMMs). Average
cycles per walk can be calculated by dividing the count by number of
walks.

85H 02H ITLB_MISSES.WALK_CO
MPLETED_4K

Counts page walks completed due to instruction fetches whose address
translations missed in the TLB and were mapped to 4K pages. The page
walks can end with or without a page fault.

85H 04H ITLB_MISSES.WALK_CO
MPLETED_2M_4M

Counts page walks completed due to instruction fetches whose address
translations missed in the TLB and were mapped to 2M or 4M pages.
The page walks can end with or without a page fault.

85H 08H ITLB_MISSES.WALK_CO
MPLETED_1GB

Counts page walks completed due to instruction fetches whose address
translations missed in the TLB and were mapped to 1GB pages. The
page walks can end with or without a page fault.

85H 10H ITLB_MISSES.WALK_PE
NDING

Counts once per cycle for each page walk occurring due to an
instruction fetch. Includes cycles spent traversing the Extended Page
Table (EPT). Average cycles per walk can be calculated by dividing by
the number of walks.

BDH 20H TLB_FLUSHES.STLB_AN
Y

Counts STLB flushes. The TLBs are flushed on instructions like INVLPG
and MOV to CR3.

C3H 20H MACHINE_CLEARS.PAGE
_FAULT

Counts the number of times that the machines clears due to a page
fault. Covers both I-side and D-side (Loads/Stores) page faults. A page
fault occurs when either page is not present, or an access violation.

Table 19-27. Performance Events for the Goldmont Microarchitecture
Event
Num.

Umask
Value Event Name Description Comment

03H 10H LD_BLOCKS.ALL_BLOCK Counts anytime a load that retires is blocked for any reason. Precise Event

03H 08H LD_BLOCKS.UTLB_MISS Counts loads blocked because they are unable to find their physical
address in the micro TLB (UTLB).

Precise Event

03H 02H LD_BLOCKS.STORE_FO
RWARD

Counts a load blocked from using a store forward because of an
address/size mismatch; only one of the loads blocked from each store
will be counted.

Precise Event

Table 19-26. Performance Events for the Goldmont Plus Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-169

PERFORMANCE MONITORING EVENTS

03H 01H LD_BLOCKS.DATA_UNK
NOWN

Counts a load blocked from using a store forward, but did not occur
because the store data was not available at the right time. The forward
might occur subsequently when the data is available.

Precise Event

03H 04H LD_BLOCKS.4K_ALIAS Counts loads that block because their address modulo 4K matches a
pending store.

Precise Event

05H 01H PAGE_WALKS.D_SIDE_C
YCLES

Counts every core cycle when a Data-side (walks due to data operation)
page walk is in progress.

05H 02H PAGE_WALKS.I_SIDE_CY
CLES

Counts every core cycle when an Instruction-side (walks due to an
instruction fetch) page walk is in progress.

05H 03H PAGE_WALKS.CYCLES Counts every core cycle a page-walk is in progress due to either a data
memory operation, or an instruction fetch.

0EH 00H UOPS_ISSUED.ANY Counts uops issued by the front end and allocated into the back end of
the machine. This event counts uops that retire as well as uops that
were speculatively executed but didn't retire. The sort of speculative
uops that might be counted includes, but is not limited to those uops
issued in the shadow of a mispredicted branch, those uops that are
inserted during an assist (such as for a denormal floating-point result),
and (previously allocated) uops that might be canceled during a
machine clear.

13H 02H MISALIGN_MEM_REF.LO
AD_PAGE_SPLIT

Counts when a memory load of a uop that spans a page boundary (a
split) is retired.

Precise Event

13H 04H MISALIGN_MEM_REF.ST
ORE_PAGE_SPLIT

Counts when a memory store of a uop that spans a page boundary (a
split) is retired.

Precise Event

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

Counts memory requests originating from the core that reference a
cache line in the L2 cache.

2EH 41H LONGEST_LAT_CACHE.
MISS

Counts memory requests originating from the core that miss in the L2
cache.

30H 00H L2_REJECT_XQ.ALL Counts the number of demand and prefetch transactions that the L2
XQ rejects due to a full or near full condition which likely indicates back
pressure from the intra-die interconnect (IDI) fabric. The XQ may reject
transactions from the L2Q (non-cacheable requests), L2 misses and L2
write-back victims.

31H 00H CORE_REJECT_L2Q.ALL Counts the number of demand and L1 prefetcher requests rejected by
the L2Q due to a full or nearly full condition which likely indicates back
pressure from L2Q. It also counts requests that would have gone
directly to the XQ, but are rejected due to a full or nearly full condition,
indicating back pressure from the IDI link. The L2Q may also reject
transactions from a core to ensure fairness between cores, or to delay
a core's dirty eviction when the address conflicts with incoming
external snoops.

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core is not halted. This event uses a programmable
general purpose performance counter.

3CH 01H CPU_CLK_UNHALTED.R
EF

Reference cycles when core is not halted. This event uses a
programmable general purpose performance counter.

51H 01H DL1.DIRTY_EVICTION Counts when a modified (dirty) cache line is evicted from the data L1
cache and needs to be written back to memory. No count will occur if
the evicted line is clean, and hence does not require a writeback.

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-170 Vol. 3B

PERFORMANCE MONITORING EVENTS

80H 01H ICACHE.HIT Counts requests to the Instruction Cache (ICache) for one or more
bytes in an ICache Line and that cache line is in the Icache (hit). The
event strives to count on a cache line basis, so that multiple accesses
which hit in a single cache line count as one ICACHE.HIT. Specifically, the
event counts when straight line code crosses the cache line boundary,
or when a branch target is to a new line, and that cache line is in the
ICache. This event counts differently than Intel processors based on
the Silvermont microarchitecture.

80H 02H ICACHE.MISSES Counts requests to the Instruction Cache (ICache) for one or more
bytes in an ICache Line and that cache line is not in the Icache (miss).
The event strives to count on a cache line basis, so that multiple
accesses which miss in a single cache line count as one ICACHE.MISS.
Specifically, the event counts when straight line code crosses the cache
line boundary, or when a branch target is to a new line, and that cache
line is not in the ICache. This event counts differently than Intel
processors based on the Silvermont microarchitecture.

80H 03H ICACHE.ACCESSES Counts requests to the Instruction Cache (ICache) for one or more
bytes in an ICache Line. The event strives to count on a cache line basis,
so that multiple fetches to a single cache line count as one
ICACHE.ACCESS. Specifically, the event counts when accesses from
straight line code crosses the cache line boundary, or when a branch
target is to a new line. This event counts differently than Intel
processors based on the Silvermont microarchitecture.

81H 04H ITLB.MISS Counts the number of times the machine was unable to find a
translation in the Instruction Translation Lookaside Buffer (ITLB) for a
linear address of an instruction fetch. It counts when new translations
are filled into the ITLB. The event is speculative in nature, but will not
count translations (page walks) that are begun and not finished, or
translations that are finished but not filled into the ITLB.

86H 00H FETCH_STALL.ALL Counts cycles that fetch is stalled due to any reason. That is, the
decoder queue is able to accept bytes, but the fetch unit is unable to
provide bytes. This will include cycles due to an ITLB miss, ICache miss
and other events.

86H 01H FETCH_STALL.ITLB_FIL
L_PENDING_CYCLES

Counts cycles that fetch is stalled due to an outstanding ITLB miss.
That is, the decoder queue is able to accept bytes, but the fetch unit is
unable to provide bytes due to an ITLB miss. Note: this event is not the
same as page walk cycles to retrieve an instruction translation.

86H 02H FETCH_STALL.ICACHE_F
ILL_PENDING_CYCLES

Counts cycles that an ICache miss is outstanding, and instruction fetch
is stalled. That is, the decoder queue is able to accept bytes, but the
fetch unit is unable to provide bytes, while an Icache miss is
outstanding. Note this event is not the same as cycles to retrieve an
instruction due to an Icache miss. Rather, it is the part of the
Instruction Cache (ICache) miss time where no bytes are available for
the decoder.

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-171

PERFORMANCE MONITORING EVENTS

9CH 00H UOPS_NOT_DELIVERED.
ANY

This event is used to measure front-end inefficiencies, i.e., when the
front end of the machine is not delivering uops to the back end and the
back end has not stalled. This event can be used to identify if the
machine is truly front-end bound. When this event occurs, it is an
indication that the front end of the machine is operating at less than its
theoretical peak performance.

Background: We can think of the processor pipeline as being divided
into 2 broader parts: the front end and the back end. The front end is
responsible for fetching the instruction, decoding into uops in machine
understandable format and putting them into a uop queue to be
consumed by the back end. The back end then takes these uops and
allocates the required resources. When all resources are ready, uops are
executed. If the back end is not ready to accept uops from the front
end, then we do not want to count these as front-end bottlenecks.
However, whenever we have bottlenecks in the back end, we will have
allocation unit stalls and eventually force the front end to wait until the
back end is ready to receive more uops. This event counts only when
the back end is requesting more micro-uops and the front end is not
able to provide them. When 3 uops are requested and no uops are
delivered, the event counts 3. When 3 are requested, and only 1 is
delivered, the event counts 2. When only 2 are delivered, the event
counts 1. Alternatively stated, the event will not count if 3 uops are
delivered, or if the back end is stalled and not requesting any uops at
all. Counts indicate missed opportunities for the front end to deliver a
uop to the back end. Some examples of conditions that cause front-end
efficiencies are: Icache misses, ITLB misses, and decoder restrictions
that limit the front-end bandwidth.

Known Issues: Some uops require multiple allocation slots. These uops
will not be charged as a front end 'not delivered' opportunity, and will
be regarded as a back-end problem. For example, the INC instruction
has one uop that requires 2 issue slots. A stream of INC instructions will
not count as UOPS_NOT_DELIVERED, even though only one instruction
can be issued per clock. The low uop issue rate for a stream of INC
instructions is considered to be a back-end issue.

B7H 01H,
02H

OFFCORE_RESPONSE Requires MSR_OFFCORE_RESP[0,1] to specify request type and
response. (Duplicated for both MSRs.)

C0H 00H INST_RETIRED.ANY_P Counts the number of instructions that retire execution. For
instructions that consist of multiple uops, this event counts the
retirement of the last uop of the instruction. The event continues
counting during hardware interrupts, traps, and inside interrupt
handlers. This is an architectural performance event. This event uses a
programmable general purpose performance counter. *This event is a
Precise Event: the EventingRIP field in the PEBS record is precise to the
address of the instruction which caused the event.

Note: Because PEBS records can be collected only on IA32_PMC0, only
one event can use the PEBS facility at a time.

Precise Event

C2H 00H UOPS_RETIRED.ANY Counts uops which have retired. Precise Event,
Not Reduced
Skid

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-172 Vol. 3B

PERFORMANCE MONITORING EVENTS

C2H 01H UOPS_RETIRED.MS Counts uops retired that are from the complex flows issued by the
micro-sequencer (MS). Counts both the uops from a micro-coded
instruction, and the uops that might be generated from a micro-coded
assist.

Precise Event,
Not Reduced
Skid

C2H 08H UOPS_RETIRED.FPDIV Counts the number of floating point divide uops retired. Precise Event

C2H 10H UOPS_RETIRED.IDIV Counts the number of integer divide uops retired. Precise Event

C3H 01H MACHINE_CLEARS.SMC Counts the number of times that the processor detects that a program
is writing to a code section and has to perform a machine clear because
of that modification. Self-modifying code (SMC) causes a severe penalty
in all Intel architecture processors.

C3H 02H MACHINE_CLEARS.MEM
ORY_ORDERING

Counts machine clears due to memory ordering issues. This occurs
when a snoop request happens and the machine is uncertain if memory
ordering will be preserved as another core is in the process of
modifying the data.

C3H 04H MACHINE_CLEARS.FP_A
SSIST

Counts machine clears due to floating-point (FP) operations needing
assists. For instance, if the result was a floating-point denormal, the
hardware clears the pipeline and reissues uops to produce the correct
IEEE compliant denormal result.

C3H 08H MACHINE_CLEARS.DISA
MBIGUATION

Counts machine clears due to memory disambiguation. Memory
disambiguation happens when a load which has been issued conflicts
with a previous un-retired store in the pipeline whose address was not
known at issue time, but is later resolved to be the same as the load
address.

C3H 00H MACHINE_CLEARS.ALL Counts machine clears for any reason.

C4H 00H BR_INST_RETIRED.ALL_
BRANCHES

Counts branch instructions retired for all branch types. This is an
architectural performance event.

Precise Event

C4H 7EH BR_INST_RETIRED.JCC Counts retired Jcc (Jump on Conditional Code/Jump if Condition is Met)
branch instructions retired, including both when the branch was taken
and when it was not taken.

Precise Event

C4H 80H BR_INST_RETIRED.ALL_
TAKEN_BRANCHES

Counts the number of taken branch instructions retired. Precise Event

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Counts Jcc (Jump on Conditional Code/Jump if Condition is Met) branch
instructions retired that were taken and does not count when the Jcc
branch instruction were not taken.

Precise Event

C4H F9H BR_INST_RETIRED.CALL Counts near CALL branch instructions retired. Precise Event

C4H FDH BR_INST_RETIRED.REL_
CALL

Counts near relative CALL branch instructions retired. Precise Event

C4H FBH BR_INST_RETIRED.IND_
CALL

Counts near indirect CALL branch instructions retired. Precise Event

C4H F7H BR_INST_RETIRED.RET
URN

Counts near return branch instructions retired. Precise Event

C4H EBH BR_INST_RETIRED.NON
_RETURN_IND

Counts near indirect call or near indirect jmp branch instructions retired. Precise Event

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Counts far branch instructions retired. This includes far jump, far call
and return, and Interrupt call and return.

Precise Event

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Counts mispredicted branch instructions retired including all branch
types.

Precise Event

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-173

PERFORMANCE MONITORING EVENTS

C5H 7EH BR_MISP_RETIRED.JCC Counts mispredicted retired Jcc (Jump on Conditional Code/Jump if
Condition is Met) branch instructions retired, including both when the
branch was supposed to be taken and when it was not supposed to be
taken (but the processor predicted the opposite condition).

Precise Event

C5H FEH BR_MISP_RETIRED.TAK
EN_JCC

Counts mispredicted retired Jcc (Jump on Conditional Code/Jump if
Condition is Met) branch instructions retired that were supposed to be
taken but the processor predicted that it would not be taken.

Precise Event

C5H FBH BR_MISP_RETIRED.IND_
CALL

Counts mispredicted near indirect CALL branch instructions retired,
where the target address taken was not what the processor predicted.

Precise Event

C5H F7H BR_MISP_RETIRED.RET
URN

Counts mispredicted near RET branch instructions retired, where the
return address taken was not what the processor predicted.

Precise Event

C5H EBH BR_MISP_RETIRED.NON
_RETURN_IND

Counts mispredicted branch instructions retired that were near indirect
call or near indirect jmp, where the target address taken was not what
the processor predicted.

Precise Event

CAH 01H ISSUE_SLOTS_NOT_CO
NSUMED.RESOURCE_FU
LL

Counts the number of issue slots per core cycle that were not
consumed because of a full resource in the back end. Including but not
limited to resources include the Re-order Buffer (ROB), reservation
stations (RS), load/store buffers, physical registers, or any other
needed machine resource that is currently unavailable. Note that uops
must be available for consumption in order for this event to fire. If a
uop is not available (Instruction Queue is empty), this event will not
count.

CAH 02H ISSUE_SLOTS_NOT_CO
NSUMED.RECOVERY

Counts the number of issue slots per core cycle that were not
consumed by the back end because allocation is stalled waiting for a
mispredicted jump to retire or other branch-like conditions (e.g. the
event is relevant during certain microcode flows). Counts all issue slots
blocked while within this window, including slots where uops were not
available in the Instruction Queue.

CAH 00H ISSUE_SLOTS_NOT_CO
NSUMED.ANY

Counts the number of issue slots per core cycle that were not
consumed by the back end due to either a full resource in the back end
(RESOURCE_FULL), or due to the processor recovering from some
event (RECOVERY).

CBH 01H HW_INTERRUPTS.RECEI
VED

Counts hardware interrupts received by the processor.

CBH 02H HW_INTERRUPTS.MASK
ED

Counts the number of core cycles during which interrupts are masked
(disabled). Increments by 1 each core cycle that EFLAGS.IF is 0,
regardless of whether interrupts are pending or not.

CBH 04H HW_INTERRUPTS.PENDI
NG_AND_MASKED

Counts core cycles during which there are pending interrupts, but
interrupts are masked (EFLAGS.IF = 0).

CDH 00H CYCLES_DIV_BUSY.ALL Counts core cycles if either divide unit is busy.

CDH 01H CYCLES_DIV_BUSY.IDIV Counts core cycles if the integer divide unit is busy.

CDH 02H CYCLES_DIV_BUSY.FPDI
V

Counts core cycles if the floating point divide unit is busy.

D0H 81H MEM_UOPS_RETIRED.A
LL_LOADS

Counts the number of load uops retired. Precise Event

D0H 82H MEM_UOPS_RETIRED.A
LL_STORES

Counts the number of store uops retired. Precise Event

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-174 Vol. 3B

PERFORMANCE MONITORING EVENTS

D0H 83H MEM_UOPS_RETIRED.A
LL

Counts the number of memory uops retired that are either a load or a
store or both.

Precise Event

D0H 11H MEM_UOPS_RETIRED.D
TLB_MISS_LOADS

Counts load uops retired that caused a DTLB miss. Precise Event

D0H 12H MEM_UOPS_RETIRED.D
TLB_MISS_STORES

Counts store uops retired that caused a DTLB miss. Precise Event

D0H 13H MEM_UOPS_RETIRED.D
TLB_MISS

Counts uops retired that had a DTLB miss on load, store or either.

Note that when two distinct memory operations to the same page miss
the DTLB, only one of them will be recorded as a DTLB miss.

Precise Event

D0H 21H MEM_UOPS_RETIRED.L
OCK_LOADS

Counts locked memory uops retired. This includes 'regular' locks and
bus locks. To specifically count bus locks only, see the offcore response
event. A locked access is one with a lock prefix, or an exchange to
memory.

Precise Event

D0H 41H MEM_UOPS_RETIRED.S
PLIT_LOADS

Counts load uops retired where the data requested spans a 64 byte
cache line boundary.

Precise Event

D0H 42H MEM_UOPS_RETIRED.S
PLIT_STORES

Counts store uops retired where the data requested spans a 64 byte
cache line boundary.

Precise Event

D0H 43H MEM_UOPS_RETIRED.S
PLIT

Counts memory uops retired where the data requested spans a 64
byte cache line boundary.

Precise Event

D1H 01H MEM_LOAD_UOPS_RETI
RED.L1_HIT

Counts load uops retired that hit the L1 data cache. Precise Event

D1H 08H MEM_LOAD_UOPS_RETI
RED.L1_MISS

Counts load uops retired that miss the L1 data cache. Precise Event

D1H 02H MEM_LOAD_UOPS_RETI
RED.L2_HIT

Counts load uops retired that hit in the L2 cache. Precise Event

0xD1H 10H MEM_LOAD_UOPS_RETI
RED.L2_MISS

Counts load uops retired that miss in the L2 cache. Precise Event

D1H 20H MEM_LOAD_UOPS_RETI
RED.HITM

Counts load uops retired where the cache line containing the data was
in the modified state of another core or modules cache (HITM). More
specifically, this means that when the load address was checked by
other caching agents (typically another processor) in the system, one
of those caching agents indicated that they had a dirty copy of the
data. Loads that obtain a HITM response incur greater latency than
most that is typical for a load. In addition, since HITM indicates that
some other processor had this data in its cache, it implies that the data
was shared between processors, or potentially was a lock or
semaphore value. This event is useful for locating sharing, false
sharing, and contended locks.

Precise Event

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-175

PERFORMANCE MONITORING EVENTS

19.15 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
SILVERMONT MICROARCHITECTURE

Processors based on the Silvermont microarchitecture support the architectural performance monitoring events
listed in Table 19-1 and fixed-function performance events using fixed counter. In addition, they also support the
following model-specific performance monitoring events listed in Table 19-28. These processors have the CPUID
signatures of 06_37H, 06_4AH, 06_4DH, 06_5AH, and 06_5DH.

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Intel® Xeon®
processor 5500 Series,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

D1H 40H MEM_LOAD_UOPS_RETI
RED.WCB_HIT

Counts memory load uops retired where the data is retrieved from the
WCB (or fill buffer), indicating that the load found its data while that
data was in the process of being brought into the L1 cache. Typically a
load will receive this indication when some other load or prefetch
missed the L1 cache and was in the process of retrieving the cache line
containing the data, but that process had not yet finished (and written
the data back to the cache). For example, consider load X and Y, both
referencing the same cache line that is not in the L1 cache. If load X
misses cache first, it obtains and WCB (or fill buffer) begins the process
of requesting the data. When load Y requests the data, it will either hit
the WCB, or the L1 cache, depending on exactly what time the request
to Y occurs.

Precise Event

D1H 80H MEM_LOAD_UOPS_RETI
RED.DRAM_HIT

Counts memory load uops retired where the data is retrieved from
DRAM. Event is counted at retirement, so the speculative loads are
ignored. A memory load can hit (or miss) the L1 cache, hit (or miss) the
L2 cache, hit DRAM, hit in the WCB or receive a HITM response.

Precise Event

E6H 01H BACLEARS.ALL Counts the number of times a BACLEAR is signaled for any reason,
including, but not limited to indirect branch/call, Jcc (Jump on Conditional
Code/Jump if Condition is Met) branch, unconditional branch/call, and
returns.

E6H 08H BACLEARS.RETURN Counts BACLEARS on return instructions.

E6H 10H BACLEARS.COND Counts BACLEARS on Jcc (Jump on Conditional Code/Jump if Condition is
Met) branches.

E7H 01H MS_DECODED.MS_ENTR
Y

Counts the number of times the Microcode Sequencer (MS) starts a
flow of uops from the MSROM. It does not count every time a uop is
read from the MSROM. The most common case that this counts is when
a micro-coded instruction is encountered by the front end of the
machine. Other cases include when an instruction encounters a fault,
trap, or microcode assist of any sort that initiates a flow of uops. The
event will count MS startups for uops that are speculative, and
subsequently cleared by branch mispredict or a machine clear.

E9H 01H DECODE_RESTRICTION.
PREDECODE_WRONG

Counts the number of times the prediction (from the pre-decode cache)
for instruction length is incorrect.

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-176 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

03H 01H REHABQ.LD_BLOCK_S
T_FORWARD

Loads blocked due to
store forward
restriction.

This event counts the number of retired loads that were
prohibited from receiving forwarded data from the store
because of address mismatch.

03H 02H REHABQ.LD_BLOCK_S
TD_NOTREADY

Loads blocked due to
store data not ready.

This event counts the cases where a forward was technically
possible, but did not occur because the store data was not
available at the right time.

03H 04H REHABQ.ST_SPLITS Store uops that split
cache line boundary.

This event counts the number of retire stores that experienced
cache line boundary splits.

03H 08H REHABQ.LD_SPLITS Load uops that split
cache line boundary.

This event counts the number of retire loads that experienced
cache line boundary splits.

03H 10H REHABQ.LOCK Uops with lock
semantics.

This event counts the number of retired memory operations
with lock semantics. These are either implicit locked instructions
such as the XCHG instruction or instructions with an explicit
LOCK prefix (F0H).

03H 20H REHABQ.STA_FULL Store address buffer
full.

This event counts the number of retired stores that are delayed
because there is not a store address buffer available.

03H 40H REHABQ.ANY_LD Any reissued load uops. This event counts the number of load uops reissued from
Rehabq.

03H 80H REHABQ.ANY_ST Any reissued store
uops.

This event counts the number of store uops reissued from
Rehabq.

04H 01H MEM_UOPS_RETIRED.L
1_MISS_LOADS

Loads retired that
missed L1 data cache.

This event counts the number of load ops retired that miss in L1
Data cache. Note that prefetch misses will not be counted.

04H 02H MEM_UOPS_RETIRED.L
2_HIT_LOADS

Loads retired that hit
L2.

This event counts the number of load micro-ops retired that hit
L2.

04H 04H MEM_UOPS_RETIRED.L
2_MISS_LOADS

Loads retired that
missed L2.

This event counts the number of load micro-ops retired that
missed L2.

04H 08H MEM_UOPS_RETIRED.
DTLB_MISS_LOADS

Loads missed DTLB. This event counts the number of load ops retired that had DTLB
miss.

04H 10H MEM_UOPS_RETIRED.
UTLB_MISS

Loads missed UTLB. This event counts the number of load ops retired that had UTLB
miss.

04H 20H MEM_UOPS_RETIRED.
HITM

Cross core or cross
module hitm.

This event counts the number of load ops retired that got data
from the other core or from the other module.

04H 40H MEM_UOPS_RETIRED.
ALL_LOADS

All Loads. This event counts the number of load ops retired.

04H 80H MEM_UOP_RETIRED.A
LL_STORES

All Stores. This event counts the number of store ops retired.

05H 01H PAGE_WALKS.D_SIDE_
CYCLES

Duration of D-side
page-walks in core
cycles.

This event counts every cycle when a D-side (walks due to a
load) page walk is in progress. Page walk duration divided by
number of page walks is the average duration of page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

05H 02H PAGE_WALKS.I_SIDE_C
YCLES

Duration of I-side page-
walks in core cycles.

This event counts every cycle when an I-side (walks due to an
instruction fetch) page walk is in progress. Page walk duration
divided by number of page walks is the average duration of
page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

Vol. 3B 19-177

PERFORMANCE MONITORING EVENTS

05H 03H PAGE_WALKS.WALKS Total number of page-
walks that are
completed (I-side and
D-side).

This event counts when a data (D) page walk or an instruction (I)
page walk is completed or started. Since a page walk implies a
TLB miss, the number of TLB misses can be counted by counting
the number of pagewalks.

Edge trigger bit must be set. Clear Edge to count the number of
cycles.

2EH 41H LONGEST_LAT_CACHE.
MISS

L2 cache request
misses.

This event counts the total number of L2 cache references and
the number of L2 cache misses respectively.

L3 is not supported in Silvermont microarchitecture.

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

L2 cache requests
from this core.

This event counts requests originating from the core that
references a cache line in the L2 cache.

L3 is not supported in Silvermont microarchitecture.

30H 00H L2_REJECT_XQ.ALL Counts the number of
request from the L2
that were not accepted
into the XQ.

This event counts the number of demand and prefetch
transactions that the L2 XQ rejects due to a full or near full
condition which likely indicates back pressure from the IDI link.
The XQ may reject transactions from the L2Q (non-cacheable
requests), BBS (L2 misses) and WOB (L2 write-back victims).

31H 00H CORE_REJECT_L2Q.ALL Counts the number of
request that were not
accepted into the L2Q
because the L2Q is
FULL.

This event counts the number of demand and L1 prefetcher
requests rejected by the L2Q due to a full or nearly full condition
which likely indicates back pressure from L2Q. It also counts
requests that would have gone directly to the XQ, but are
rejected due to a full or nearly full condition, indicating back
pressure from the IDI link. The L2Q may also reject transactions
from a core to insure fairness between cores, or to delay a core's
dirty eviction when the address conflicts incoming external
snoops. (Note that L2 prefetcher requests that are dropped are
not counted by this event.).

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core
is not halted.

This event counts the number of core cycles while the core is not
in a halt state. The core enters the halt state when it is running
the HLT instruction. In mobile systems the core frequency may
change from time to time. For this reason this event may have a
changing ratio with regards to time.

N/A N/A CPU_CLK_UNHALTED.C
ORE

Core cycles when core
is not halted.

This uses the fixed counter 1 to count the same condition as
CPU_CLK_UNHALTED.CORE_P does.

3CH 01H CPU_CLK_UNHALTED.R
EF_P

Bus cycles when core is
not halted.

This event counts the number of bus cycles that the core is not
in a halt state. The core enters the halt state when it is running
the HLT instruction.

In mobile systems the core frequency may change from time.
This event is not affected by core frequency changes.

N/A N/A CPU_CLK_UNHALTED.R
EF_TSC

Reference cycles when
core is not halted.

This event counts the number of reference cycles at a TSC rate
that the core is not in a halt state. The core enters the halt state
when it is running the HLT instruction.

In mobile systems the core frequency may change from time.

This event is not affected by core frequency changes.

80H 01H ICACHE.HIT Instruction fetches
from Icache.

This event counts all instruction fetches from the instruction
cache.

80H 02H ICACHE.MISSES Icache miss. This event counts all instruction fetches that miss the
Instruction cache or produce memory requests. This includes
uncacheable fetches. An instruction fetch miss is counted only
once and not once for every cycle it is outstanding.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-178 Vol. 3B

PERFORMANCE MONITORING EVENTS

80H 03H ICACHE.ACCESSES Instruction fetches. This event counts all instruction fetches, including uncacheable
fetches.

B7H 01H OFFCORE_RESPONSE_
0

See Section 18.5.2.2. Requires MSR_OFFCORE_RESP0 to specify request type and
response.

B7H 02H OFFCORE_RESPONSE_
1

See Section 18.5.2.2. Requires MSR_OFFCORE_RESP1 to specify request type and
response.

C0H 00H INST_RETIRED.ANY_P Instructions retired
(PEBS supported with
IA32_PMC0).

This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

N/A N/A INST_RETIRED.ANY Instructions retired. This uses the fixed counter 0 to count the same condition as
INST_RETIRED.ANY_P does.

C2H 01H UOPS_RETIRED.MS MSROM micro-ops
retired.

This event counts the number of micro-ops retired that were
supplied from MSROM.

C2H 10H UOPS_RETIRED.ALL Micro-ops retired. This event counts the number of micro-ops retired.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code
detected.

This event counts the number of times that a program writes to
a code section. Self-modifying code causes a severe penalty in all
Intel® architecture processors.

C3H 02H MACHINE_CLEARS.ME
MORY_ORDERING

Stalls due to Memory
ordering.

This event counts the number of times that pipeline was cleared
due to memory ordering issues.

C3H 04H MACHINE_CLEARS.FP_
ASSIST

Stalls due to FP assists. This event counts the number of times that pipeline stalled due
to FP operations needing assists.

C3H 08H MACHINE_CLEARS.ALL Stalls due to any
causes.

This event counts the number of times that pipeline stalled due
to due to any causes (including SMC, MO, FP assist, etc.).

C4H 00H BR_INST_RETIRED.ALL
_BRANCHES

Retired branch
instructions.

This event counts the number of branch instructions retired.

C4H 7EH BR_INST_RETIRED.JCC Retired branch
instructions that were
conditional jumps.

This event counts the number of branch instructions retired that
were conditional jumps.

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Retired far branch
instructions.

This event counts the number of far branch instructions retired.

C4H EBH BR_INST_RETIRED.NO
N_RETURN_IND

Retired instructions of
near indirect Jmp or
call.

This event counts the number of branch instructions retired that
were near indirect call or near indirect jmp.

C4H F7H BR_INST_RETIRED.RET
URN

Retired near return
instructions.

This event counts the number of near RET branch instructions
retired.

C4H F9H BR_INST_RETIRED.CAL
L

Retired near call
instructions.

This event counts the number of near CALL branch instructions
retired.

C4H FBH BR_INST_RETIRED.IND
_CALL

Retired near indirect
call instructions.

This event counts the number of near indirect CALL branch
instructions retired.

C4H FDH BR_INST_RETIRED.REL
_CALL

Retired near relative
call instructions.

This event counts the number of near relative CALL branch
instructions retired.

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Retired conditional
jumps that were taken.

This event counts the number of branch instructions retired that
were conditional jumps and taken.

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Retired mispredicted
branch instructions.

This event counts the number of mispredicted branch
instructions retired.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-179

PERFORMANCE MONITORING EVENTS

C5H 7EH BR_MISP_RETIRED.JCC Retired mispredicted
conditional jumps.

This event counts the number of mispredicted branch
instructions retired that were conditional jumps.

C5H BFH BR_MISP_RETIRED.FA
R

Retired mispredicted
far branch instructions.

This event counts the number of mispredicted far branch
instructions retired.

C5H EBH BR_MISP_RETIRED.NO
N_RETURN_IND

Retired mispredicted
instructions of near
indirect Jmp or call.

This event counts the number of mispredicted branch
instructions retired that were near indirect call or near indirect
jmp.

C5H F7H BR_MISP_RETIRED.RE
TURN

Retired mispredicted
near return
instructions.

This event counts the number of mispredicted near RET branch
instructions retired.

C5H F9H BR_MISP_RETIRED.CAL
L

Retired mispredicted
near call instructions.

This event counts the number of mispredicted near CALL branch
instructions retired.

C5H FBH BR_MISP_RETIRED.IND
_CALL

Retired mispredicted
near indirect call
instructions.

This event counts the number of mispredicted near indirect CALL
branch instructions retired.

C5H FDH BR_MISP_RETIRED.REL
_CALL

Retired mispredicted
near relative call
instructions

This event counts the number of mispredicted near relative CALL
branch instructions retired.

C5H FEH BR_MISP_RETIRED.TA
KEN_JCC

Retired mispredicted
conditional jumps that
were taken.

This event counts the number of mispredicted branch
instructions retired that were conditional jumps and taken.

CAH 01H NO_ALLOC_CYCLES.RO
B_FULL

Counts the number of
cycles when no uops
are allocated and the
ROB is full (less than 2
entries available).

Counts the number of cycles when no uops are allocated and the
ROB is full (less than 2 entries available).

CAH 20H NO_ALLOC_CYCLES.RA
T_STALL

Counts the number of
cycles when no uops
are allocated and a
RATstall is asserted.

Counts the number of cycles when no uops are allocated and a
RATstall is asserted.

CAH 3FH NO_ALLOC_CYCLES.AL
L

Front end not
delivering.

This event counts the number of cycles when the front end does
not provide any instructions to be allocated for any reason.

CAH 50H NO_ALLOC_CYCLES.NO
T_DELIVERED

Front end not
delivering back end not
stalled.

This event counts the number of cycles when the front end does
not provide any instructions to be allocated but the back end is
not stalled.

CBH 01H RS_FULL_STALL.MEC MEC RS full. This event counts the number of cycles the allocation pipe line
stalled due to the RS for the MEC cluster is full.

CBH 1FH RS_FULL_STALL.ALL Any RS full. This event counts the number of cycles that the allocation pipe
line stalled due to any one of the RS is full.

CDH 01H CYCLES_DIV_BUSY.AN
Y

Divider Busy. This event counts the number of cycles the divider is busy.

E6H 01H BACLEARS.ALL BACLEARS asserted for
any branch.

This event counts the number of baclears for any type of branch.

E6H 08H BACLEARS.RETURN BACLEARS asserted for
return branch.

This event counts the number of baclears for return branches.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-180 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.15.1 Performance Monitoring Events for Processors Based on the Airmont
Microarchitecture

Intel processors based on the Airmont microarchitecture support the same architectural and the model-specific
performance monitoring events as processors based on the Silvermont microarchitecture. All of the events listed
in Table 19-28 apply. These processors have the CPUID signatures that include 06_4CH.

19.16 PERFORMANCE MONITORING EVENTS FOR 45 NM AND 32 NM
INTEL® ATOM™ PROCESSORS

45 nm and 32 nm processors based on the Intel® Atom™ microarchitecture support the architectural performance
monitoring events listed in Table 19-1 and fixed-function performance events using fixed counter listed in Table
19-24. In addition, they also support the following model-specific performance monitoring events listed in Table
19-29.

E6H 10H BACLEARS.COND BACLEARS asserted for
conditional branch.

This event counts the number of baclears for conditional
branches.

E7H 01H MS_DECODED.MS_ENT
RY

MS Decode starts. This event counts the number of times the MSROM starts a flow
of UOPS.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWARDS.GO
OD

Good store forwards. This event counts the number of times store data was
forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of segment
register loads.

This event counts the number of segment register load
operations. Instructions that load new values into segment
registers cause a penalty. This event indicates performance
issues in 16-bit code. If this event occurs frequently, it may be
useful to calculate the number of instructions retired per
segment register load. If the resulting calculation is low (on
average a small number of instructions are executed between
segment register loads), then the code’s segment register
usage should be optimized.

As a result of branch misprediction, this event is speculative and
may include segment register loads that do not actually occur.
However, most segment register loads are internally serialized
and such speculative effects are minimized.

07H 01H PREFETCH.PREFETCHT
0

Streaming SIMD
Extensions (SSE)
PrefetchT0
instructions executed.

This event counts the number of times the SSE instruction
prefetchT0 is executed. This instruction prefetches the data to
the L1 data cache and L2 cache.

07H 06H PREFETCH.SW_L2 Streaming SIMD
Extensions (SSE)
PrefetchT1 and
PrefetchT2
instructions executed.

This event counts the number of times the SSE instructions
prefetchT1 and prefetchT2 are executed. These instructions
prefetch the data to the L2 cache.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-181

PERFORMANCE MONITORING EVENTS

07H 08H PREFETCH.PREFETCHN
TA

Streaming SIMD
Extensions (SSE)
Prefetch NTA
instructions executed.

This event counts the number of times the SSE instruction
prefetchNTA is executed. This instruction prefetches the data
to the L1 data cache.

08H 07H DATA_TLB_MISSES.DT
LB_MISS

Memory accesses that
missed the DTLB.

This event counts the number of Data Table Lookaside Buffer
(DTLB) misses. The count includes misses detected as a result
of speculative accesses. Typically a high count for this event
indicates that the code accesses a large number of data pages.

08H 05H DATA_TLB_MISSES.DT
LB_MISS_LD

DTLB misses due to
load operations.

This event counts the number of Data Table Lookaside Buffer
(DTLB) misses due to load operations. This count includes
misses detected as a result of speculative accesses.

08H 09H DATA_TLB_MISSES.L0
_DTLB_MISS_LD

L0_DTLB misses due to
load operations.

This event counts the number of L0_DTLB misses due to load
operations. This count includes misses detected as a result of
speculative accesses.

08H 06H DATA_TLB_MISSES.DT
LB_MISS_ST

DTLB misses due to
store operations.

This event counts the number of Data Table Lookaside Buffer
(DTLB) misses due to store operations. This count includes
misses detected as a result of speculative accesses.

0CH 03H PAGE_WALKS.WALKS Number of page-walks
executed.

This event counts the number of page-walks executed due to
either a DTLB or ITLB miss. The page walk duration,
PAGE_WALKS.CYCLES, divided by number of page walks is the
average duration of a page walk. This can hint to whether most
of the page-walks are satisfied by the caches or cause an L2
cache miss.

Edge trigger bit must be set.

0CH 03H PAGE_WALKS.CYCLES Duration of page-walks
in core cycles.

This event counts the duration of page-walks in core cycles. The
paging mode in use typically affects the duration of page walks.
Page walk duration divided by number of page walks is the
average duration of page-walks. This can hint at whether most
of the page-walks are satisfied by the caches or cause an L2
cache miss.

Edge trigger bit must be cleared.

10H 01H X87_COMP_OPS_EXE.
ANY.S

Floating point
computational micro-
ops executed.

This event counts the number of x87 floating point
computational micro-ops executed.

10H 81H X87_COMP_OPS_EXE.
ANY.AR

Floating point
computational micro-
ops retired.

This event counts the number of x87 floating point
computational micro-ops retired.

11H 01H FP_ASSIST Floating point assists. This event counts the number of floating point operations
executed that required micro-code assist intervention. These
assists are required in the following cases.

X87 instructions:

1. NaN or denormal are loaded to a register or used as input
from memory.

2. Division by 0.

3. Underflow output.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-182 Vol. 3B

PERFORMANCE MONITORING EVENTS

11H 81H FP_ASSIST.AR Floating point assists. This event counts the number of floating point operations
executed that required micro-code assist intervention. These
assists are required in the following cases.

X87 instructions:

1. NaN or denormal are loaded to a register or used as input
from memory.

2. Division by 0.

3. Underflow output.

12H 01H MUL.S Multiply operations
executed.

This event counts the number of multiply operations executed.
This includes integer as well as floating point multiply
operations.

12H 81H MUL.AR Multiply operations
retired.

This event counts the number of multiply operations retired.
This includes integer as well as floating point multiply
operations.

13H 01H DIV.S Divide operations
executed.

This event counts the number of divide operations executed.
This includes integer divides, floating point divides and square-
root operations executed.

13H 81H DIV.AR Divide operations
retired.

This event counts the number of divide operations retired. This
includes integer divides, floating point divides and square-root
operations executed.

14H 01H CYCLES_DIV_BUSY Cycles the driver is
busy.

This event counts the number of cycles the divider is busy
executing divide or square root operations. The divide can be
integer, X87 or Streaming SIMD Extensions (SSE). The square
root operation can be either X87 or SSE.

21H See
Table
18-61

L2_ADS Cycles L2 address bus
is in use.

This event counts the number of cycles the L2 address bus is
being used for accesses to the L2 cache or bus queue.

This event can count occurrences for this core or both cores.

22H See
Table
18-61

L2_DBUS_BUSY Cycles the L2 cache
data bus is busy.

This event counts core cycles during which the L2 cache data
bus is busy transferring data from the L2 cache to the core. It
counts for all L1 cache misses (data and instruction) that hit the
L2 cache. The count will increment by two for a full cache-line
request.

24H See
Table
18-61
and
Table
18-63

L2_LINES_IN L2 cache misses. This event counts the number of cache lines allocated in the L2
cache. Cache lines are allocated in the L2 cache as a result of
requests from the L1 data and instruction caches and the L2
hardware prefetchers to cache lines that are missing in the L2
cache.

This event can count occurrences for this core or both cores.
This event can also count demand requests and L2 hardware
prefetch requests together or separately.

25H See
Table
18-61

L2_M_LINES_IN L2 cache line
modifications.

This event counts whenever a modified cache line is written
back from the L1 data cache to the L2 cache.

This event can count occurrences for this core or both cores.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-183

PERFORMANCE MONITORING EVENTS

26H See
Table
18-61
and
Table
18-63

L2_LINES_OUT L2 cache lines evicted. This event counts the number of L2 cache lines evicted.

This event can count occurrences for this core or both cores.
This event can also count evictions due to demand requests and
L2 hardware prefetch requests together or separately.

27H See
Table
18-61
and
Table
18-63

L2_M_LINES_OUT Modified lines evicted
from the L2 cache.

This event counts the number of L2 modified cache lines
evicted. These lines are written back to memory unless they
also exist in a shared-state in one of the L1 data caches.

This event can count occurrences for this core or both cores.
This event can also count evictions due to demand requests and
L2 hardware prefetch requests together or separately.

28H See
Table
18-61
and
Table
18-64

L2_IFETCH L2 cacheable
instruction fetch
requests.

This event counts the number of instruction cache line requests
from the ICache. It does not include fetch requests from
uncacheable memory. It does not include ITLB miss accesses.

This event can count occurrences for this core or both cores.
This event can also count accesses to cache lines at different
MESI states.

29H See
Table
18-61,
Table
18-63
and
Table
18-64

L2_LD L2 cache reads. This event counts L2 cache read requests coming from the L1
data cache and L2 prefetchers.

This event can count occurrences for this core or both cores.
This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests
together or separately.

- of accesses to cache lines at different MESI states.

2AH See
Table
18-61
and
Table
18-64

L2_ST L2 store requests. This event counts all store operations that miss the L1 data
cache and request the data from the L2 cache.

This event can count occurrences for this core or both cores.
This event can also count accesses to cache lines at different
MESI states.

2BH See
Table
18-61
and
Table
18-64

L2_LOCK L2 locked accesses. This event counts all locked accesses to cache lines that miss
the L1 data cache.

This event can count occurrences for this core or both cores.
This event can also count accesses to cache lines at different
MESI states.

2EH See
Table
18-61,
Table
18-63
and
Table
18-64

L2_RQSTS L2 cache requests. This event counts all completed L2 cache requests. This
includes L1 data cache reads, writes, and locked accesses, L1
data prefetch requests, instruction fetches, and all L2 hardware
prefetch requests.

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests
together, or separately.

- of accesses to cache lines at different MESI states.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-184 Vol. 3B

PERFORMANCE MONITORING EVENTS

2EH 41H L2_RQSTS.SELF.DEMA
ND.I_STATE

L2 cache demand
requests from this core
that missed the L2.

This event counts all completed L2 cache demand requests
from this core that miss the L2 cache. This includes L1 data
cache reads, writes, and locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.DEMA
ND.MESI

L2 cache demand
requests from this
core.

This event counts all completed L2 cache demand requests
from this core. This includes L1 data cache reads, writes, and
locked accesses, L1 data prefetch requests, and instruction
fetches.

This is an architectural performance event.

30H See
Table
18-61,
Table
18-63
and
Table
18-64

L2_REJECT_BUSQ Rejected L2 cache
requests.

This event indicates that a pending L2 cache request that
requires a bus transaction is delayed from moving to the bus
queue. Some of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a cache line in the
same set.

The number of events is greater or equal to the number of
requests that were rejected.

- For this core or both cores.

- Due to demand requests and L2 hardware prefetch requests
together, or separately.

- Of accesses to cache lines at different MESI states.

32H See
Table
18-61

L2_NO_REQ Cycles no L2 cache
requests are pending.

This event counts the number of cycles that no L2 cache
requests are pending.

3AH 00H EIST_TRANS Number of Enhanced
Intel SpeedStep(R)
Technology (EIST)
transitions.

This event counts the number of Enhanced Intel SpeedStep(R)
Technology (EIST) transitions that include a frequency change,
either with or without VID change. This event is incremented
only while the counting core is in C0 state. In situations where
an EIST transition was caused by hardware as a result of CxE
state transitions, those EIST transitions will also be registered
in this event.

Enhanced Intel Speedstep Technology transitions are commonly
initiated by OS, but can be initiated by HW internally. For
example: CxE states are C-states (C1,C2,C3…) which not only
place the CPU into a sleep state by turning off the clock and
other components, but also lower the voltage (which reduces
the leakage power consumption). The same is true for thermal
throttling transition which uses Enhanced Intel Speedstep
Technology internally.

3BH C0H THERMAL_TRIP Number of thermal
trips.

This event counts the number of thermal trips. A thermal trip
occurs whenever the processor temperature exceeds the
thermal trip threshold temperature. Following a thermal trip,
the processor automatically reduces frequency and voltage.
The processor checks the temperature every millisecond, and
returns to normal when the temperature falls below the
thermal trip threshold temperature.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-185

PERFORMANCE MONITORING EVENTS

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core
is not halted.

This event counts the number of core cycles while the core is
not in a halt state. The core enters the halt state when it is
running the HLT instruction. This event is a component in many
key event ratios.

In mobile systems the core frequency may change from time to
time. For this reason this event may have a changing ratio with
regards to time. In systems with a constant core frequency, this
event can give you a measurement of the elapsed time while
the core was not in halt state by dividing the event count by the
core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is counted by a
programmable counter.

- The event CPU_CLK_UNHALTED.CORE is counted by a
designated fixed counter, leaving the two programmable
counters available for other events.

3CH 01H CPU_CLK_UNHALTED.B
US

Bus cycles when core is
not halted.

This event counts the number of bus cycles while the core is not
in the halt state. This event can give you a measurement of the
elapsed time while the core was not in the halt state, by
dividing the event count by the bus frequency. The core enters
the halt state when it is running the HLT instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is the maximum bus to
processor frequency ratio.

Non-halted bus cycles are a component in many key event
ratios.

3CH 02H CPU_CLK_UNHALTED.
NO_OTHER

Bus cycles when core is
active and the other is
halted.

This event counts the number of bus cycles during which the
core remains non-halted, and the other core on the processor is
halted.

This event can be used to determine the amount of parallelism
exploited by an application or a system. Divide this event count
by the bus frequency to determine the amount of time that
only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable Data
Reads.

This event counts the number of data reads from cacheable
memory.

40H 22H L1D_CACHE.ST L1 Cacheable Data
Writes.

This event counts the number of data writes to cacheable
memory.

60H See
Table
18-61
and
Table
18-62.

BUS_REQUEST_OUTST
ANDING

Outstanding cacheable
data read bus requests
duration.

This event counts the number of pending full cache line read
transactions on the bus occurring in each cycle. A read
transaction is pending from the cycle it is sent on the bus until
the full cache line is received by the processor. NOTE: This
event is thread-independent and will not provide a count per
logical processor when AnyThr is disabled.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-186 Vol. 3B

PERFORMANCE MONITORING EVENTS

61H See
Table
18-62.

BUS_BNR_DRV Number of Bus Not
Ready signals asserted.

This event counts the number of Bus Not Ready (BNR) signals
that the processor asserts on the bus to suspend additional bus
requests by other bus agents. A bus agent asserts the BNR
signal when the number of data and snoop transactions is close
to the maximum that the bus can handle.

While this signal is asserted, new transactions cannot be
submitted on the bus. As a result, transaction latency may have
higher impact on program performance. NOTE: This event is
thread-independent and will not provide a count per logical
processor when AnyThr is disabled.

62H See
Table
18-62.

BUS_DRDY_CLOCKS Bus cycles when data
is sent on the bus.

This event counts the number of bus cycles during which the
DRDY (Data Ready) signal is asserted on the bus. The DRDY
signal is asserted when data is sent on the bus.

This event counts the number of bus cycles during which this
agent (the processor) writes data on the bus back to memory or
to other bus agents. This includes all explicit and implicit data
writebacks, as well as partial writes.
Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

63H See
Table
18-61
and
Table
18-62.

BUS_LOCK_CLOCKS Bus cycles when a
LOCK signal is asserted.

This event counts the number of bus cycles, during which the
LOCK signal is asserted on the bus. A LOCK signal is asserted
when there is a locked memory access, due to:

- Uncacheable memory.

- Locked operation that spans two cache lines.

- Page-walk from an uncacheable page table.

Bus locks have a very high performance penalty and it is highly
recommended to avoid such accesses. NOTE: This event is
thread-independent and will not provide a count per logical
processor when AnyThr is disabled.

64H See
Table
18-61.

BUS_DATA_RCV Bus cycles while
processor receives
data.

This event counts the number of cycles during which the
processor is busy receiving data. NOTE: This event is thread-
independent and will not provide a count per logical processor
when AnyThr is disabled.

65H See
Table
18-61
and
Table
18-62.

BUS_TRANS_BRD Burst read bus
transactions.

This event counts the number of burst read transactions
including:

- L1 data cache read misses (and L1 data cache hardware
prefetches).

- L2 hardware prefetches by the DPL and L2 streamer.

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See
Table
18-61
and
Table
18-62.

BUS_TRANS_RFO RFO bus transactions. This event counts the number of Read For Ownership (RFO) bus
transactions, due to store operations that miss the L1 data
cache and the L2 cache. This event also counts RFO bus
transactions due to locked operations.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-187

PERFORMANCE MONITORING EVENTS

67H See
Table
18-61
and
Table
18-62.

BUS_TRANS_WB Explicit writeback bus
transactions.

This event counts all explicit writeback bus transactions due to
dirty line evictions. It does not count implicit writebacks due to
invalidation by a snoop request.

68H See
Table
18-61
and
Table
18-62.

BUS_TRANS_IFETCH Instruction-fetch bus
transactions.

This event counts all instruction fetch full cache line bus
transactions.

69H See
Table
18-61
and
Table
18-62.

BUS_TRANS_INVAL Invalidate bus
transactions.

This event counts all invalidate transactions. Invalidate
transactions are generated when:

- A store operation hits a shared line in the L2 cache.

- A full cache line write misses the L2 cache or hits a shared line
in the L2 cache.

6AH See
Table
18-61
and
Table
18-62.

BUS_TRANS_PWR Partial write bus
transaction.

This event counts partial write bus transactions.

6BH See
Table
18-61
and
Table
18-62.

BUS_TRANS_P Partial bus
transactions.

This event counts all (read and write) partial bus transactions.

6CH See
Table
18-61
and
Table
18-62.

BUS_TRANS_IO IO bus transactions. This event counts the number of completed I/O bus
transactions as a result of IN and OUT instructions. The count
does not include memory mapped IO.

6DH See
Table
18-61
and
Table
18-62.

BUS_TRANS_DEF Deferred bus
transactions.

This event counts the number of deferred transactions.

6EH See
Table
18-61
and
Table
18-62.

BUS_TRANS_BURST Burst (full cache-line)
bus transactions.

This event counts burst (full cache line) transactions including:

- Burst reads.

- RFOs.

- Explicit writebacks.

- Write combine lines.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-188 Vol. 3B

PERFORMANCE MONITORING EVENTS

6FH See
Table
18-61
and
Table
18-62.

BUS_TRANS_MEM Memory bus
transactions.

This event counts all memory bus transactions including:

- Burst transactions.

- Partial reads and writes.

- Invalidate transactions.

The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_INVAL.

70H See
Table
18-61
and
Table
18-62.

BUS_TRANS_ANY All bus transactions. This event counts all bus transactions. This includes:

- Memory transactions.

- IO transactions (non memory-mapped).

- Deferred transaction completion.

- Other less frequent transactions, such as interrupts.

77H See
Table
18-61
and
Table
18-64.

EXT_SNOOP External snoops. This event counts the snoop responses to bus transactions.
Responses can be counted separately by type and by bus agent.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7AH See
Table
18-62.

BUS_HIT_DRV HIT signal asserted. This event counts the number of bus cycles during which the
processor drives the HIT# pin to signal HIT snoop response.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7BH See
Table
18-62.

BUS_HITM_DRV HITM signal asserted. This event counts the number of bus cycles during which the
processor drives the HITM# pin to signal HITM snoop response.
NOTE: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7DH See
Table
18-61.

BUSQ_EMPTY Bus queue is empty. This event counts the number of cycles during which the core
did not have any pending transactions in the bus queue.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7EH See
Table
18-61
and
Table
18-62.

SNOOP_STALL_DRV Bus stalled for snoops. This event counts the number of times that the bus snoop stall
signal is asserted. During the snoop stall cycles no new bus
transactions requiring a snoop response can be initiated on the
bus.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7FH See
Table
18-61.

BUS_IO_WAIT IO requests waiting in
the bus queue.

This event counts the number of core cycles during which IO
requests wait in the bus queue. This event counts IO requests
from the core.

80H 03H ICACHE.ACCESSES Instruction fetches. This event counts all instruction fetches, including uncacheable
fetches.

80H 02H ICACHE.MISSES Icache miss. This event counts all instruction fetches that miss the
Instruction cache or produce memory requests. This includes
uncacheable fetches. An instruction fetch miss is counted only
once and not once for every cycle it is outstanding.

82H 04H ITLB.FLUSH ITLB flushes. This event counts the number of ITLB flushes.

82H 02H ITLB.MISSES ITLB misses. This event counts the number of instruction fetches that miss
the ITLB.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-189

PERFORMANCE MONITORING EVENTS

AAH 02H MACRO_INSTS.CISC_DE
CODED

CISC macro instructions
decoded.

This event counts the number of complex instructions decoded,
but not necessarily executed or retired. Only one complex
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.ALL_DE
CODED

All Instructions
decoded.

This event counts the number of instructions decoded.

B0H 00H SIMD_UOPS_EXEC.S SIMD micro-ops
executed (excluding
stores).

This event counts all the SIMD micro-ops executed. This event
does not count MOVQ and MOVD stores from register to
memory.

B0H 80H SIMD_UOPS_EXEC.AR SIMD micro-ops retired
(excluding stores).

This event counts the number of SIMD saturated arithmetic
micro-ops executed.

B1H 00H SIMD_SAT_UOP_EXEC.
S

SIMD saturated
arithmetic micro-ops
executed.

This event counts the number of SIMD saturated arithmetic
micro-ops executed.

B1H 80H SIMD_SAT_UOP_EXEC.
AR

SIMD saturated
arithmetic micro-ops
retired.

This event counts the number of SIMD saturated arithmetic
micro-ops retired.

B3H 01H SIMD_UOP_TYPE_EXE
C.MUL.S

SIMD packed multiply
micro-ops executed.

This event counts the number of SIMD packed multiply micro-
ops executed.

B3H 81H SIMD_UOP_TYPE_EXE
C.MUL.AR

SIMD packed multiply
micro-ops retired.

This event counts the number of SIMD packed multiply micro-
ops retired.

B3H 02H SIMD_UOP_TYPE_EXE
C.SHIFT.S

SIMD packed shift
micro-ops executed.

This event counts the number of SIMD packed shift micro-ops
executed.

B3H 82H SIMD_UOP_TYPE_EXE
C.SHIFT.AR

SIMD packed shift
micro-ops retired.

This event counts the number of SIMD packed shift micro-ops
retired.

B3H 04H SIMD_UOP_TYPE_EXE
C.PACK.S

SIMD pack micro-ops
executed.

This event counts the number of SIMD pack micro-ops executed.

B3H 84H SIMD_UOP_TYPE_EXE
C.PACK.AR

SIMD pack micro-ops
retired.

This event counts the number of SIMD pack micro-ops retired.

B3H 08H SIMD_UOP_TYPE_EXE
C.UNPACK.S

SIMD unpack micro-ops
executed.

This event counts the number of SIMD unpack micro-ops
executed.

B3H 88H SIMD_UOP_TYPE_EXE
C.UNPACK.AR

SIMD unpack micro-ops
retired.

This event counts the number of SIMD unpack micro-ops retired.

B3H 10H SIMD_UOP_TYPE_EXE
C.LOGICAL.S

SIMD packed logical
micro-ops executed.

This event counts the number of SIMD packed logical micro-ops
executed.

B3H 90H SIMD_UOP_TYPE_EXE
C.LOGICAL.AR

SIMD packed logical
micro-ops retired.

This event counts the number of SIMD packed logical micro-ops
retired.

B3H 20H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.S

SIMD packed arithmetic
micro-ops executed.

This event counts the number of SIMD packed arithmetic micro-
ops executed.

B3H A0H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.AR

SIMD packed arithmetic
micro-ops retired.

This event counts the number of SIMD packed arithmetic micro-
ops retired.

C0H 00H INST_RETIRED.ANY_P Instructions retired
(precise event).

This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-190 Vol. 3B

PERFORMANCE MONITORING EVENTS

N/A 00H INST_RETIRED.ANY Instructions retired. This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

C2H 10H UOPS_RETIRED.ANY Micro-ops retired. This event counts the number of micro-ops retired. The
processor decodes complex macro instructions into a sequence
of simpler micro-ops. Most instructions are composed of one or
two micro-ops. Some instructions are decoded into longer
sequences such as repeat instructions, floating point
transcendental instructions, and assists. In some cases micro-op
sequences are fused or whole instructions are fused into one
micro-op. See other UOPS_RETIRED events for differentiating
retired fused and non-fused micro-ops.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code
detected.

This event counts the number of times that a program writes to
a code section. Self-modifying code causes a severe penalty in
all Intel® architecture processors.

C4H 00H BR_INST_RETIRED.AN
Y

Retired branch
instructions.

This event counts the number of branch instructions retired.

This is an architectural performance event.

C4H 01H BR_INST_RETIRED.PRE
D_NOT_TAKEN

Retired branch
instructions that were
predicted not-taken.

This event counts the number of branch instructions retired
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MIS
PRED_NOT_TAKEN

Retired branch
instructions that were
mispredicted not-
taken.

This event counts the number of branch instructions retired
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRE
D_TAKEN

Retired branch
instructions that were
predicted taken.

This event counts the number of branch instructions retired
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MIS
PRED_TAKEN

Retired branch
instructions that were
mispredicted taken.

This event counts the number of branch instructions retired
that were mispredicted and taken.

C4H 0AH BR_INST_RETIRED.MIS
PRED

Retired mispredicted
branch instructions
(precise event).

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa. Mispredicted
branches degrade the performance because the processor
starts executing instructions along a wrong path it predicts.
When the misprediction is discovered, all the instructions
executed in the wrong path must be discarded, and the
processor must start again on the correct path.

Using the Profile-Guided Optimization (PGO) features of the
Intel® C++ compiler may help reduce branch mispredictions. See
the compiler documentation for more information on this
feature.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-191

PERFORMANCE MONITORING EVENTS

To determine the branch misprediction ratio, divide the
BR_INST_RETIRED.MISPRED event count by the number of
BR_INST_RETIRED.ANY event count. To determine the number
of mispredicted branches per instruction, divide the number of
mispredicted branches by the INST_RETIRED.ANY event count.
To measure the impact of the branch mispredictions use the
event RESOURCE_STALLS.BR_MISS_CLEAR.

Tips:

- See the optimization guide for tips on reducing branch
mispredictions.

- PGO's purpose is to have straight line code for the most
frequent execution paths, reducing branches taken and
increasing the “basic block” size, possibly also reducing the code
footprint or working-set.

C4H 0CH BR_INST_RETIRED.TAK
EN

Retired taken branch
instructions.

This event counts the number of branches retired that were
taken.

C4H 0FH BR_INST_RETIRED.AN
Y1

Retired branch
instructions.

This event counts the number of branch instructions retired
that were mispredicted. This event is a duplicate of
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIRED.MIS
PRED

Retired mispredicted
branch instructions
(precise event).

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa. Mispredicted
branches degrade the performance because the processor
starts executing instructions along a wrong path it predicts.
When the misprediction is discovered, all the instructions
executed in the wrong path must be discarded, and the
processor must start again on the correct path.

Using the Profile-Guided Optimization (PGO) features of the
Intel® C++ compiler may help reduce branch mispredictions. See
the compiler documentation for more information on this
feature.

To determine the branch misprediction ratio, divide the
BR_INST_RETIRED.MISPRED event count by the number of
BR_INST_RETIRED.ANY event count. To determine the number
of mispredicted branches per instruction, divide the number of
mispredicted branches by the INST_RETIRED.ANY event count.
To measure the impact of the branch mispredictions use the
event RESOURCE_STALLS.BR_MISS_CLEAR.

Tips:

- See the optimization guide for tips on reducing branch
mispredictions.

- PGO's purpose is to have straight line code for the most
frequent execution paths, reducing branches taken and
increasing the “basic block” size, possibly also reducing the code
footprint or working-set.

C6H 01H CYCLES_INT_MASKED.
CYCLES_INT_MASKED

Cycles during which
interrupts are disabled.

This event counts the number of cycles during which interrupts
are disabled.

C6H 02H CYCLES_INT_MASKED.
CYCLES_INT_PENDING
_AND_MASKED

Cycles during which
interrupts are pending
and disabled.

This event counts the number of cycles during which there are
pending interrupts but interrupts are disabled.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-192 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 01H SIMD_INST_RETIRED.P
ACKED_SINGLE

Retired Streaming
SIMD Extensions (SSE)
packed-single
instructions.

This event counts the number of SSE packed-single instructions
retired.

C7H 02H SIMD_INST_RETIRED.S
CALAR_SINGLE

Retired Streaming
SIMD Extensions (SSE)
scalar-single
instructions.

This event counts the number of SSE scalar-single instructions
retired.

C7H 04H SIMD_INST_RETIRED.P
ACKED_DOUBLE

Retired Streaming
SIMD Extensions 2
(SSE2) packed-double
instructions.

This event counts the number of SSE2 packed-double
instructions retired.

C7H 08H SIMD_INST_RETIRED.S
CALAR_DOUBLE

Retired Streaming
SIMD Extensions 2
(SSE2) scalar-double
instructions.

This event counts the number of SSE2 scalar-double
instructions retired.

C7H 10H SIMD_INST_RETIRED.V
ECTOR

Retired Streaming
SIMD Extensions 2
(SSE2) vector
instructions.

This event counts the number of SSE2 vector instructions
retired.

C7H 1FH SIMD_INST_RETIRED.A
NY

Retired Streaming
SIMD instructions.

This event counts the overall number of SIMD instructions
retired. To count each type of SIMD instruction separately, use
the following events:

SIMD_INST_RETIRED.PACKED_SINGLE
SIMD_INST_RETIRED.SCALAR_SINGLE
SIMD_INST_RETIRED.PACKED_DOUBLE
SIMD_INST_RETIRED.SCALAR_DOUBLE
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware interrupts
received.

This event counts the number of hardware interrupts received
by the processor. This event will count twice for dual-pipe
micro-ops.

CAH 01H SIMD_COMP_INST_RET
IRED.PACKED_SINGLE

Retired computational
Streaming SIMD
Extensions (SSE)
packed-single
instructions.

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

CAH 02H SIMD_COMP_INST_RET
IRED.SCALAR_SINGLE

Retired computational
Streaming SIMD
Extensions (SSE)
scalar-single
instructions.

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

CAH 04H SIMD_COMP_INST_RET
IRED.PACKED_DOUBLE

Retired computational
Streaming SIMD
Extensions 2 (SSE2)
packed-double
instructions.

This event counts the number of computational SSE2 packed-
double instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-193

PERFORMANCE MONITORING EVENTS

CAH 08H SIMD_COMP_INST_RET
IRED.SCALAR_DOUBLE

Retired computational
Streaming SIMD
Extensions 2 (SSE2)
scalar-double
instructions.

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

CBH 01H MEM_LOAD_RETIRED.L
2_HIT

Retired loads that hit
the L2 cache (precise
event).

This event counts the number of retired load operations that
missed the L1 data cache and hit the L2 cache.

CBH 02H MEM_LOAD_RETIRED.L
2_MISS

Retired loads that miss
the L2 cache (precise
event).

This event counts the number of retired load operations that
missed the L2 cache.

CBH 04H MEM_LOAD_RETIRED.D
TLB_MISS

Retired loads that miss
the DTLB (precise
event).

This event counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load operation causes
a fault.

CDH 00H SIMD_ASSIST SIMD assists invoked. This event counts the number of SIMD assists invoked. SIMD
assists are invoked when an EMMS instruction is executed after
MMX™ technology code has changed the MMX state in the
floating point stack. For example, these assists are required in
the following cases.

Streaming SIMD Extensions (SSE) instructions:

1. Denormal input when the DAZ (Denormals Are Zeros) flag is
off.

2. Underflow result when the FTZ (Flush To Zero) flag is off.

CEH 00H SIMD_INSTR_RETIRED SIMD Instructions
retired.

This event counts the number of SIMD instructions that retired.

CFH 00H SIMD_SAT_INSTR_RETI
RED

Saturated arithmetic
instructions retired.

This event counts the number of saturated arithmetic SIMD
instructions that retired.

E0H 01H BR_INST_DECODED Branch instructions
decoded.

This event counts the number of branch instructions decoded.

E4H 01H BOGUS_BR Bogus branches. This event counts the number of byte sequences that were
mistakenly detected as taken branch instructions. This results
in a BACLEAR event and the BTB is flushed. This occurs mainly
after task switches.

E6H 01H BACLEARS.ANY BACLEARS asserted. This event counts the number of times the front end is
redirected for a branch prediction, mainly when an early branch
prediction is corrected by other branch handling mechanisms in
the front end. This can occur if the code has many branches
such that they cannot be consumed by the branch predictor.
Each Baclear asserted costs approximately 7 cycles. The effect
on total execution time depends on the surrounding code.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-194 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.17 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ SOLO AND
INTEL® CORE™ DUO PROCESSORS

Table 19-30 lists model-specific performance events for Intel® Core™ Duo processors. If a model-specific event
requires qualification in core specificity, it is indicated in the comment column. Table 19-30 also applies to Intel®
Core™ Solo processors; bits in the unit mask corresponding to core-specificity are reserved and should be 00B.

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to store buffer blocks.

The preceding store may be blocked due to
unknown address, unknown data, or conflict due to
partial overlap between the load and store.

04H SD_Drains 00H Cycles while draining store buffers.

05H Misalign_Mem_Ref 00H Misaligned data memory references (MOB splits of
loads and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction PREFETCHNTA
retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction PREFETCHT1
retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction PREFETCHT2
retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction executed. FADD,
FSUB, FCOM, FMULs, MUL, IMUL, FDIVs, DIV, IDIV,
FPREMs, FSQRT are included; but exclude FADD or
FMUL used in the middle of a transcendental
instruction.

11H FP_Assist 00H FP exceptions experienced microcode assists. IA32_PMC1 only.

12H Mul 00H Multiply operations (a speculative count, including
FP and integer multiplies).

IA32_PMC1 only.

13H Div 00H Divide operations (a speculative count, including FP
and integer divisions).

IA32_PMC1 only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0 only.

21H L2_ADS 00H L2 Address strobes. Requires core-
specificity.

22H Dbus_Busy 00H Core cycle during which data bus was busy
(increments by 4).

Requires core-
specificity.

23H Dbus_Busy_Rd 00H Cycles data bus is busy transferring data to a core
(increments by 4).

Requires core-
specificity.

24H L2_Lines_In 00H L2 cache lines allocated. Requires core-specificity
and HW prefetch
qualification.

25H L2_M_Lines_In 00H L2 Modified-state cache lines allocated. Requires core-
specificity.

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-specificity
and HW prefetch
qualification.

27H L2_M_Lines_Out 00H L2 Modified-state cache lines evicted.

Vol. 3B 19-195

PERFORMANCE MONITORING EVENTS

28H L2_IFetch Requires MESI
qualification

L2 instruction fetches from instruction fetch unit
(includes speculative fetches).

Requires core-
specificity.

29H L2_LD Requires MESI
qualification

L2 cache reads. Requires core-
specificity.

2AH L2_ST Requires MESI
qualification

L2 cache writes (includes speculation). Requires core-
specificity.

2EH L2_Rqsts Requires MESI
qualification

L2 cache reference requests. Requires core-
specificity, HW prefetch
qualification.30H L2_Reject_Cycles Requires MESI

qualification
Cycles L2 is busy and rejecting new requests.

32H L2_No_Request_
Cycles

Requires MESI
qualification

Cycles there is no request to access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R) Technology
transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep Technology frequency
transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on the current core
clock.

Use edge trigger to
count occurrence.

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core executing code
while the other core is halted.

40H DCache_Cache_LD Requires MESI
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires MESI
qualification

L1 cacheable data write operations.

42H DCache_Cache_
Lock

Requires MESI
qualification

L1 cacheable lock read operations to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of cacheable and non-
cacheable types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line allocated.

47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss outstanding. Use Cmask =1 to count
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU cache misses. May overcount if
request re-submitted.

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

19-196 Vol. 3B

PERFORMANCE MONITORING EVENTS

60H Bus_Req_
Outstanding

00; Requires core-
specificity, and agent
specificity

Weighted cycles of cacheable bus data read
requests. This event counts full-line read request
from DCU or HW prefetcher, but not RFO, write,
instruction fetches, or others.

Use Cmask =1 to count
duration.

Use Umask bit 12 to
include HWP or exclude
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY asserted. Requires agent
specificity.

63H Bus_Locks_Clocks 00H External bus cycles while bus lock signal asserted. Requires core
specificity.

64H Bus_Data_Rcv 40H Number of data chunks received by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data or code). Requires core
specificity.

66H Bus_Trans_RFO See comment. Completed read for ownership (RFO) transactions. Requires agent
specificity.

Requires core
specificity.

Each transaction counts
its address strobe.

Retried transaction may
be counted more than
once.

68H Bus_Trans_Ifetch See comment. Completed instruction fetch transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write transactions.

6BH Bus_Trans_P See comment. Completed partial transactions (include partial read
+ partial write + line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core
specificity.

Retried transaction may
be counted more than
once.

67H Bus_Trans_WB C0H Completed writeback transactions from DCU (does
not include L2 writebacks).

Requires agent
specificity.

Each transaction counts
its address strobe.

Retried transaction may
be counted more than
once.

6EH Bus_Trans_Burst C0H Completed burst transactions (full line transactions
include reads, write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions. This includes
Bus_Trans_Burst + Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI
qualification.

Requires agent
specificity.

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1 cache line due to L1
misses.

Requires core
specificity.

7DH Bus_Not_In_Use 00H Number of cycles there is no transaction from the
core.

Requires core
specificity.

7EH Bus_Snoop_Stall 00H Number of bus cycles while bus snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches from ICache,
streaming buffers (both cacheable and uncacheable
fetches).

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

Vol. 3B 19-197

PERFORMANCE MONITORING EVENTS

81H ICache_Misses 00H Number of instruction fetch misses from ICache,
streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting for data from
memory.

87H ILD_Stall 00H Number of instruction length decoder stalls (Counts
number of LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed (includes speculation).

89H Br_Missp_Exec 00H Branch instructions executed and mispredicted at
execution (includes branches that do not have
prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that were
mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions executed that were
mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions executed that were
mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions executed that were
mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions executed that were
mispredicted at the front end.

92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed that were
mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions executed.

A2H Resource_Stall 00H Cycles while there is a resource related stall
(renaming, buffer entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions executed (does not
include MOVQ and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating instructions
executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed multiply
instructions executed.

B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed shift instructions
executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack operations instruction
executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack instructions
executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed logical instructions
executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed arithmetic
instructions executed.

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

19-198 Vol. 3B

PERFORMANCE MONITORING EVENTS

C0H Instr_Ret 00H Number of instruction retired (Macro fused
instruction count as 2).

C1H FP_Comp_Instr_Ret 00H Number of FP compute instructions retired (X87
instruction or instruction that contains X87
operations).

Use IA32_PMC0 only.

C2H Uops_Ret 00H Number of micro-ops retired (include fused uops).

C3H SMC_Detected 00H Number of times self-modifying code condition
detected.

C4H Br_Instr_Ret 00H Number of branch instructions retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled and interrupts are
pending.

C8H HW_Int_Rx 00H Number of hardware interrupts received.

C9H Br_Taken_Ret 00H Number of taken branch instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted branch
instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX to X87.

CCH FP_MMX_Trans 01H Number of transitions from X87 to MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single precision instructions
retired (packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single precision
instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed double precision
instructions retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double precision
instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer instructions
retired.

D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single precision
compute instructions retired (does not include AND,
OR, XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single precision
compute instructions retired (does not include AND,
OR, XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed double precision
compute instructions retired (does not include AND,
OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double precision
compute instructions retired (does not include AND,
OR, XOR).

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

Vol. 3B 19-199

PERFORMANCE MONITORING EVENTS

19.18 PENTIUM® 4 AND INTEL® XEON® PROCESSOR PERFORMANCE
MONITORING EVENTS

Tables 19-31, 19-32 and 19-33 list performance monitoring events that can be counted or sampled on processors
based on Intel NetBurst® microarchitecture. Table 19-31 lists the non-retirement events, and Table 19-32 lists the
at-retirement events. Tables 19-34, 19-35, and 19-36 describes three sets of parameters that are available for
three of the at-retirement counting events defined in Table 19-32. Table 19-37 shows which of the non-retirement
and at retirement events are logical processor specific (TS) (see Section 18.6.4.4, “Performance Monitoring
Events”) and which are non-logical processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance monitoring events may be available only to specific
models. The performance monitoring events listed in Tables 19-31 and 19-32 apply to processors with CPUID
signature that matches family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table applies to processors with a
CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance monitoring events in Pentium 4 and Intel Xeon processors is also available when
IA-32e mode is enabled.

DAH Fused_Uops_Ret 00H All fused uops retired.

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the ROB (due to
exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did not produce a
prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch requests issued in
forward streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch requests issued in
backward streams.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting

Event Name Event Parameters Parameter Value Description

TC_deliver_mode This event counts the duration (in clock cycles) of the operating
modes of the trace cache and decode engine in the processor
package. The mode is specified by one or more of the event mask
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

19-200 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in deliver mode.

Logical processor 0 is in deliver mode and logical processor 1 is in
build mode.

Logical processor 0 is in deliver mode and logical processor 1 is
either halted, under a machine clear condition or transitioning to a
long microcode flow.

3: BD

4: BB

Logical processor 0 is in build mode and logical processor 1 is in
deliver mode.

Both logical processors are in build mode.

5: BI Logical processor 0 is in build mode and logical processor 1 is either
halted, under a machine clear condition or transitioning to a long
microcode flow.

6: ID

7: IB

Logical processor 0 is either halted, under a machine clear condition
or transitioning to a long microcode flow. Logical processor 1 is in
deliver mode.

Logical processor 0 is either halted, under a machine clear condition
or transitioning to a long microcode flow. Logical processor 1 is in
build mode.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If only one logical processor is available from a physical processor
package, the event mask should be interpreted as logical processor 1
is halted. Event mask bit 2 was previously known as “DELIVER”, bit 5
was previously known as “BUILD”.

BPU_fetch_
request

This event counts instruction fetch requests of specified request
type by the Branch Prediction unit. Specify one or more mask bits to
qualify the request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-201

PERFORMANCE MONITORING EVENTS

ITLB_reference This event counts translations using the Instruction Translation
Look-aside Buffer (ITLB).

ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit

0: HIT

1: MISS

2: HIT_UC

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

All page references regardless of the page size are looked up as
actual 4-KByte pages. Use the page_walk_type event with the
ITMISS mask for a more conservative count.

memory_cancel This event counts the canceling of various type of request in the
Data cache Address Control unit (DAC). Specify one or more mask
bits to select the type of requests that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store request buffer is available.

Conflicts due to 64-KByte aliasing.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

All_CACHE_MISS includes uncacheable memory in count.

memory_
complete

This event counts the completion of a load split, store split,
uncacheable (UC) split, or UC load. Specify one or more mask bits to
select the operations to be counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-202 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding UC/WC loads.

Any split stores completed.

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events at the load port. Specify one or
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement counting.

store_port_replay This event counts replayed events at the store port. Specify one or
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement counting.

MOB_load_replay This event triggers if the memory order buffer (MOB) caused a load
operation to be replayed. Specify one or more mask bits to select the
cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-203

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown store address.

Replayed because of unknown store data.

4: PARTIAL_DATA

5: UNALGN_ADDR

Replayed because of partially overlapped data access between the
load and store operations.

Replayed because the lower 4 bits of the linear address do not
match between the load and store operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types of page walks that the page miss
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss (either load or store).

Page walk for an instruction TLB miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference

This event counts cache references (2nd level cache or 3rd level
cache) as seen by the bus unit.

Specify one or more mask bit to select an access according to the
access type (read type includes both load and RFO, write type
includes writebacks and evictions) and the access result (hit, misses).

ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-204 Vol. 3B

PERFORMANCE MONITORING EVENTS

Bit

0: RD_2ndL_HITS

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared (includes load and RFO).

Read 2nd level cache hit Exclusive (includes load and RFO).

Read 2nd level cache hit Modified (includes load and RFO).

Read 3rd level cache hit Shared (includes load and RFO).

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive (includes load and RFO).

Read 3rd level cache hit Modified (includes load and RFO).

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss (includes load and RFO).

Read 3rd level cache miss (includes load and RFO).

A Writeback lookup from DAC misses the 2nd level cache (unlikely to
happen).

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: The implementation of this event in current Pentium 4 and Xeon
processors treats either a load operation or a request for
ownership (RFO) request as a “read” type operation.

2: Currently this event causes both over and undercounting by as
much as a factor of two due to an erratum.

3: It is possible for a transaction that is started as a prefetch to
change the transaction's internal status, making it no longer a
prefetch. or change the access result status (hit, miss) as seen by
this event.

IOQ_allocation This event counts the various types of transactions on the bus. A
count is generated each time a transaction is allocated into the IOQ
that matches the specified mask bits. An allocated entry can be a
sector (64 bytes) or a chunks of 8 bytes.

Requests are counted once per retry. The event mask bits constitute
4 bit fields. A transaction type is specified by interpreting the values
of each bit field.

Specify one or more event mask bits in a bit field to select the value
of the bit field.

Each field (bits 0-4 are one field) are independent of and can be
ORed with the others. The request type field is further combined
with bit 5 and 6 to form a binary expression. Bits 7 and 8 form a bit
field to specify the memory type of the target address.

Bits 13 and 14 form a bit field to specify the source agent of the
request. Bit 15 affects read operation only. The event is triggered by
evaluating the logical expression: (((Request type) OR Bit 5 OR Bit 6)
OR (Memory type)) AND (Source agent).

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-205

PERFORMANCE MONITORING EVENTS

ESCR restrictions MSR_FSB_ESCR0,
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits

0-4 (single field)

 5: ALL_READ

 6: ALL_WRITE

 7: MEM_UC

 8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

 9: MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

1: If PREFETCH bit is cleared, sectors fetched using prefetch are
excluded in the counts. If PREFETCH bit is set, all sectors or chunks
read are counted.

2: Specify the edge trigger in CCCR to avoid double counting.

3: The mapping of interpreted bit field values to transaction types
may differ with different processor model implementations of the
Pentium 4 processor family. Applications that program
performance monitoring events should use CPUID to determine
processor models when using this event. The logic equations that
trigger the event are model-specific (see 4a and 4b below).

4a:For Pentium 4 and Xeon Processors starting with CPUID Model
field encoding equal to 2 or greater, this event is triggered by
evaluating the logical expression ((Request type) and (Bit 5 or Bit
6) and (Memory type) and (Source agent)).

4b:For Pentium 4 and Xeon Processors with CPUID Model field
encoding less than 2, this event is triggered by evaluating the
logical expression [((Request type) or Bit 5 or Bit 6) or (Memory
type)] and (Source agent). Note that event mask bits for memory
type are ignored if either ALL_READ or ALL_WRITE is specified.

5: This event is known to ignore CPL in early implementations of
Pentium 4 and Xeon Processors. Both user requests and OS
requests are included in the count. This behavior is fixed starting
with Pentium 4 and Xeon Processors with CPUID signature F27H
(Family 15, Model 2, Stepping 7).

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-206 Vol. 3B

PERFORMANCE MONITORING EVENTS

6: For write-through (WT) and write-protected (WP) memory types,
this event counts reads as the number of 64-byte sectors. Writes
are counted by individual chunks.

7: For uncacheable (UC) memory types, this event counts the
number of 8-byte chunks allocated.

8: For Pentium 4 and Xeon Processors with CPUID Signature less
than F27H, only MSR_FSB_ESCR0 is available.

IOQ_active_
entries

This event counts the number of entries (clipped at 15) in the IOQ
that are active. An allocated entry can be a sector (64 bytes) or a
chunks of 8 bytes.

The event must be programmed in conjunction with IOQ_allocation.
Specify one or more event mask bits to select the transactions that
is counted.

ESCR restrictions MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits

0-4 (single field)

5: ALL_READ

6: ALL_WRITE

7: MEM_UC

8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9: MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in ESCR0 and ESCR1.
2: See the ioq_allocation event for descriptions of the mask bits.

3: Edge triggering should not be used when counting cycles.

4: The mapping of interpreted bit field values to transaction types
may differ across different processor model implementations of
the Pentium 4 processor family. Applications that programs
performance monitoring events should use the CPUID instruction
to detect processor models when using this event. The logical
expression that triggers this event as describe below:

5a:For Pentium 4 and Xeon Processors starting with CPUID MODEL
field encoding equal to 2 or greater, this event is triggered by
evaluating the logical expression ((Request type) and (Bit 5 or Bit
6) and (Memory type) and (Source agent)).

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-207

PERFORMANCE MONITORING EVENTS

5b:For Pentium 4 and Xeon Processors starting with CPUID MODEL
field encoding less than 2, this event is triggered by evaluating
the logical expression [((Request type) or Bit 5 or Bit 6) or
(Memory type)] and (Source agent). Event mask bits for memory
type are ignored if either ALL_READ or ALL_WRITE is specified.

5c: This event is known to ignore CPL in the current implementations
of Pentium 4 and Xeon Processors Both user requests and OS
requests are included in the count.

6: An allocated entry can be a full line (64 bytes) or in individual
chunks of 8 bytes.

FSB_data_
activity

This event increments once for each DRDY or DBSY event that
occurs on the front side bus. The event allows selection of a specific
DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0:

ESCR[24:9]

DRDY_DRV Count when this processor drives data onto the bus - includes writes
and implicit writebacks.

Asserted two processor clock cycles for partial writes and 4
processor clocks (usually in consecutive bus clocks) for full line
writes.

1: DRDY_OWN Count when this processor reads data from the bus - includes loads
and some PIC transactions. Asserted two processor clock cycles for
partial reads and 4 processor clocks (usually in consecutive bus
clocks) for full line reads.

Count DRDY events that we drive.

Count DRDY events sampled that we own.

2: DRDY_OTHER Count when data is on the bus but not being sampled by the
processor. It may or may not be being driven by this processor.

Asserted two processor clock cycles for partial transactions and 4
processor clocks (usually in consecutive bus clocks) for full line
transactions.

3: DBSY_DRV Count when this processor reserves the bus for use in the next bus
cycle in order to drive data. Asserted for two processor clock cycles
for full line writes and not at all for partial line writes.

May be asserted multiple times (in consecutive bus clocks) if we stall
the bus waiting for a cache lock to complete.

4: DBSY_OWN Count when some agent reserves the bus for use in the next bus
cycle to drive data that this processor will sample.

Asserted for two processor clock cycles for full line writes and not at
all for partial line writes. May be asserted multiple times (all one bus
clock apart) if we stall the bus for some reason.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-208 Vol. 3B

PERFORMANCE MONITORING EVENTS

5:DBSY_OTHER Count when some agent reserves the bus for use in the next bus
cycle to drive data that this processor will NOT sample. It may or may
not be being driven by this processor.

Asserted two processor clock cycles for partial transactions and 4
processor clocks (usually in consecutive bus clocks) for full line
transactions.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

Specify edge trigger in the CCCR MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are mutually exclusive; similarly for
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in the Bus Sequence Unit (BSQ)
according to the specified mask bit encoding. The event mask bits
consist of four sub-groups:

• Request type.
• Request length.
• Memory type.
• Sub-group consisting mostly of independent bits (bits 5, 6, 7, 8, 9,

and 10).
Specify an encoding for each sub-group.

ESCR restrictions MSR_BSU_ESCR0

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and 1) are:

0 – Read (excludes read invalidate).
1 – Read invalidate.
2 – Write (other than writebacks).
3 – Writeback (evicted from cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3) are:

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
 TYPE

7: REQ_CACHE_
 TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
 TYPE
9: REQ_DEM_TYPE

10: REQ_ORD_
 TYPE

Request type is a bus 8-byte chunk split across 8-byte boundary.

Request type is a demand if set. Request type is HW.SW prefetch
if 0.

Request is an ordered type.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-209

PERFORMANCE MONITORING EVENTS

11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit 11-13) are:

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specify edge trigger in CCCR to avoid double counting.
2: A writebacks to 3rd level cache from 2nd level cache counts as a

separate entry, this is in additional to the entry allocated for a
request to the bus.

3: A read request to WB memory type results in a request to the
64-byte sector, containing the target address, followed by a
prefetch request to an adjacent sector.

4: For Pentium 4 and Xeon processors with CPUID model encoding
value equals to 0 and 1, an allocated BSQ entry includes both the
demand sector and prefetched 2nd sector.

5: An allocated BSQ entry for a data chunk is any request less than
64 bytes.

6a:This event may undercount for requests of split type transactions
if the data address straddled across modulo-64 byte boundary.

6b:This event may undercount for requests of read request of
16-byte operands from WC or UC address.

6c: This event may undercount WC partial requests originated from
store operands that are
dwords.

bsq_active_
entries

This event represents the number of BSQ entries (clipped at 15)
currently active (valid) which meet the subevent mask criteria during
allocation in the BSQ. Active request entries are allocated on the BSQ
until de-allocated.

De-allocation of an entry does not necessarily imply the request is
filled. This event must be programmed in conjunction with
BSQ_allocation. Specify one or more event mask bits to select the
transactions that is counted.

ESCR restrictions ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in ESCR0 and ESCR1.
2: See the BSQ_allocation event for descriptions of the mask bits.
3: Edge triggering should not be used when counting cycles.

4: This event can be used to estimate the latency of a transaction
from allocation to de-allocation in the BSQ. The latency observed
by BSQ_allocation includes the latency of FSB, plus additional
overhead.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-210 Vol. 3B

PERFORMANCE MONITORING EVENTS

5: Additional overhead may include the time it takes to issue two
requests (the sector by demand and the adjacent sector via
prefetch). Since adjacent sector prefetches have lower priority
that demand fetches, on a heavily used system there is a high
probability that the adjacent sector prefetch will have to wait
until the next bus arbitration.

6: For Pentium 4 and Xeon processors with CPUID model encoding
value less than 3, this event is updated every clock.

7: For Pentium 4 and Xeon processors with CPUID model encoding
value equals to 3 or 4, this event is updated every other clock.

SSE_input_assist This event counts the number of times an assist is requested to
handle problems with input operands for SSE/SSE2/SSE3 operations;
most notably denormal source operands when the DAZ bit is not set.
Set bit 15 of the event mask to use this event.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL

ESCR[24:9]

Count assists for SSE/SSE2/SSE3 μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: Not all requests for assists are actually taken. This event is known
to overcount in that it counts requests for assists from
instructions on the non-retired path that do not incur a
performance penalty. An assist is actually taken only for non-
bogus μops. Any appreciable counts for this event are an
indication that the DAZ or FTZ bit should be set and/or the source
code should be changed to eliminate the condition.

2: Two common situations for an SSE/SSE2/SSE3 operation needing
an assist are: (1) when a denormal constant is used as an input and
the Denormals-Are-Zero (DAZ) mode is not set, (2) when the input
operand uses the underflowed result of a previous
SSE/SSE2/SSE3 operation and neither the DAZ nor Flush-To-Zero
(FTZ) modes are set.

3: Enabling the DAZ mode prevents SSE/SSE2/SSE3 operations from
needing assists in the first situation. Enabling the FTZ mode
prevents SSE/SSE2/SSE3 operations from needing assists in the
second situation.

packed_SP_uop This event increments for each packed single-precision μop,
specified through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-211

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more than one packed SP μops, each
packed SP μop that is specified by the event mask will be counted.

2: This metric counts instances of packed memory μops in a repeat
move string.

packed_DP_uop This event increments for each packed double-precision μop,
specified through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one packed DP μops, each
packed DP μop that is specified by the event mask will be counted.

scalar_SP_uop This event increments for each scalar single-precision μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one scalar SP μops, each scalar
SP μop that is specified by the event mask will be counted.

scalar_DP_uop This event increments for each scalar double-precision μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar double-precision operands.

CCCR Select 01H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-212 Vol. 3B

PERFORMANCE MONITORING EVENTS

Event Specific
Notes

If an instruction contains more than one scalar DP μops, each scalar
DP μop that is specified by the event mask is counted.

64bit_MMX_uop This event increments for each MMX instruction, which operate on
64-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 64- bit SIMD integer operands in memory
or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one 64-bit MMX μops, each 64-
bit MMX μop that is specified by the event mask will be counted.

128bit_MMX_uop This event increments for each integer SIMD SSE2 instruction, which
operate on 128-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 128-bit SIMD integer operands in
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one 128-bit MMX μops, each
128-bit MMX μop that is specified by the event mask will be counted.

x87_FP_uop This event increments for each x87 floating-point μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-213

PERFORMANCE MONITORING EVENTS

Event Specific
Notes

1: If an instruction contains more than one x87 FP μops, each x87
FP μop that is specified by the event mask will be counted.

2: This event does not count x87 FP μop for load, store, move
between registers.

TC_misc This event counts miscellaneous events detected by the TC. The
counter will count twice for each occurrence.

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events

This event accumulates the time during which a processor is not
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes the handling of HLT STPCLK and
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of times that uop delivery changed
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes

This event counts the number of valid uops written to the uop
queue. Specify one or more mask bits to select the source type of
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-214 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from TC deliver mode.

The uops being written are from microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount conditional branches if:

• Mispredictions cause the trace cache and delivery engine to build
new traces.

• When the processor's pipeline is being cleared.

retired_branch

_type

This event counts retiring branches by type. Specify one or more
mask bits to qualify the branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-215

PERFORMANCE MONITORING EVENTS

Event Specific
Notes

This event may overcount conditional branches if :

• Mispredictions cause the trace cache and delivery engine to build
new traces.

• When the processor's pipeline is being cleared.

resource_stall This event monitors the occurrence or latency of stalls in the
Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16
ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

WC_Buffer This event counts Write Combining Buffer operations that are
selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
 EVICT

WC Buffer eviction: no WC buffer is available.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

This event is useful for detecting the subset of 64K aliasing cases
that are more costly (i.e. 64K aliasing cases involving stores) as long
as there are no significant contributions due to write combining
buffer full or hit-modified conditions.

b2b_cycles This event can be configured to count the number back-to-back bus
cycles using sub-event mask bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-216 Vol. 3B

PERFORMANCE MONITORING EVENTS

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

bnr This event can be configured to count bus not ready conditions using
sub-event mask bits 0 through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

snoop This event can be configured to count snoop hit modified bus traffic
using sub-event mask bits 2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

Response This event can be configured to count different types of responses
using sub-event mask bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-217

PERFORMANCE MONITORING EVENTS

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting

Event Name Event Parameters Parameter Value Description

front_end_event This event counts the retirement of tagged μops, which are specified
through the front-end tagging mechanism. The event mask specifies
bogus or non-bogus μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional
MSRs for tagging

Selected ESCRs
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by Front_end tagging in Table A-3

execution_event This event counts the retirement of tagged μops, which are specified
through the execution tagging mechanism.

The event mask allows from one to four types of μops to be
specified as either bogus or non-bogus μops to be tagged.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Each of the 4 slots to specify the bogus/non-bogus μops must be
coordinated with the 4 TagValue bits in the ESCR (for example,
NBOGUS0 must accompany a ‘1’ in the lowest bit of the TagValue
field in ESCR, NBOGUS1 must accompany a ‘1’ in the next but lowest
bit of the TagValue field).

Can Support PEBS Yes

19-218 Vol. 3B

PERFORMANCE MONITORING EVENTS

Require Additional
MSRs for tagging

An ESCR for an
upstream event

See list of metrics supported by execution tagging in Table A-4.

replay_event This event counts the retirement of tagged μops, which are specified
through the replay tagging mechanism. The event mask specifies
bogus or non-bogus μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Supports counting tagged μops with additional MSRs.

Can Support PEBS Yes

Require Additional
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by replay tagging in Table A-5.

instr_retired This event counts instructions that are retired during a clock cycle.

Mask bits specify bogus or non-bogus (and whether they are tagged
using the front-end tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are not tagged.

Non-bogus instructions that are tagged.

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not tagged.

Bogus instructions that are tagged.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

1: The event count may vary depending on the microarchitectural
states of the processor when the event detection is enabled.

2: The event may count more than once for some instructions with
complex uop flows and were interrupted before retirement.

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-219

PERFORMANCE MONITORING EVENTS

Can Support PEBS No

uops_retired This event counts μops that are retired during a clock cycle. Mask bits
specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction with the front-end at-retirement
mechanism to tag load and store μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Setting the TAGLOADS and TAGSTORES mask bits does not cause a
counter to increment. They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement of a branch. Specify one or more
mask bits to select any combination of taken, not-taken, predicted
and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 18-70 for the addresses of the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The
performance counters and corresponding CCCRs can be obtained
from Table 18-70.

ESCR Event Select 06H ESCR[31:25]

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-220 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

mispred_branch_
retired

This event represents the retirement of mispredicted branch
instructions.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement of x87 instructions that required
special handling.

Specifies one or more event mask bits to select the type of
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow.

Handle FP stack overflow.

2: POAO

3: POAU

4: PREA

Handle x87 output overflow.

Handle x87 output underflow.

Handle x87 input assist.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-221

PERFORMANCE MONITORING EVENTS

machine_clear This event increments according to the mask bit specified while the
entire pipeline of the machine is cleared. Specify one of the mask bit
to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: CLEAR

ESCR[24:9]

Counts for a portion of the many cycles while the machine is cleared
for any cause. Use Edge triggering for this bit only to get a count of
occurrence versus a duration.

2: MOCLEAR

6: SMCLEAR

Increments each time the machine is cleared due to memory ordering
issues.

Increments each time the machine is cleared due to self-modifying
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-33. Intel NetBurst® Microarchitecture Model-Specific Performance Monitoring Events
(For Model Encoding 3, 4 or 6)

Event Name Event Parameters Parameter Value Description

instr_completed This event counts instructions that have completed and retired
during a clock cycle. Mask bits specify whether the instruction is
bogus or non-bogus and whether they are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

This metric differs from instr_retired, since it counts instructions
completed, rather than the number of times that instructions started.

Can Support PEBS No

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-222 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-34. List of Metrics Available for Front_end Tagging (For Front_end Event Only)

Front-end metric1 MSR_
TC_PRECISE_EVENT
MSR Bit field

 Additional MSR Event mask value for
Front_end_event

memory_loads None Set TAGLOADS bit in ESCR corresponding to
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit in the ESCR corresponding
to event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of the floating point stack.

Table 19-35. List of Metrics Available for Execution Tagging (For Execution Event Only)
Execution metric Upstream ESCR TagValue in

Upstream ESCR
Event mask value for
execution_event

packed_SP_retired Set ALL bit in event mask, TagUop bit in ESCR of
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event mask, TagUop bit in ESCR of
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event mask, TagUop bit in ESCR of
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event mask, TagUop bit in ESCR of
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event mask, TagUop bit in ESCR of
128_bit_MMX_uop.

1 NBOGUS0

64_bit_MMX_retired Set ALL bit in event mask, TagUop bit in ESCR of
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event mask, TagUop bit in ESCR of
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2 bits in event mask, TagUop bit in
ESCR of X87_SIMD_ moves_uop.

1 NBOGUS0

Table 19-36. List of Metrics Available for Replay Tagging (For Replay Event Only)

Replay metric1
IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT Bit
Field to Set

Additional MSR/ Event
Event Mask Value for
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24,
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16, Bit 24,
Bit 25

Bit 4 None NBOGUS

Vol. 3B 19-223

PERFORMANCE MONITORING EVENTS

MOB_load
_replay_retired3

Bit 9, Bit 24,
Bit 25

Bit 0 Select MOB_load_replay
event and set
PARTIAL_DATA and
UNALGN_ADDR bit.

NBOGUS

split_load_retired Bit 10, Bit 24,
Bit 25

Bit 0 Select load_port_replay
event with the
MSR_SAAT_ESCR1 MSR
and set the SPLIT_LD mask
bit.

NBOGUS

split_store_retired Bit 10, Bit 24,
Bit 25

Bit 1 Select store_port_replay
event with the
MSR_SAAT_ESCR0 MSR
and set the SPLIT_ST mask
bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses, returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that are found to be misses by the fast

detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is the case where the data from a

load that would otherwise be forwarded is not an aligned subset of the data from a preceding store.

Table 19-36. List of Metrics Available for Replay Tagging (For Replay Event Only) (Contd.)

Replay metric1
IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT Bit
Field to Set

Additional MSR/ Event
Event Mask Value for
Replay_event

19-224 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-37. Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS

Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Vol. 3B 19-225

PERFORMANCE MONITORING EVENTS

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

19-226 Vol. 3B

PERFORMANCE MONITORING EVENTS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Vol. 3B 19-227

PERFORMANCE MONITORING EVENTS

Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

19-228 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.19 PERFORMANCE MONITORING EVENTS FOR INTEL® PENTIUM® M
PROCESSORS

The Pentium M processor’s performance monitoring events are based on monitoring events for the P6 family of
processors. All of these performance events are model specific for the Pentium M processor and are not available in
this form in other processors. Table 19-38 lists the performance monitoring events that were added in the Pentium
M processor.

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Vol. 3B 19-229

PERFORMANCE MONITORING EVENTS

Table 19-38. Performance Monitoring Events on Intel® Pentium® M Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to count number of thermal trips: bit
22 in PerfEvtSel0/1 needs to be set to enable edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed (not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were mispredicted at execution.

BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed that were mispredicted at front end
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0 - Fused micro-ops

Mask = 1 - Only load+Op micro-ops

Mask = 2 - Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB, happened on a FP exception to a
fused µop.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued.

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued.

19-230 Vol. 3B

PERFORMANCE MONITORING EVENTS

A number of P6 family processor performance monitoring events are modified for the Pentium M processor. Table
19-39 lists the performance monitoring events that were changed in the Pentium M processor, and differ from
performance monitoring events for the P6 family of processors.

19.20 P6 FAMILY PROCESSOR PERFORMANCE MONITORING EVENTS
Table 19-40 lists the events that can be counted with the performance monitoring counters and read with the
RDPMC instruction for the P6 family processors. The unit column gives the microarchitecture or bus unit that
produces the event; the event number column gives the hexadecimal number identifying the event; the mnemonic
event name column gives the name of the event; the unit mask column gives the unit mask required (if any); the
description column describes the event; and the comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and are not available in this form in
the Pentium 4 processors or the Pentium processors. Some events (such as those added in later generations of the
P6 family processors) are only available in specific processors in the P6 family. All performance event encodings not
listed in Table 19-40 are reserved and their use will result in undefined counter results.

See the end of the table for notes related to certain entries in the table.

Table 19-39. Performance Monitoring Events Modified on Intel® Pentium® M Processors

Name Hex
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0 – SSE packed single and scalar single

Mask = 1 – SSE scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

L2_LD 29H L2 data loads Mask[0] = 1 – count I state lines

Mask[1] = 1 – count S state lines

Mask[2] = 1 – count E state lines

Mask[3] = 1 – count M state lines

Mask[5:4]:

00H – Excluding hardware-prefetched lines

01H - Hardware-prefetched lines only

02H/03H – All (HW-prefetched lines and non HW --
Prefetched lines)

L2_LINES_IN 24H L2 lines allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines evicted

Vol. 3B 19-231

PERFORMANCE MONITORING EVENTS

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any memory type. All stores
to any memory type. Each part of a split is
counted separately. The internal logic counts
not only memory loads and stores, but also
internal retries.

80-bit floating-point accesses are double
counted, since they are decomposed into a
16-bit exponent load and a 64-bit mantissa
load. Memory accesses are only counted
when they are actually performed (such as a
load that gets squashed because a previous
cache miss is outstanding to the same
address, and which finally gets performed, is
only counted once).

Does not include I/O accesses, or other
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in DCU.

46H DCU_M_LINES_IN 00H Number of M state lines allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines evicted from DCU.

This includes evictions via snoop HITM,
intervention or replacement.

48H DCU_MISS_
OUTSTANDING

00H Weighted number of cycles while a DCU miss
is outstanding, incremented by the number
of outstanding cache misses at any
particular time.

Cacheable read requests only are
considered.

Uncacheable requests are excluded.

Read-for-ownerships are counted, as well as
line fills, invalidates, and stores.

An access that also misses the L2
is short-changed by 2 cycles (i.e., if
counts N cycles, should be N+2
cycles).

Subsequent loads to the same
cache line will not result in any
additional counts.

Count value not precise, but still
useful.

Instruction
Fetch Unit
(IFU)

80H IFU_IFETCH 00H Number of instruction fetches, both
cacheable and noncacheable, including UC
fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction fetch misses

All instruction fetches that do not hit the IFU
(i.e., that produce memory requests). This
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles instruction fetch is stalled,
for any reason.

Includes IFU cache misses, ITLB misses, ITLB
faults, and other minor stalls.

87H ILD_STALL 00H Number of cycles that the instruction length
decoder is stalled.

L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction fetches.

This event indicates that a normal
instruction fetch was received by the L2.

19-232 Vol. 3B

PERFORMANCE MONITORING EVENTS

The count includes only L2 cacheable
instruction fetches; it does not include UC
instruction fetches.

It does not include ITLB miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that a normal, unlocked,
load memory access was received by the L2.

It includes only L2 cacheable memory
accesses; it does not include I/O accesses,
other nonmemory accesses, or memory
accesses such as UC/WT memory accesses.

It does include L2 cacheable TLB miss
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data stores.

This event indicates that a normal, unlocked,
store memory access was received by the
L2.

it indicates that the DCU sent a read-for-
ownership request to the L2. It also includes
Invalid to Modified requests sent by the DCU
to the L2.

It includes only L2 cacheable memory
accesses; it does not include I/O accesses,
other nonmemory accesses, or memory
accesses such as UC/WT memory accesses.

It includes TLB miss memory accesses.

24H L2_LINES_IN 00H Number of lines allocated in the L2.

26H L2_LINES_OUT 00H Number of lines removed from the L2 for
any reason.

25H L2_M_LINES_INM 00H Number of modified lines allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines removed from the
L2 for any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2 requests.

21H L2_ADS 00H Number of L2 address strobes.

22H L2_DBUS_BUSY 00H Number of cycles during which the L2 cache
data bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during which the data bus
was busy transferring read data from L2 to
the processor.

External
Bus Logic
(EBL)2

62H BUS_DRDY_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during which DRDY# is
asserted.

Utilization of the external system data bus
during data transfers.

Unit Mask = 00H counts bus clocks
when the processor is driving
DRDY#.

Unit Mask = 20H counts in
processor clocks when any agent is
driving DRDY#.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-233

PERFORMANCE MONITORING EVENTS

63H BUS_LOCK_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during which LOCK# is
asserted on the external system bus.3

Always counts in processor clocks.

60H BUS_REQ_
OUTSTANDING

00H
(Self)

Number of bus requests outstanding.

This counter is incremented by the number
of cacheable read bus requests outstanding
in any given cycle.

Counts only DCU full-line cacheable
reads, not RFOs, writes, instruction
fetches, or anything else. Counts
“waiting for bus to complete” (last
data chunk received).

65H BUS_TRAN_BRD 00H
(Self)

20H
(Any)

Number of burst read transactions.

66H BUS_TRAN_RFO 00H
(Self)

20H
(Any)

Number of completed read for ownership
transactions.

67H BUS_TRANS_WB 00H
(Self)

20H
(Any)

Number of completed write back
transactions.

68H BUS_TRAN_
IFETCH

00H
(Self)

20H
(Any)

Number of completed instruction fetch
transactions.

69H BUS_TRAN_INVA
L

00H
(Self)

20H
(Any)

Number of completed invalidate
transactions.

6AH BUS_TRAN_PWR 00H
(Self)

20H
(Any)

Number of completed partial write
transactions.

6BH BUS_TRANS_P 00H
(Self)

20H
(Any)

Number of completed partial transactions.

6CH BUS_TRANS_IO 00H
(Self)

20H
(Any)

Number of completed I/O transactions.

6DH BUS_TRAN_DEF 00H
(Self)

20H
(Any)

Number of completed deferred transactions.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-234 Vol. 3B

PERFORMANCE MONITORING EVENTS

6EH BUS_TRAN_
BURST

00H
(Self)

20H
(Any)

Number of completed burst transactions.

70H BUS_TRAN_ANY 00H
(Self)

20H
(Any)

Number of all completed bus transactions.

Address bus utilization can be calculated
knowing the minimum address bus
occupancy.

Includes special cycles, etc.

6FH BUS_TRAN_MEM 00H
(Self)

20H
(Any)

Number of completed memory transactions.

64H BUS_DATA_RCV 00H
(Self)

Number of bus clock cycles during which this
processor is receiving data.

61H BUS_BNR_DRV 00H
(Self)

Number of bus clock cycles during which this
processor is driving the BNR# pin.

7AH BUS_HIT_DRV 00H
(Self)

Number of bus clock cycles during which this
processor is driving the HIT# pin.

Includes cycles due to snoop stalls.

The event counts correctly, but
BPMi (breakpoint monitor) pins
function as follows based on the
setting of the PC bits (bit 19 in the
PerfEvtSel0 and PerfEvtSel1
registers):

• If the core-clock-to- bus-clock
ratio is 2:1 or 3:1, and a PC bit is
set, the BPMi pins will be
asserted for a single clock when
the counters overflow.

• If the PC bit is clear, the
processor toggles the BPMi pins
when the counter overflows.

• If the clock ratio is not 2:1 or 3:1,
the BPMi pins will not function
for these performance
monitoring counter events.

7BH BUS_HITM_DRV 00H
(Self)

Number of bus clock cycles during which this
processor is driving the HITM# pin.

Includes cycles due to snoop stalls.

The event counts correctly, but
BPMi (breakpoint monitor) pins
function as follows based on the
setting of the PC bits (bit 19 in the
PerfEvtSel0 and PerfEvtSel1
registers):

• If the core-clock-to- bus-clock
ratio is 2:1 or 3:1, and a PC bit is
set, the BPMi pins will be
asserted for a single clock when
the counters overflow.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-235

PERFORMANCE MONITORING EVENTS

• If the PC bit is clear, the
processor toggles the BPMipins
when the counter overflows.

• If the clock ratio is not 2:1 or 3:1,
the BPMi pins will not function
for these performance
monitoring counter events.

7EH BUS_SNOOP_
STALL

00H
(Self)

Number of clock cycles during which the bus
is snoop stalled.

Floating-
Point Unit

C1H FLOPS 00H Number of computational floating-point
operations retired.

Excludes floating-point computational
operations that cause traps or assists.

Includes floating-point computational
operations executed by the assist handler.

Includes internal sub-operations for complex
floating-point instructions like
transcendentals.

Excludes floating-point loads and stores.

Counter 0 only.

10H FP_COMP_OPS_
EXE

00H Number of computational floating-point
operations executed.

The number of FADD, FSUB, FCOM, FMULs,
integer MULs and IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs.

This number does not include the number of
cycles, but the number of operations.

This event does not distinguish an FADD
used in the middle of a transcendental flow
from a separate FADD instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point exception cases
handled by microcode.

Counter 1 only.

This event includes counts due to
speculative execution.

12H MUL 00H Number of multiplies.

This count includes integer as well as FP
multiplies and is speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes integer as well as FP
divides and is speculative.

Counter 1 only.

14H CYCLES_DIV_
BUSY

00H Number of cycles during which the divider is
busy, and cannot accept new divides.

This includes integer and FP divides, FPREM,
FPSQRT, etc. and is speculative.

Counter 0 only.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-236 Vol. 3B

PERFORMANCE MONITORING EVENTS

Memory
Ordering

03H LD_BLOCKS 00H Number of load operations delayed due to
store buffer blocks.

Includes counts caused by preceding stores
whose addresses are unknown, preceding
stores whose addresses are known but
whose data is unknown, and preceding
stores that conflicts with the load but which
incompletely overlap the load.

04H SB_DRAINS 00H Number of store buffer drain cycles.

Incremented every cycle the store buffer is
draining.

Draining is caused by serializing operations
like CPUID, synchronizing operations like
XCHG, interrupt acknowledgment, as well as
other conditions (such as cache flushing).

05H MISALIGN_
MEM_REF

00H Number of misaligned data memory
references.

Incremented by 1 every cycle, during which
either the processor’s load or store pipeline
dispatches a misaligned μop.

Counting is performed if it is the first or
second half, or if it is blocked, squashed, or
missed.

In this context, misaligned means crossing a
64-bit boundary.

MISALIGN_MEM_
REF is only an approximation to the
true number of misaligned memory
references.

The value returned is roughly
proportional to the number of
misaligned memory accesses (the
size of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming SIMD extensions
prefetch/weakly-ordered instructions
dispatched (speculative prefetches are
included in counting):

Counters 0 and 1. Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of prefetch/weakly-ordered
instructions that miss all caches:

Counters 0 and 1. Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Instruction
Decoding
and
Retirement

C0H INST_RETIRED 00H Number of instructions retired. A hardware interrupt received
during/after the last iteration of
the REP STOS flow causes the
counter to undercount by 1
instruction.

An SMI received while executing a
HLT instruction will cause the
performance counter to not count
the RSM instruction and
undercount by 1.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-237

PERFORMANCE MONITORING EVENTS

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming SIMD extensions
retired:

0: packed & scalar

1: scalar

Counters 0 and 1. Pentium III
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming SIMD extensions
computation instructions retired:

0: packed and scalar

1: scalar

Counters 0 and 1. Pentium III
processor only.

Interrupts C8H HW_INT_RX 00H Number of hardware interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor cycles for which
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor cycles for which
interrupts are disabled and interrupts are
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken mispredictions branches
retired.

E0H BR_INST_
DECODED

00H Number of branch instructions decoded.

E2H BTB_MISSES 00H Number of branches for which the BTB did
not produce a prediction.

E4H BR_BOGUS 00H Number of bogus branches.

E6H BACLEARS 00H Number of times BACLEAR is asserted.

This is the number of times that a static
branch prediction was made, in which the
branch decoder decided to make a branch
prediction because the BTB did not.

Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during every cycle for
which there is a resource related stall.

Includes register renaming buffer entries,
memory buffer entries.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-238 Vol. 3B

PERFORMANCE MONITORING EVENTS

Does not include stalls due to bus queue full,
too many cache misses, etc.

In addition to resource related stalls, this
event counts some other events.

Includes stalls arising during branch
misprediction recovery, such as if retirement
of the mispredicted branch is delayed and
stalls arising while store buffer is draining
from synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or events for partial stalls.
This includes flag partial stalls.

Segment
Register
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during which the
processor is not halted.

MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX Instructions Executed. Available in Intel Celeron, Pentium II
and Pentium II Xeon processors
only.

Does not account for MOVQ and
MOVD stores from register to
memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX Saturating Instructions
Executed.

Available in Pentium II and Pentium

III processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops Executed. Available in Pentium II and Pentium

III processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply instructions executed.

MMX packed shift instructions executed.

MMX pack operation instructions executed.

Available in Pentium II and Pentium

III processors only.

08H

10H

20H

MMX unpack operation instructions
executed.

MMX packed logical instructions executed.

MMX packed arithmetic instructions
executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX instruction to
floating-point instructions.

Transitions from floating-point instructions
to MMX instructions.

Available in Pentium II and Pentium

III processors only.

CDH MMX_ASSIST 00H Number of MMX Assists (that is, the number
of EMMS instructions executed).

Available in Pentium II and Pentium

III processors only.

CEH MMX_INSTR_RET 00H Number of MMX Instructions Retired. Available in Pentium II processors
only.

Segment
Register
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment Register Renaming
Stalls:

Available in Pentium II and Pentium

III processors only.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-239

PERFORMANCE MONITORING EVENTS

19.21 PENTIUM PROCESSOR PERFORMANCE MONITORING EVENTS
Table 19-41 lists the events that can be counted with the performance monitoring counters for the Pentium
processor. The Event Number column gives the hexadecimal code that identifies the event and that is entered in
the ES0 or ES1 (event select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of the
event, and the Description and Comments columns give detailed descriptions of the events. Most events can be
counted with either counter 0 or counter 1; however, some events can only be counted with only counter 0 or only
counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the Pentium processor with MMX
technology.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment Register Renames: Available in Pentium II and Pentium

III processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment register rename events
retired.

Available in Pentium II and Pentium

III processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the PerfEvtSel0 and

PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction with L2 events to indicate the cache state or
cache states involved.
The P6 family processors identify cache states using the “MESI” protocol and consequently each bit in the Unit Mask field repre-
sents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E (4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state.
UMSK[3:0] = MESI” (FH) should be used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit Mask (UMSK) field in the
PerfEvtSel0 and PerfEvtSel1 registers.
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the processor should count transactions that
are self- generated (UMSK[5] = 0) or transactions that result from any processor on the bus (UMSK[5] = 1).

3. L2 cache locks, so it is possible to have a zero count.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-240 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters

Event
Num.

Mnemonic Event
Name Description Comments

00H DATA_READ Number of memory data reads
(internal data cache hit and miss
combined).

Split cycle reads are counted individually. Data Memory
Reads that are part of TLB miss processing are not
included. These events may occur at a maximum of two
per clock. I/O is not included.

01H DATA_WRITE Number of memory data writes
(internal data cache hit and miss
combined); I/O not included.

Split cycle writes are counted individually. These events
may occur at a maximum of two per clock. I/O is not
included.

0H2 DATA_TLB_MISS Number of misses to the data cache
translation look-aside buffer.

03H DATA_READ_MISS Number of memory read accesses that
miss the internal data cache whether
or not the access is cacheable or
noncacheable.

Additional reads to the same cache line after the first
BRDY# of the burst line fill is returned but before the final
(fourth) BRDY# has been returned, will not cause the
counter to be incremented additional times.

Data accesses that are part of TLB miss processing are
not included. Accesses directed to I/O space are not
included.

04H DATA WRITE MISS Number of memory write accesses
that miss the internal data cache
whether or not the access is cacheable
or noncacheable.

Data accesses that are part of TLB miss processing are
not included. Accesses directed to I/O space are not
included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to exclusive or
modified lines in the data cache.

These are the writes that may be held up if EWBE# is
inactive. These events may occur a maximum of two per
clock.

06H DATA_CACHE_
LINES_
WRITTEN_BACK

Number of dirty lines (all) that are
written back, regardless of the cause.

Replacements and internal and external snoops can all
cause writeback and are counted.

07H EXTERNAL_
SNOOPS

Number of accepted external snoops
whether they hit in the code cache or
data cache or neither.

Assertions of EADS# outside of the sampling interval are
not counted, and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external snoops to the data
cache.

Snoop hits to a valid line in either the data cache, the data
line fill buffer, or one of the write back buffers are all
counted as hits.

09H MEMORY ACCESSES
IN BOTH PIPES

Number of data memory reads or
writes that are paired in both pipes of
the pipeline.

These accesses are not necessarily run in parallel due to
cache misses, bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank conflicts.

0BH MISALIGNED DATA
MEMORY OR I/O
REFERENCES

Number of memory or I/O reads or
writes that are misaligned.

A 2- or 4-byte access is misaligned when it crosses a 4-
byte boundary; an 8-byte access is misaligned when it
crosses an 8-byte boundary. Ten byte accesses are
treated as two separate accesses of 8 and 2 bytes each.

0CH CODE READ Number of instruction reads; whether
the read is cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are
counted.

0DH CODE TLB MISS Number of instruction reads that miss
the code TLB whether the read is
cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are
counted.

0EH CODE CACHE MISS Number of instruction reads that miss
the internal code cache; whether the
read is cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are
counted.

Vol. 3B 19-241

PERFORMANCE MONITORING EVENTS

0FH ANY SEGMENT
REGISTER LOADED

Number of writes into any segment
register in real or protected mode
including the LDTR, GDTR, IDTR, and
TR.

Segment loads are caused by explicit segment register
load instructions, far control transfers, and task switches.
Far control transfers and task switches causing a privilege
level change will signal this event twice. Interrupts and
exceptions may initiate a far control transfer.

10H Reserved

11H Reserved

12H Branches Number of taken and not taken
branches, including: conditional
branches, jumps, calls, returns,
software interrupts, and interrupt
returns.

 Also counted as taken branches are serializing
instructions, VERR and VERW instructions, some segment
descriptor loads, hardware interrupts (including FLUSH#),
and programmatic exceptions that invoke a trap or fault
handler. The pipe is not necessarily flushed.

The number of branches actually executed is measured,
not the number of predicted branches.

13H BTB_HITS Number of BTB hits that occur. Hits are counted only for those instructions that are
actually executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken branches or BTB hits
that occur.

This event type is a logical OR of taken branches and BTB
hits. It represents an event that may cause a hit in the
BTB. Specifically, it is either a candidate for a space in the
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline flushes that occur

Pipeline flushes are caused by BTB
misses on taken branches,
mispredictions, exceptions, interrupts,
and some segment descriptor loads.

The counter will not be incremented for serializing
instructions (serializing instructions cause the prefetch
queue to be flushed but will not trigger the Pipeline
Flushed event counter) and software interrupts (software
interrupts do not flush the pipeline).

16H INSTRUCTIONS_
EXECUTED

Number of instructions executed (up
to two per clock).

Invocations of a fault handler are considered instructions.
All hardware and software interrupts and exceptions will
also cause the count to be incremented. Repeat prefixed
string instructions will only increment this counter once
despite the fact that the repeat loop executes the same
instruction multiple times until the loop criteria is
satisfied.

This applies to all the Repeat string instruction prefixes
(i.e., REP, REPE, REPZ, REPNE, and REPNZ). This counter
will also only increment once per each HLT instruction
executed regardless of how many cycles the processor
remains in the HALT state.

17H INSTRUCTIONS_
EXECUTED_ V PIPE

Number of instructions executed in
the V_pipe.

The event indicates the number of
instructions that were paired.

This event is the same as the 16H event except it only
counts the number of instructions actually executed in
the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while a bus cycle is in
progress.

This event measures bus use.

The count includes HLDA, AHOLD, and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while the pipeline is
stalled due to full write buffers.

Full write buffers stall data memory read misses, data
memory write misses, and data memory write hits to S-
state lines. Stalls on I/O accesses are not included.

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

19-242 Vol. 3B

PERFORMANCE MONITORING EVENTS

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while the pipeline is
stalled while waiting for data memory
reads.

Data TLB Miss processing is also included in the count. The
pipeline stalls while a data memory read is in progress
including attempts to read that are not bypassed while a
line is being filled.

1BH STALL ON WRITE
TO AN E- OR M-
STATE LINE

Number of stalls on writes to E- or M-
state lines.

1CH LOCKED BUS CYCLE Number of locked bus cycles that occur
as the result of the LOCK prefix or
LOCK instruction, page-table updates,
and descriptor table updates.

Only the read portion of the locked read-modify-write is
counted. Split locked cycles (SCYC active) count as two
separate accesses. Cycles restarted due to BOFF# are not
re-counted.

1DH I/O READ OR WRITE
CYCLE

Number of bus cycles directed to I/O
space.

Misaligned I/O accesses will generate two bus cycles. Bus
cycles restarted due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of noncacheable instruction or
data memory read bus cycles.

The count includes read cycles caused
by TLB misses, but does not include
read cycles to I/O space.

Cycles restarted due to BOFF# are not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address generation
interlock (AGI) stalls.

An AGI occurring in both the U- and V-
pipelines in the same clock signals this
event twice.

An AGI occurs when the instruction in the execute stage
of either of U- or V-pipelines is writing to either the index
or base address register of an instruction in the D2
(address generation) stage of either the U- or V- pipelines.

20H Reserved

21H Reserved

22H FLOPS Number of floating-point operations
that occur.

Number of floating-point adds, subtracts, multiplies,
divides, remainders, and square roots are counted. The
transcendental instructions consist of multiple adds and
multiplies and will signal this event multiple times.
Instructions generating the divide-by-zero, negative
square root, special operand, or stack exceptions will not
be counted.

Instructions generating all other floating-point exceptions
will be counted. The integer multiply instructions and
other instructions which use the x87 FPU will be counted.

23H BREAKPOINT
MATCH ON DR0
REGISTER

Number of matches on register DR0
breakpoint.

The counters is incremented regardless if the breakpoints
are enabled or not. However, if breakpoints are not
enabled, code breakpoint matches will not be checked for
instructions executed in the V-pipe and will not cause this
counter to be incremented. (They are checked on
instruction executed in the U-pipe only when breakpoints
are not enabled.)

These events correspond to the signals driven on the
BP[3:0] pins. Refer to Chapter 17, “Debug, Branch Profile,
TSC, and Resource Monitoring Features” for more
information.

24H BREAKPOINT
MATCH ON DR1
REGISTER

Number of matches on register DR1
breakpoint.

See comment for 23H event.

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

Vol. 3B 19-243

PERFORMANCE MONITORING EVENTS

25H BREAKPOINT
MATCH ON DR2
REGISTER

Number of matches on register DR2
breakpoint.

See comment for 23H event.

26H BREAKPOINT
MATCH ON DR3
REGISTER

Number of matches on register DR3
breakpoint.

See comment for 23H event.

27H HARDWARE
INTERRUPTS

Number of taken INTR and NMI
interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data reads and/or
writes (internal data cache hit and
miss combined).

Split cycle reads and writes are counted individually. Data
Memory Reads that are part of TLB miss processing are
not included. These events may occur at a maximum of
two per clock. I/O is not included.

29H DATA_READ_MISS
OR_WRITE MISS

Number of memory read and/or write
accesses that miss the internal data
cache, whether or not the access is
cacheable or noncacheable.

Additional reads to the same cache line after the first
BRDY# of the burst line fill is returned but before the final
(fourth) BRDY# has been returned, will not cause the
counter to be incremented additional times.

Data accesses that are part of TLB miss processing are
not included. Accesses directed to I/O space are not
included.

2AH BUS_OWNERSHIP_
LATENCY
(Counter 0)

The time from LRM bus ownership
request to bus ownership granted
(that is, the time from the earlier of a
PBREQ (0), PHITM# or HITM#
assertion to a PBGNT assertion)

The ratio of the 2AH events counted on counter 0 and
counter 1 is the average stall time due to bus ownership
conflict.

2AH BUS OWNERSHIP
TRANSFERS
(Counter 1)

The number of buss ownership
transfers (that is, the number of
PBREQ (0) assertions

The ratio of the 2AH events counted on counter 0 and
counter 1 is the average stall time due to bus ownership
conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX instructions executed
in the U-pipe

2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX instructions executed
in the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING
(Counter 0)

Number of times a processor identified
a hit to a modified line due to a
memory access in the other processor
(PHITM (O))

If the average memory latencies of the system are known,
this event enables the user to count the Write Backs on
PHITM(O) penalty and the Latency on Hit Modified(I)
penalty.

2CH CACHE_LINE_
SHARING
(Counter 1)

Number of shared data lines in the L1
cache (PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of EMMS instructions
executed

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

19-244 Vol. 3B

PERFORMANCE MONITORING EVENTS

2DH TRANSITIONS_
BETWEEN_MMX_
AND_FP_
INSTRUCTIONS
(Counter 1)

Number of transitions between MMX
and floating-point instructions or vice
versa

An even count indicates the processor
is in MMX state. an odd count indicates
it is in FP state.

This event counts the first floating-point instruction
following an MMX instruction or first MMX instruction
following a floating-point instruction.

The count may be used to estimate the penalty in
transitions between floating-point state and MMX state.

2EH BUS_UTILIZATION_
DUE_TO_
PROCESSOR_
ACTIVITY
(Counter 0)

Number of clocks the bus is busy due
to the processor’s own activity (the
bus activity that is caused by the
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY
(Counter 1)

Number of write accesses to
noncacheable memory

The count includes write cycles caused by TLB misses and
I/O write cycles.

Cycles restarted due to BOFF# are not re-counted.

2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of saturating MMX
instructions executed, independently
of whether they actually saturated.

2FH SATURATIONS_
PERFORMED
(Counter 1)

Number of MMX instructions that used
saturating arithmetic when at least
one of its results actually saturated

If an MMX instruction operating on 4 doublewords
saturated in three out of the four results, the counter will
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_
HALT_STATE
(Counter 0)

Number of cycles the processor is not
idle due to HLT instruction

This event will enable the user to calculate “net CPI”. Note
that during the time that the processor is executing the
HLT instruction, the Time-Stamp Counter is not disabled.
Since this event is controlled by the Counter Controls CC0,
CC1 it can be used to calculate the CPI at CPL=3, which
the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the pipeline is stalled
due to a data cache translation look-
aside buffer (TLB) miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES
(Counter 1)

Number of MMX instruction data read
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while pipe is stalled
due to a floating-point freeze

32H TAKEN_BRANCHES
(Counter 1)

Number of taken branches

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

Vol. 3B 19-245

PERFORMANCE MONITORING EVENTS

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY
(Counter 0)

Number of times D1 stage cannot
issue ANY instructions since the FIFO
buffer is empty

The D1 stage can issue 0, 1, or 2 instructions per clock if
those are available in an instructions FIFO buffer.

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1 stage issues a
single instruction (since the FIFO
buffer had just one instruction ready)

The D1 stage can issue 0, 1, or 2 instructions per clock if
those are available in an instructions FIFO buffer.

When combined with the previously defined events,
Instruction Executed (16H) and Instruction Executed in
the V-pipe (17H), this event enables the user to calculate
the numbers of time pairing rules prevented issuing of
two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES
(Counter 0)

Number of data writes caused by MMX
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES
(Counter 1)

Number of data write misses caused
by MMX instructions

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS
(Counter 0)

Number of pipeline flushes due to
wrong branch predictions resolved in
either the E-stage or the WB-stage

The count includes any pipeline flush due to a branch that
the pipeline did not follow correctly. It includes cases
where a branch was not in the BTB, cases where a branch
was in the BTB but was mispredicted, and cases where a
branch was correctly predicted but to the wrong address.

Branches are resolved in either the Execute stage
(E-stage) or the Writeback stage (WB-stage). In the later
case, the misprediction penalty is larger by one clock. The
difference between the 35H event count in counter 0 and
counter 1 is the number of E-stage resolved branches.

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE
(Counter 1)

Number of pipeline flushes due to
wrong branch predictions resolved in
the WB-stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS
(Counter 0)

Number of misaligned data memory
references when executing MMX
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during pipeline stalls
caused by waits form MMX instruction
data memory reads

T3:

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

19-246 Vol. 3B

PERFORMANCE MONITORING EVENTS

37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns predicted
incorrectly or not predicted at all

The count is the difference between the total number of
executed returns and the number of returns that were
correctly predicted. Only RET instructions are counted (for
example, IRET instructions are not counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted returns (whether
they are predicted correctly and
incorrectly

Only RET instructions are counted (for example, IRET
instructions are not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK
(Counter 0)

Number of clocks the pipe is stalled
since the destination of previous MMX
multiply instruction is not ready yet

The counter will not be incremented if there is another
cause for a stall. For each occurrence of a multiply
interlock, this event will be counted twice (if the stalled
instruction comes on the next clock after the multiply) or
by once (if the stalled instruction comes two clocks after
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION
(Counter 1)

Number of clocks a MOVD/MOVQ
instruction store is stalled in D2 stage
due to a previous MMX operation with
a destination to be used in the store
instruction.

39H RETURNS
(Counter 0)

Number or returns executed. Only RET instructions are counted; IRET instructions are
not counted. Any exception taken on a RET instruction
and any interrupt recognized by the processor on the
instruction boundary prior to the execution of the RET
instruction will also cause this counter to be incremented.

39H Reserved

3AH BTB_FALSE_
ENTRIES
(Counter 0)

Number of false entries in the Branch
Target Buffer

False entries are causes for misprediction other than a
wrong prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH
(Counter 1)

Number of times the BTB predicted a
not-taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS
(Counter 0)

Number of clocks while the pipeline is
stalled due to full write buffers while
executing MMX instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE
(Counter 1)

Number of clocks during stalls on MMX
instructions writing to E- or M-state
lines

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

14.Updates to Chapter 22, Volume 3B
Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--
Changes to this chapter: Added information on undefined opcodes.

Vol. 3B 22-1

CHAPTER 22
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, within limited constraints,
programs that execute on previous generations of processors will produce identical results when executed on later
processors. The compatibility constraints and any implementation differences between the Intel 64 and IA-32
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found in earlier Intel 64 and IA-32
processors. Those enhancements have been defined with consideration for compatibility with previous and future
processors. This chapter also summarizes the compatibility considerations for those extensions.

22.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending on the type of compatibility
information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Architecture, which include the

8086/88, Intel 286, Intel386, Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel
Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, which include the Intel386,
Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, which include the 8086/88 and
Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 microarchitecture, which include
the Pentium Pro, Pentium II, and Pentium III processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst®
microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based on the Intel Pentium M
processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that are based on an improved Intel
Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst
microarchitecture. This family includes the Intel Xeon processor and the Intel Xeon processor MP based on the
Intel NetBurst microarchitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 5300,
5400, 7200, 7300 series are based on Intel Core microarchitectures and support Intel 64 architecture.

• Pentium® D Processors — A family of dual-core Intel 64 processors that provides two processor cores in a
physical package. Each core is based on the Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64 processors that provides two
processor cores in a physical package. Each core is based on the Intel NetBurst microarchitecture and supports
Intel Hyper-Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are based on the Intel Core microar-
chitecture. Intel Pentium Dual-Core processors are also based on the Intel Core microarchitecture.

• Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors. 45 nm Intel Atom processors are
based on the Intel Atom microarchitecture. 32 nm Intel Atom processors are based on newer microarchitec-
tures including the Silvermont microarchitecture and the Airmont microarchitecture. Each generation of Intel
Atom processors can be identified by the CPUID’s DisplayFamily_DisplayModel signature; see Table 2-1 “CPUID
Signature Values of DisplayFamily_DisplayModel” in Chapter 2, “Model-Specific Registers (MSRs)” of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

22-2 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and memory layout descriptions.
When bits are marked as undefined or reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown effect. Software should follow these guidelines in dealing with
reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers or memory locations that

contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing them to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or

reload them with values previously read from the same register.

Software written for existing IA-32 processor that handles reserved bits correctly will port to future IA-32 proces-
sors without generating protection exceptions.

22.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors are enabled by new mode flags
in the control registers (primarily register CR4). This register is undefined for IA-32 processors earlier than the
Pentium processor. Attempting to access this register with an Intel486 or earlier IA-32 processor results in an
invalid-opcode exception (#UD). Consequently, programs that execute correctly on the Intel486 or earlier IA-32
processor cannot erroneously enable these functions. Attempting to set a reserved bit in register CR4 to a value
other than its original value results in a general-protection exception (#GP). So, programs that execute on the P6
family and Pentium processors cannot erroneously enable functions that may be implemented in future IA-32
processors.

The P6 family and Pentium processors do not check for attempts to set reserved bits in model-specific registers;
however these bits may be checked on more recent processors. It is the obligation of the software writer to enforce
this discipline. These reserved bits may be used in future Intel processors.

22.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE
Software can check for the presence of new architectural features and extensions in either of two ways:

1. Test for the presence of the feature or extension. Software can test for the presence of new flags in the EFLAGS
register and control registers. If these flags are reserved (meaning not present in the processor executing the
test), an exception is generated. Likewise, software can attempt to execute a new instruction, which results in
an invalid-opcode exception (#UD) being generated if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the Pentium processor) indicates
the presence of new features directly.

See Chapter 19, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for detailed information on detecting new processor features and exten-
sions.

22.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a set of MMX instructions to the
IA-32. The MMX instructions are described in Chapter 9, “Programming with Intel® MMX™ Technology,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D. The MMX technology and MMX instructions are
also included in the Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

Vol. 3B 22-3

ARCHITECTURE COMPATIBILITY

22.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. The SSE extensions consist of
a new set of instructions and a new set of registers. The new registers include the eight 128-bit XMM registers and
the 32-bit MXCSR control and status register. These instructions and registers are designed to allow SIMD compu-
tations to be made on single-precision floating-point numbers. Several of these new instructions also operate in the
MMX registers. SSE instructions and registers are described in Section 10, “Programming with Streaming SIMD
Extensions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D.

22.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel Xeon processors. They
consist of a new set of instructions that operate on the XMM and MXCSR registers and perform SIMD operations on
double-precision floating-point values and on integer values. Several of these new instructions also operate in the
MMX registers. SSE2 instructions and registers are described in Chapter 11, “Programming with Streaming SIMD
Extensions 2 (SSE2),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D.

22.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors supporting Intel Hyper-
Threading Technology and Intel Xeon processors. SSE3 extensions include 13 instructions. Ten of these 13 instruc-
tions support the single instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions. One
SSE3 instruction accelerates x87 style programming for conversion to integer. The remaining two instructions
(MONITOR and MWAIT) accelerate synchronization of threads. SSE3 instructions are described in Chapter 12,
“Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

22.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the Intel Core 2 processor and Intel
Xeon processor 5100 series. Streaming SIMD Extensions 4 provided 54 new instructions introduced in 45 nm Intel
Xeon processors and Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in Chapter 12,
“Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

22.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute two separate code streams
(called threads) concurrently by using shared resources in a single processor core or in a physical package.

This feature was introduced in the Intel Xeon processor MP and later steppings of the Intel Xeon processor, and
Pentium 4 processors supporting Intel Hyper-Threading Technology. The feature is also found in the Pentium
processor Extreme Edition. See also: Section 8.7, “Intel® Hyper-Threading Technology Architecture.”

45 nm and 32 nm Intel Atom processors support Intel Hyper-Threading Technology.

Intel Atom processors based on Silvermont and Airmont microarchitectures do not support Intel Hyper-Threading
Technology

22-4 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two processor cores in each physical
processor package. See also: Section 8.5, “Intel® Hyper-Threading Technology and Intel® Multi-Core Technology,”
and Section 8.8, “Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors, Intel Xeon
processors 3000, 3100, 5100, 5200 series provide two processor cores in each physical processor package. Intel
Core 2 Extreme, Intel Core 2 Quad processors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide
two processor cores in each physical processor package.

22.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR
Dual-core processors may have some processor-specific features. Use CPUID feature flags to detect the availability
features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will report the correct brand string

only after the correct microcode updates are loaded.
• Enhanced Intel SpeedStep Technology — This feature is supported in Pentium D processor but not in

Pentium processor Extreme Edition.

22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS
Table 22-1 identifies the instructions introduced into the IA-32 in the Pentium processor and later IA-32 processors.

22.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

Table 22-1. New Instruction in the Pentium Processor and Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional move) EDX, Bits 0 and 15

FCOMI (floating-point compare and set EFLAGS) EDX, Bits 0 and 15

RDPMC (read performance monitoring counters) EAX, Bits 8-11, set to 6H;
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

CMPXCHG8B (compare and exchange 8 bytes) EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

Vol. 3B 22-5

ARCHITECTURE COMPATIBILITY

The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

22.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium processor and future IA-32
processors. Execution of these instructions generates an invalid-opcode exception (#UD).

22.15 UNDEFINED OPCODES
All new instructions defined for Intel 64 and IA-32 processors use binary encodings that were reserved on earlier-
generation processors. Generally, attempting to execute a reserved opcode results in an invalid-opcode (#UD)
exception being generated. Consequently, programs that execute correctly on earlier-generation processors
cannot erroneously execute these instructions and thereby produce unexpected results when executed on later
Intel 64 processors.

For compatibility with prior generations, there are a few reserved opcodes which do not result in a #UD but rather
result in the same behavior as certain defined instructions. In the interest of standardization, it is recommended
that software not use the opcodes given below but instead use those defined in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D.

The following items enumerate those reserved opcodes (referring in some cases to opcode groups as defined in
Appendix A, “Opcode Map” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).
• Immediate Group 1 - When not in 64-bit mode, instructions encoded with opcode 82H result in the behavior

of the corresponding instructions encoded with opcode 80H. Depending on the Op/Reg field of the ModR/M
Byte, these opcodes are the byte forms of ADD, OR, ADC, SBB, AND, SUB, XOR, CMP. (In 64-bit mode, these
opcodes cause a #UD.)

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model Pentium processors. This instruc-

tion is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of the Intel486 processors. The ability

to set and clear the ID flag (bit 21) in the EFLAGS register indicates the availability of the CPUID instruction.

Table 22-1. New Instruction in the Pentium Processor and Later IA-32 Processors (Contd.)

Instruction CPUID Identification Bits Introduced In

22-6 Vol. 3B

ARCHITECTURE COMPATIBILITY

• Shift Group 2 /6 - Instructions encoded with opcodes C0H, C1H, D0H, D1H, D2H, and D3H with value 110B in
the Op/Reg field (/6) of the ModR/M Byte result in the behavior of the corresponding instructions with value
100B in the Op/Reg field (/4). These are various forms of the SAL/SHL instruction.

• Unary Group 3 /1 - Instructions encoded with opcodes F6H and F7H with value 001B in the Op/Reg field (/01)
of the ModR/M Byte result in the behavior of the corresponding instructions with value 000B in the Op/Reg field
(/0). These are various forms of the TEST instruction.

• Reserved NOP - Instructions encoded with the opcode 0F0DH or with the opcodes 0F18H through 0F1FH
result in the behavior of the NOP (No Operation) instruction, except for those opcodes defined in the the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D. The opcodes not so
defined are considered "Reserved NOP" and may be used for future instructions which have no defined impact
on existing architectural state. These reserved NOP opcodes are decoded with a ModR/M byte and typical
instruction prefix options but still result in the behavior of the NOP instruction.

• x87 Opcodes - There are several groups of x87 opcodes which provide the same behavior as other x87
instructions. See Section 22.18.9 for the complete list.

There are a few reserved opcodes that provide unique behavior but do not provide capabilities that are not already
available in the main instructions defined in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B, 2C & 2D.
• F1H - INT1 has subtly different behavior from CD01H, Interrupt with vector 01.
• D6H - When not in 64-bit mode SALC - Set AL to Cary flag. IF (CF=1), AL=FF, ELSE, AL=0 (#UD in 64-bit

mode)
• x87 Opcodes - There are a few x87 opcodes with subtly different behavior from existing x87 instructions. See

Section 22.18.9 for details.

22.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, shows the configuration of flags in the EFLAGS register for
the P6 family processors. No new flags have been added to this register in the P6 family processors. The flags
added to this register in the Pentium and Intel486 processors are described in the following sections.

The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20.
• ID (identification flag), bit 21.

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors
The following bits in the EFLAGS register that can be used to differentiate between the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 family, Pentium, and Intel486

processors. Since it is not implemented on the Intel386 processor, it will always be clear.
• Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction. The ability to set and

clear this bit indicates that the processor is a P6 family or Pentium processor. The CPUID instruction can then
be used to determine which processor.

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not support virtual mode
extensions, which includes all 32-bit processors prior to the Pentium processor.

See Chapter 19, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information on identifying processors.

Vol. 3B 22-7

ARCHITECTURE COMPATIBILITY

22.17 STACK OPERATIONS AND USER SOFTWARE
This section identifies the differences in stack implementation between the various IA-32 processors.

22.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different value on the stack for a PUSH
SP instruction than the 8086 processor. The 32-bit processors push the value of the SP register before it is decre-
mented as part of the push operation; the 8086 processor pushes the value of the SP register after it is decre-
mented. If the value pushed is important, replace PUSH SP instructions with the following three instructions:

PUSH BP
MOV BP, SP
XCHG BP, [BP]

This code functions as the 8086 processor PUSH SP instruction on the P6 family, Pentium, Intel486, Intel386, and
Intel 286 processors.

22.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field and the NT flag) in the EFLAGS
register by the PUSHF instruction, by interrupts, and by exceptions is different with the 32-bit IA-32 processors
than with the 8086 and Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode.
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and bits 12 through 14 have the

last value loaded into them.

22.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point software designed to run on
earlier IA-32 processors and math coprocessors to a Pentium 4, Intel Xeon, P6 family, or Pentium processor with
integrated x87 FPU. To software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a Pentium
processor. Floating-point software which runs on a Pentium or Intel486 DX processor, or on an Intel486 SX
processor/Intel 487 SX math coprocessor system or an Intel386 processor/Intel 387 math coprocessor system,
will run with at most minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code directly
from an Intel 286 processor/Intel 287 math coprocessor system or an Intel 8086 processor/8087 math copro-
cessor system to a Pentium 4, Intel Xeon, P6 family, or Pentium processor, certain additional issues must be
addressed.

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, and Intel486 DX processors,
and to the Intel 487 SX and Intel 387 math coprocessors; the term “16-bit IA-32 math coprocessors” refers to the
Intel 287 and 8087 math coprocessors.

22.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the integer unit of an IA-32 processor
and either its internal x87 FPU or an external math coprocessor. The effect of these flags in the various IA-32
processors are described in the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 processor to indicate whether the
math coprocessor in the system is an Intel 287 math coprocessor (flag is clear) or an Intel 387 DX math copro-
cessor (flag is set). This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, Pentium, and Intel486 proces-
sors to determine whether unmasked floating-point exceptions are reported internally through interrupt vector 16

22-8 Vol. 3B

ARCHITECTURE COMPATIBILITY

(flag is set) or externally through an external interrupt (flag is clear). On a hardware reset, the NE flag is initialized
to 0, so software using the automatic internal error-reporting mechanism must set this flag to 1. This flag is nonex-
istent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 of register CR0) determines
whether the WAIT/FWAIT instructions or waiting-type floating-point instructions trap when the context of the x87
FPU is different from that of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT instruc-
tion and waiting instructions will cause a device-not-available exception (interrupt vector 7). The MP flag is used on
the Intel 286 and Intel386 processors to support the use of a WAIT/FWAIT instruction to wait on a device other
than a math coprocessor. The device reports its status through the BUSY# pin. Since the P6 family, Pentium, and
Intel486 processors do not have such a pin, the MP flag has no relevant use and should be set to 1 for normal oper-
ation.

22.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32 processors and math coproces-
sors, the reason for the differences, and their impact on software.

22.18.2.1 Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code flags (C0 through C3) located in
bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the condition code flags are set to
0. The same operations on a 16-bit IA-32 math coprocessor leave these flags intact (they contain their prior value).
This difference in operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium processors may differ from the
Intel486 DX processor and Intel 487 SX math coprocessor by 2 to 3 units in the last place (ulps)—(see “Transcen-
dental Instruction Accuracy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1). As a result, the value saved in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 on the 32-bit x87 FPUs. After
the same operation on a 16-bit IA-32 math coprocessor, these flags are left intact.

On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruction. On the 16-bit IA-32 math
coprocessors, the C2 flag is undefined for the FPTAN instruction. This difference has no impact on software,
because Intel 287 or 8087 programs do not check C2 after an FPTAN instruction. The use of this flag on later
processors allows fast checking of operand range.

22.18.2.2 Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag (bit 0) and the SF flag (bit 6)
of the x87 FPU status word are set to indicate a stack fault and condition code flag C1 is set or cleared to indicate
overflow or underflow, respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 math
coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-bit x87
FPU has no impact on software. Existing exception handlers need not change, but may be upgraded to take advan-
tage of the additional information.

22.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity control flag (bit 12 of the x87
FPU control word) remains programmable on these processors, but has no effect. This change was made to
conform to the IEEE Standard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, both
affine and projective closures are supported, as determined by the setting of bit 12. After a hardware reset, the
default value of bit 12 is projective. Software that requires projective infinity arithmetic may give different results.

Vol. 3B 22-9

ARCHITECTURE COMPATIBILITY

22.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or FXRSTOR (Pentium III processor only)
instruction, the processor examines the incoming tag and classifies the location only as empty or non-empty. Thus,
tag values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty location. The tag value of 11
is interpreted by the processor to indicate an empty location. Subsequent operations on a non-empty register
always examine the value in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III
processor only) instructions examine the non-empty registers and put the correct values in the tags before storing
the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each register access to determine the
class of operand in the register; the tag is updated after every change to a register so that the tag always reflects
the most recent status of the register. Software can load a tag with a value that disagrees with the contents of a
register (for example, the register contains a valid value, but the tag says special). Here, the 16-bit IA-32 math
coprocessors honor the tag and do not examine the register.

Software written to run on a 16-bit IA-32 math coprocessor may not operate correctly on a 16-bit x87 FPU, if it
uses the FLDENV, FRSTOR, or FXRSTOR instructions to change tags to values (other than to empty) that are
different from actual register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats (including pseudo-zero and
unnormal) is special (10B), to comply with IEEE Standard 754. The encoding in the 16-bit IA-32 math coprocessors
for pseudo-zero and unnormal is valid (00B) and the encoding for other unsupported data formats is special (10B).
Code that recognizes the pseudo-zero or unnormal format as valid must therefore be changed if it is ported to a 32-
bit x87 FPU.

22.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and math coprocessors.

22.18.5.1 NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs (QNaNs). These x87 FPUs only
generate QNaNs and normally do not generate an exception upon encountering a QNaN. An invalid-operation
exception (#I) is generated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instructions,
which also generates an invalid-operation exceptions for a QNaNs. This behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of a QNaN), but the raise an
invalid-operation exception upon encountering any kind of NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit x87 FPU, uninitialized memory
locations that contain QNaNs should be changed to SNaNs to cause the x87 FPU or math coprocessor to fault when
uninitialized memory locations are referenced.

22.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats
The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, pseudo-infinity, and unnormal
formats. Whenever they encounter them in an arithmetic operation, they raise an invalid-operation exception. The
16-bit IA-32 math coprocessors define and support special handling for these formats. Support for these formats
was dropped to conform with IEEE Standard 754 for Binary Floating-Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors to 32-bit x87 FPUs. The 32-
bit x87 FPUs do not generate these formats, and therefore will not encounter them unless software explicitly loads
them in the data registers. The only affect may be in how software handles the tags in the tag word (see also:
Section 22.18.4, “x87 FPU Tag Word”).

22.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for floating-point instructions in the
various x87 FPUs and math coprocessors.

22-10 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.18.6.1 Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically normalize denormalized
numbers when possible; whereas, the 16-bit IA-32 math coprocessors return a denormal result. A program written
to run on a 16-bit IA-32 math coprocessor that uses the denormal exception solely to normalize denormalized
operands is redundant when run on the 32-bit x87 FPUs. If such a program is run on 32-bit x87 FPUs, performance
can be improved by masking the denormal exception. Floating-point programs run faster when the FPU performs
normalization of denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the FXTRACT instruction on the
16-bit IA-32 math coprocessors. This exception is raised for these instructions on the 32-bit x87 FPUs. The excep-
tion handlers ported to these latter processors need to be changed only if the handlers gives special treatment to
different opcodes.

22.18.6.2 Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the rounding mode is set to chop
(toward 0), the result is the largest positive or smallest negative number. The 16-bit IA-32 math coprocessors do
not signal the overflow exception when the masked response is not ∞; that is, they signal overflow only when the
rounding control is not set to round to 0. If rounding is set to chop (toward 0), the result is positive or negative ∞.
Under the most common rounding modes, this difference has no impact on existing software.

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under overflow conditions, a result that is
different in the least significant bit of the significand, compared to the result on a 16-bit IA-32 math coprocessor.
The reason for this difference is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 32-bit x87 FPUs. When the
result is stored in the stack, the significand is rounded according to the precision control (PC) field of the FPU
control word or according to the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not
flagged and the significand is not rounded. The impact on existing software is that if the result is stored on the
stack, a program running on a 32-bit x87 FPU produces a different result under overflow conditions than on a 16-
bit IA-32 math coprocessor. The difference is apparent only to the exception handler. This difference is for IEEE
Standard 754 compatibility.

22.18.6.3 Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow exception is signaled when the
result is tiny and inexact (see Section 4.9.1.5, “Numeric Underflow Exception (#U)” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1). When the underflow exception is unmasked and the instruction
is supposed to store the result on the stack, the significand is rounded to the appropriate precision (according to
the PC flag in the FPU control word, for those instructions controlled by PC, otherwise to extended precision), after
adjusting the exponent.

22.18.6.4 Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the 32-bit x87 FPUs, whether it be
masked or not. When the denormal-operand exception is not masked on the 16-bit IA-32 math coprocessors, it
takes precedence over all other exceptions. This difference causes no impact on existing software, but some
unneeded normalization of denormalized operands is prevented on the Intel486 processor and Intel 387 math
coprocessor.

22.18.6.5 CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for floating-point exceptions point to
any prefixes that come before the floating-point instruction. On the 8087 math coprocessor, the saved CS and IP
registers points to the floating-point instruction.

Vol. 3B 22-11

ARCHITECTURE COMPATIBILITY

22.18.6.6 FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do not pass through an interrupt
controller; an INT# signal from an Intel 387, Intel 287 or 8087 math coprocessors does. If an 8086 processor uses
another exception for the 8087 interrupt, both exception vectors should call the floating-point-error exception
handler. Some instructions in a floating-point-error exception handler may need to be deleted if they use the inter-
rupt controller. The P6 family, Pentium, and Intel486 processors have signals that, with the addition of external
logic, support reporting for emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point opcode will cause an invalid-
opcode exception (#UD, interrupt vector 6). Undefined floating-point opcodes, like legal floating-point opcodes,
cause a device not available exception (#NM, interrupt vector 7) when either the TS or EM flag in control register
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-point error conditions on
encountering an undefined floating-point opcode.

22.18.6.7 Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions, the FERR# pin must be
connected to an input to an external interrupt controller. An external interrupt is then generated when the FERR#
output drives the input to the interrupt controller and the interrupt controller in turn drives the INTR pin on the
processor.

For the P6 family and Intel386 processors, an unmasked floating-point exception always causes the FERR# pin to
be asserted upon completion of the instruction that caused the exception. For the Pentium and Intel486 proces-
sors, an unmasked floating-point exception may cause the FERR# pin to be asserted either at the end of the
instruction causing the exception or immediately before execution of the next floating-point instruction. (Note that
the next floating-point instruction would not be executed until the pending unmasked exception has been
handled.) See Appendix D, “Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for a complete description of the required mechanism for
handling floating-point exceptions using the MS-DOS compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by modern operating systems; this
approach also limits newer processors to operate with one logical processor active.

22.18.6.8 Invalid Operation Exception On Denormals
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encountering a denormal value when
executing a FSQRT, FDIV, or FPREM instruction or upon conversion to BCD or to integer. The operation proceeds by
first normalizing the value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the invalid-
operation exception is generated. This difference has no impact on existing software. Software running on the 32-
bit x87 FPUs continues to execute in cases where the 16-bit IA-32 math coprocessors trap. The reason for this
change was to eliminate an exception from being raised.

22.18.6.9 Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family, Pentium, and Intel486 processors
causes an alignment check exception (#AC) when a program or procedure is running at privilege-level 3, except
for the stack portion of the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

22.18.6.10 Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in the middle of an FLDENV
instruction, it can happen that part of the environment is loaded and part not. In such cases, the FPU control word
is left with a value of 007FH. The P6 family and Pentium processors ensure the internal state is correct at all times
by attempting to read the first and last bytes of the environment before updating the internal state.

22-12 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.18.6.11 Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, Pentium, and Intel486 processors
as described in Section 2.5, “Control Registers,” Table 2-2, and Chapter 6, “Interrupt 7—Device Not Available
Exception (#NM).”

22.18.6.12 Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 family, Pentium, and Intel486
processors. In situations where the Intel 387 math coprocessor would cause an interrupt 9, the P6 family, Pentium,
and Intel486 processors simply abort the instruction. To avoid undetected segment overruns, it is recommended
that the floating-point save area be placed in the same page as the TSS. This placement will prevent the FPU envi-
ronment from being lost if a page fault occurs during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction
while the operating system is performing a task switch.

22.18.6.13 General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a floating-point operand falls
outside a segment’s size. An exception handler should be included to report these programming errors.

22.18.6.14 Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector 16 must point to the floating-
point exception handler. In virtual-8086 mode, the virtual-8086 monitor can be programmed to accommodate a
different location of the interrupt vector for floating-point exceptions.

22.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various Intel FPU and math coprocessor
architectures, the reason for the differences, and their impact on software.

22.18.7.1 FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when detected, an underflow exception
can occur, for compatibility with the IEEE Standard 754. The 16-bit IA-32 math coprocessors do not operate on
denormalized operands or return underflow results. Instead, they generate an invalid-operation exception when
they detect an underflow condition. An existing underflow exception handler will require change only if it gives
different treatment to different opcodes. Also, it is possible that fewer invalid-operation exceptions will occur.

22.18.7.2 FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | ST(1) < 1), the scaling factor
is 0; therefore, ST(0) remains unchanged. If the rounded result is not exact or if there was a loss of accuracy
(masked underflow), the precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range of the
scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and no exception is signaled. The
impact of this difference on exiting software is that different results are delivered on the 32-bit and 16-bit FPUs and
math coprocessors when (0 < | ST(1) | < 1).

22.18.7.3 FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. This instruction does not exist
on the 16-bit IA-32 math coprocessors. The availability of the FPREM1 instruction has is no impact on existing soft-
ware.

Vol. 3B 22-13

ARCHITECTURE COMPATIBILITY

22.18.7.4 FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word correctly reflect the three low-order
bits of the quotient following execution of the FPREM instruction. On the 16-bit IA-32 math coprocessors, the
quotient bits are incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This difference
does not affect existing software; software that works around the bug should not be affected.

22.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 FPUs perform unordered compare
according to IEEE Standard 754. These instructions do not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of these new instructions has no impact on existing software.

22.18.7.6 FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much less restricted (| ST(0) | < 263)
than on earlier math coprocessors. The instruction reduces the operand internally using an internal π/4 constant
that is more accurate. The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math copro-
cessors; the operand must be reduced to this range using FPREM. This change has no impact on existing software.
See also sections 8.3.8 and section 8.3.10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 for more information on the accuracy of the FPTAN instruction.

22.18.7.7 Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation exception is masked, the FPU
returns the real, integer, or BCD-integer indefinite value to the destination operand, depending on the instruction
being executed. On the 16-bit IA-32 math coprocessors, the original operand remains unchanged following a stack
overflow, but it is loaded into register ST(1). This difference has no impact on existing software.

22.18.7.8 FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric functions. These instructions do
not exist on the 16-bit IA-32 math coprocessors. The availability of these instructions has no impact on existing
software, but using them provides a performance upgrade. See also sections 8.3.8 and section 8.3.10 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for more information on the accuracy of the
FSIN, FCOS, and FSINCOS instructions.

22.18.7.9 FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unrestricted. On the 16-bit IA-32 math
coprocessors, the absolute value of the operand in register ST(0) must be smaller than the absolute value of the
operand in register ST(1). This difference has impact on existing software.

22.18.7.10 F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the F2XM1 instruction. The
supported operand range for the 16-bit IA-32 math coprocessors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact
on existing software.

22.18.7.11 FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real value, a denormal-operand
exception is not generated because the instruction is not arithmetic. The 16-bit IA-32 math coprocessors do report
a denormal-operand exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real format causes the value to be
converted to extended-real format. Loading a denormal value on the 16-bit IA-32 math coprocessors causes the

22-14 Vol. 3B

ARCHITECTURE COMPATIBILITY

value to be converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 FPUs will give a
different result than the 16-bit IA-32 math coprocessors. This change was made for IEEE Standard 754 compati-
bility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format causes the FPU to generate an
invalid-operation exception. The 16-bit IA-32 math coprocessors do not raise an exception when loading a signaling
NaN. The invalid-operation exception handler for 16-bit math coprocessor software needs to be updated to handle
this condition when porting software to 32-bit FPUs. This change was made for IEEE Standard 754 compatibility.

22.18.7.12 FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-by-zero exception is reported
and –∞ is delivered to register ST(1). If the operand is +∞, no exception is reported. If the operand is 0 on the 16-
bit IA-32 math coprocessors, 0 is delivered to register ST(1) and no exception is reported. If the operand is +∞, the
invalid-operation exception is reported. These differences have no impact on existing software. Software usually
bypasses 0 and ∞. This change is due to the IEEE Standard 754 recommendation to fully support the “logb” func-
tion.

22.18.7.13 Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. Rounding control is not in effect
for the 16-bit IA-32 math coprocessors. Results for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the
same as for the 16-bit IA-32 math coprocessors when rounding control is set to round to nearest or round to +∞.
They are the same for the FLDL2T instruction when rounding control is set to round to nearest, round to –∞, or
round to zero. Results are different from the 16-bit IA-32 math coprocessors in the least significant bit of the
mantissa if rounding control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instruc-
tions; they are different for the FLDL2T instruction if round to +∞ is specified. These changes were implemented for
compatibility with IEEE Standard 754 for Floating-Point Arithmetic recommendations.

22.18.7.14 FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing the FXAM instruction, it not
generate combinations of C0 through C3 equal to 1101 or 1111. The 16-bit IA-32 math coprocessors may generate
these combinations, among others. This difference has no impact on existing software; it provides a performance
upgrade to provide repeatable results.

22.18.7.15 FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE or FSTENV is undefined if the
previous floating-point instruction did not refer to memory

22.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental instructions in the core range
may differ from the Intel486 processors by about 2 or 3 ulps (see “Transcendental Instruction Accuracy” in Chapter
8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact threshold for underflow and
overflow will vary by a few ulps. The P6 family and Pentium processors’ results will have a worst case error of less
than 1 ulp when rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The transcen-
dental instructions are guaranteed to be monotonic, with respect to the input operands, throughout the domain
supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) on the 32-bit x87 FPUs. The
round-up flag is undefined for these instructions on the 16-bit IA-32 math coprocessors. This difference has no
impact on existing software.

Vol. 3B 22-15

ARCHITECTURE COMPATIBILITY

22.18.9 Obsolete Instructions and Undefined Opcodes
The 8087 math coprocessor instructions FENI and FDISI, and the Intel 287 math coprocessor instruction FSETPM
are treated as integer NOP instructions in the 32-bit x87 FPUs. If these opcodes are detected in the instruction
stream, no specific operation is performed and no internal states are affected. FSETPM informed the Intel 287 math
coprocessor that the processor was in protected mode. The 32-bit x87 FPUs handle all addressing and exception-
pointer information, whether in protected mode or not.

For compatibility with prior generations there are a few reserved x87 opcodes which do not result in an invalid-
opcode (#UD) exception, but rather result in the same behavior as existing defined x87 instructions. In the interest
of standardization, it is recommended that the opcodes defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D be used for these operations for standardization.
• DCD0H through DCD7H - Behaves the same as FCOM, D8D0H through D8D7H.
• DCD8H through DCDFH - Behaves the same as FCOMP, D8D8H through D8DFH.
• D0C8H through D0CFH - Behaves the same as FXCH, D9C8H through D9CFH.
• DED0H through DED7H - Behaves the same as FCOMP, D8D8H through D8DFH.
• DFD0H through DFD7H - Behaves the same as FSTP, DDD8H through DDDFH.
• DFC8H through DFCFH - Behaves the same as FXCH, D9C8H through D9CFH.
• DFD8H through DFDFH - Behaves the same as FSTP, DDD8H through DDDFH.

There are a few reserved x87 opcodes which provide unique behavior but do not provide capabilities which are not
already available in the main instructions defined in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 2A, 2B, 2C & 2D.
• D9D8H through D9DFH - Behaves the same as FSTP (DDD8H through DDDFH) but won't cause a stack

underflow exception.
• DFC0H through DFC7H - Behaves the same as FFREE (DDC0H through DDD7H) with the addition of an x87

stack POP.

22.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point instruction (one which itself
automatically synchronizes with the previous floating-point instruction), the WAIT/FWAIT instruction is treated as
a no-op. Pending floating-point exceptions from a previous floating-point instruction are processed not on the
WAIT/FWAIT instruction but on the floating-point instruction following the WAIT/FWAIT instruction. In such a case,
the report of a floating-point exception may appear one instruction later on the Intel486 processor than on a P6
family or Pentium FPU, or on Intel 387 math coprocessor.

22.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an operand to be written is inside a
page or segment and the second half is outside, a memory fault can cause the first half to be stored but not the
second half. In this situation, the Intel 387 math coprocessor stores nothing.

22.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchronized; that is, the processor auto-
matically waits until the previous floating-point instruction has completed before completing the next floating-point
instruction. No explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 8087 math
coprocessors, explicit waits are required before each floating-point instruction to ensure synchronization. Although
8087 programs having explicit WAIT instructions execute perfectly on the 32-bit IA-32 processors without reas-
sembly, these WAIT instructions are unnecessary.

22-16 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure that modifications to flags, regis-
ters and memory are completed before the next instruction is executed (or in P6 family processor terminology
“committed to machine state”). Because the P6 family processors use branch-prediction and out-of-order execu-
tion techniques to improve performance, instruction execution is not generally serialized until the results of an
executed instruction are committed to machine state (see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

As a result, at places in a program or task where it is critical to have execution completed for all previous instruc-
tions before executing the next instruction (for example, at a branch, at the end of a procedure, or in multipro-
cessor dependent code), it is useful to add a serializing instruction. See Section 8.3, “Serializing Instructions,” for
more information on serializing instructions.

22.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 9-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors and of the Intel 387 math
coprocessor and Intel 287 coprocessor following a power-up, reset, or INIT, or following the execution of an
FINIT/FNINIT instruction. The following is some additional compatibility information concerning the initialization of
x87 FPUs and math coprocessors.

22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type (Intel® 287 or Intel® 387 DX
math coprocessor) by sampling its ERROR# input some time after the falling edge of RESET# signal and before
execution of the first floating-point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in active state after hardware
reset.

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 math coprocessor signals an error
condition. The P6 family, Pentium, and Intel486 processors, like the Intel 287 coprocessor, do not.

22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization
When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, the initialization routine should
check the presence of the math coprocessor and should set the FPU related flags (EM, MP, and NE) in control
register CR0 accordingly (see Section 2.5, “Control Registers,” for a complete description of these flags). Table 22-2
gives the recommended settings for these flags when the math coprocessor is present. The FSTCW instruction will
give a value of FFFFH for the Intel486 SX microprocessor and 037FH for the Intel 487 SX math coprocessor.

Vol. 3B 22-17

ARCHITECTURE COMPATIBILITY

The EM and MP flags in register CR0 are interpreted as shown in Table 22-3.

Following is an example code sequence to initialize the system and check for the presence of Intel486 SX
processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to set the CR0 register for the
Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not available exception (#NH), inter-
rupt 7. The software emulation will then take control to execute these instructions. This code is not required if an
Intel 487 SX math coprocessor is present in the system. In that case, the typical initialization routine for the
Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX math coprocessor, timing loops
should be independent of frequency and clocks per instruction. One way to attain this is to implement these loops
in hardware and not in software (for example, BIOS).

22.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags and fields that were introduced
to the 32-bit IA-32 in various processor families. See Figure 2-7 for the location of these flags and fields in the
control registers.

Table 22-2. Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX Math
Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler

Table 22-3. EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions
ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions
test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions
ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions
test TS.

22-18 Vol. 3B

ARCHITECTURE COMPATIBILITY

The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor state during context

switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to reference extended physical addresses

when set; restricts physical addresses to 32 bits when clear (see also: Section 22.22.1.1, “Physical Memory
Addressing Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared pages on CR3 writes (see also:
Section 22.22.1.2, “Global Pages”).

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the RDPMC instruction at any
protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains flags that enable certain new
extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag in virtual-8086 mode (see

Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”).
• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt flag in protected mode (see

Section 20.4, “Protected-Mode Virtual Interrupts”).
• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to procedures running at

privileged level 0.
• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be generated when debug

registers DR4 and DR5 are references for improved performance (see Section 22.23.3, “Debug Registers DR4
and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set (see Section 4.3, “32-Bit
Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing exception handling for certain
hardware error conditions (see Chapter 15, “Machine-Check Architecture”).

The Intel486 processor introduced five new flags in control register CR0:
• NE — Numeric error. Enables the normal mechanism for reporting floating-point numeric errors.
• WP — Write protect. Write-protects read-only pages against supervisor-mode accesses.
• AM — Alignment mask. Controls whether alignment checking is performed. Operates in conjunction with the AC

(Alignment Check) flag.
• NW — Not write-through. Enables write-throughs and cache invalidation cycles when clear and disables invali-

dation cycles and write-throughs that hit in the cache when set.
• CD — Cache disable. Enables the internal cache when clear and disables the cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin during bus cycles that are not

paged, such as interrupt acknowledge cycles, when paging is enabled. The PCD# pin is used to control caching
in an external cache on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin during bus cycles that are not
paged, such as interrupt acknowledge cycles, when paging is enabled. The PWT# pin is used to control write
through in an external cache on a cycle-by-cycle basis.

Vol. 3B 22-19

ARCHITECTURE COMPATIBILITY

22.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in the various IA-32 processors
and some compatibility differences.

22.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features: physical memory addressing
extension, the global bit in page-table entries, and general support for larger page sizes. These features are only
available when operating in protected mode.

22.22.1.1 Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may enable additional address lines
on the processor, allowing extended physical addresses. This option can only be used when paging is enabled,
using a new page-table mechanism provided to support the larger physical address range (see Section 4.1, “Paging
Modes and Control Bits”).

22.22.1.2 Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for preventing
frequently used pages from being flushed from the translation lookaside buffer (TLB). When this flag is set,
frequently used pages (such as pages containing kernel procedures or common data tables) can be marked global
by setting the global flag in a page-directory or page-table entry.

On a task switch or a write to control register CR3 (which normally causes the TLBs to be flushed), the entries in
the TLB marked global are not flushed. Marking pages global in this manner prevents unnecessary reloading of the
TLB due to TLB misses on frequently used pages. See Section 4.10, “Caching Translation Information” for a
detailed description of this mechanism.

22.22.1.3 Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is enabled with the PSE (page size
extension) flag in control register CR4, bit 4. When this flag is set, the processor supports either 4-KByte or 4-
MByte page sizes. PAE paging and 4-level paging1 support 2-MByte pages regardless of the value of CR4.PSE (see
Section 4.4, “PAE Paging” and Section 4.5, “4-Level Paging”). See Chapter 4, “Paging,” for more information about
large page sizes.

22.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486 processor. In the P6 family and
Pentium processors, these flags are used to implement a writeback strategy for the data cache; in the Intel486
processor, they implement a write-through strategy. See Table 11-5 for a comparison of these bits on the P6 family,
Pentium, and Intel486 processors. For complete information on caching, see Chapter 11, “Memory Cache Control.”

22.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an invalid value in the access-rights
field of descriptor-table entries to identify unused entries. Access rights values of 80H and 00H remain invalid for
the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid on the Intel
286 processor may be valid on the 32-bit processors because uses for these bits have been defined.

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

22-20 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read and write to set the accessed
bit of the descriptor. On the P6 family, Pentium, and Intel486 processors, the locked read and write occur only if the
bit is not already set.

22.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor debugging support for break-
points. To use the new breakpoint features, it is necessary to set the DE flag in control register CR4.

22.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the P6 family and Pentium proces-
sors; however, it is possible to write a 1 in this bit on the Intel486 processor. See Table 9-1 for the different setting
of this register following a power-up or hardware reset.

22.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by the R/W0 through R/W3 fields
in debug control register DR7 as follows:

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads or writes but not instruction
fetches if the DE flag in control register CR4 is set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-wired to 0. On the Intel486
processor, however, bit 12 can be set. See Table 9-1 for the different settings of this register following a power-up
or hardware reset.

22.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous generations of processors aliased refer-
ences to these registers to debug registers DR6 and DR7, respectively. When debug extensions are not enabled
(the DE flag in control register CR4 is cleared), the P6 family and Pentium processors remain compatible with
existing software by allowing these aliased references. When debug extensions are enabled (the DE flag is set),
attempts to reference registers DR4 or DR5 will result in an invalid-opcode exception (#UD).

22.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT instruction before returning to the
program being debugged to ensure that breakpoints are detected. This operation does not need to be performed
on the P6 family, Intel486, or Intel386 processors.

The implementation of test registers on the Intel486 processor used for testing the cache and TLB has been rede-
signed using MSRs on the P6 family and Pentium processors. (Note that MSRs used for this function are different
on the P6 family and Pentium processors.) The MOV to and from test register instructions generate invalid-opcode
exceptions (#UD) on the P6 family processors.

Vol. 3B 22-21

ARCHITECTURE COMPATIBILITY

22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-bit IA-32 processors and
implementation differences in existing exception handling. See Chapter 6, “Interrupt and Exception Handling,” for
a detailed description of the IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations involving data in these regis-
ters can produce exceptions. A new MXCSR control/status register is used to determine which exception or excep-
tions have occurred. When an exception associated with the XMM registers occurs, an interrupt is generated.
• SIMD floating-point exception (#XM, interrupt 19) — New exceptions associated with the SIMD floating-point

registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The set of available exceptions is
the same as for the Pentium processor. However, the following exception condition was added to the IA-32 with the
Pentium Pro processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many exception conditions have

been added to the machine-check exception and a new architecture has been added for handling and reporting
on hardware errors. See Chapter 15, “Machine-Check Architecture,” for a detailed description of the new
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception reports parity and other

hardware errors. It is a model-specific exception and may not be implemented or implemented differently in
future processors. The MCE flag in control register CR4 enables the machine-check exception. When this bit is
clear (which it is at reset), the processor inhibits generation of the machine-check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition added. An attempt to write a 1 to
a reserved bit position of a special register causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When a 1 is detected in any of the
reserved bit positions of a page-table entry, page-directory entry, or page-directory pointer during address
translation, a page-fault exception is generated.

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports unaligned memory references when

alignment checking is being performed.

The following exceptions and/or exception conditions were added to the Intel386 processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 processors always leave the saved
CS:IP value pointing to the instruction that failed. On the 8086 processor, the CS:IP value points to the next
instruction.

— Change in exception handling. The Intel386 processors can generate the largest negative number as a
quotient for the IDIV instruction (80H and 8000H). The 8086 processor generates a divide-error exception
instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. Improper use of the LOCK
instruction prefix can generate an invalid-opcode exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If paging is enabled in a 16-bit
program, a page-fault exception can be generated as follows. Paging can be used in a system with 16-bit tasks
if all tasks use the same page directory. Because there is no place in a 16-bit TSS to store the PDBR register,
switching to a 16-bit task does not change the value of the PDBR register. Tasks ported from the Intel 286
processor should be given 32-bit TSSs so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition added. The Intel386 processor
sets a limit of 15 bytes on instruction length. The only way to violate this limit is by putting redundant prefixes
before an instruction. A general-protection exception is generated if the limit on instruction length is violated.
The 8086 processor has no instruction length limit.

22-22 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling and reporting on machine-check
exceptions. This machine-check architecture (described in detail in Chapter 15, “Machine-Check Architecture”)
greatly expands the ability of the processor to report on internal hardware errors.

22.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different processors, however, excep-
tions within these categories are implementation dependent and may change from processor to processor.

22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers
MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX registers. The exception condi-
tions of these instructions are described in the following tables.

Table 22-4. Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable
Instructions

CVTPD2PI, CVTTPD2PI

Vol. 3B 22-23

ARCHITECTURE COMPATIBILITY

Table 22-5. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI

22-24 Vol. 3B

ARCHITECTURE COMPATIBILITY

Table 22-6. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD

Vol. 3B 22-25

ARCHITECTURE COMPATIBILITY

Table 22-7. Exception Conditions for SIMD/MMX Instructions with Memory Reference

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, PADDB, PADDD, PADDQ, PADDW, PADDSB,
PADDSW, PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, PAVGW, PCMPEQB, PCMPEQD, PCMPEQW,
PCMPGTB, PCMPGTD, PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, PHSUBSW, PINSRW,
PMADDUBSW, PMADDWD, PMAXSW, PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, PMULLW,
PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW,
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW,
PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, PXOR

22-26 Vol. 3B

ARCHITECTURE COMPATIBILITY

Table 22-8. Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod ≠ 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the destination operand is in a non-writable segment.2

If the DS, ES, FS, or GS register contains a NULL segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.
3. Applies to MASKMOVQ only.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”

Vol. 3B 22-27

ARCHITECTURE COMPATIBILITY

22.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32
processors.

22.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries on the P6 family, Pentium,
Intel486, and Intel386 processors, due to the superscaler designs of the P6 family and Pentium processors. There-
fore, the EIP pushed onto the stack when servicing an interrupt may be different for the P6 family, Pentium,
Intel486, and Intel386 processors.

22.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors, the
NMI interrupt is masked until the first IRET instruction is executed, unlike the 8086 processor.

22.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault exception (#DF) is generated
if an interrupt or exception attempts to read a vector beyond the limit. Shutdown then occurs on the 32-bit IA-32
processors if the double-fault handler vector is beyond the limit. (The 8086 processor does not have a shutdown
mode nor a limit.)

22.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The Advanced Programmable Interrupt Controller (APIC), referred to in this book as the local APIC, was intro-
duced into the IA-32 processors with the Pentium processor (beginning with the 735/90 and 815/100 models) and
is included in the Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the local APIC are
derived from the Intel 82489DX external APIC, which was used with the Intel486 and early Pentium processors.
Additional refinements of the local APIC architecture were incorporated in the Pentium 4 and Intel Xeon processors.

Table 22-9. Exception Conditions for Legacy SIMD/MMX Instructions without Memory Reference

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB

22-28 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.27.1 Software Visible Differences Between the Local APIC and the 82489DX
The following features in the local APIC features differ from those found in the 82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag in the spurious-interrupt

vector MSR, the state of its internal registers are unaffected, except that the mask bits in the LVT are all set to
block local interrupts to the processor. Also, the local APIC ceases accepting IPIs except for INIT, SMI, NMI, and
start-up IPIs. In the 82489DX, when the local unit is disabled, all the internal registers including the IRR, ISR
and TMR are cleared and the mask bits in the LVT are set. In this state, the 82489DX local unit will accept only
the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as edge triggered interrupts, even
if programmed otherwise. In the 82489DX, these interrupts are always level triggered.

• In the local APIC, IPIs generated through the ICR are always treated as edge triggered (except INIT Deassert).
In the 82489DX, the ICR can be used to generate either edge or level triggered IPIs.

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, it supports 32 bits.
• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits wide.
• The remote read delivery mode provided in the 82489DX and local APIC for Pentium processors is not

supported in the local APIC in the Pentium 4, Intel Xeon, and P6 family processors.
• For the 82489DX, in the lowest priority delivery mode, all the target local APICs specified by the destination

field participate in the lowest priority arbitration. For the local APIC, only those local APICs which have free
interrupt slots will participate in the lowest priority arbitration.

22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium
Processors

The local APIC in the Pentium and P6 family processors have the following new features not found in the 82489DX
external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to handle performance moni-
toring counter interrupts.

22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon
Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new features not found in the P6 family
and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor interrupts.
• The the ability to deliver lowest-priority interrupts to a focus processor is no longer supported.
• The flat cluster logical destination mode is not supported.

22.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to the TSS and the handling of
TSSs and TSS segment selectors.

Vol. 3B 22-29

ARCHITECTURE COMPATIBILITY

22.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control register CR4), the TSS in the P6
family and Pentium processors contain an interrupt redirection bit map, which is used in virtual-8086 mode to redi-
rect interrupts back to an 8086 program.

22.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into a 32-bit TSS, leaving the
upper 16 bits undefined. For performance reasons, the P6 family and Pentium processors write 4-byte segment
selectors into the TSS, with the upper 2 bytes being 0. For compatibility reasons, code should not depend on the
value of the upper 16 bits of the selector in the TSS.

22.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and Pentium processors may
generate different page-fault addresses in control register CR2 in the same TSS area than the Intel486 and
Intel386 processors, if a TSS crosses a page boundary (which is not recommended).

22.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new code written using 32-bit
constructs (operands, addressing, or the upper word of the EFLAGS register) should use only 32-bit TSSs. This is
due to the fact that the 32-bit processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch
back to a 16-bit task that was executing in virtual mode will never re-enable the virtual mode, as this flag was not
saved in the upper half of the EFLAGS value in the TSS. Therefore, it is strongly recommended that any code using
32-bit constructs use a 32-bit TSS to ensure correct behavior in a multitasking environment.

22.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps around the 64K boundary.
Any I/O accesses check for permission to access this I/O address at the I/O base address plus the I/O offset. If the
I/O map base address exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the permis-
sion for the I/O address at an incorrect location within the TSS. A TSS limit violation does not occur in this situation
on the Intel486 processor. However, the P6 family and Pentium processors consider the TSS to be a 32-bit segment
and a limit violation occurs when the I/O base address plus the I/O offset is greater than the TSS limit. By following
the recommended specification for the I/O base address to be less than 0DFFFH, the Intel486 processor will not
wrap around and access incorrect locations within the TSS for I/O port validation and the P6 family and Pentium
processors will not experience general-protection exceptions (#GP). Figure 22-1 demonstrates the different areas
accessed by the Intel486 and the P6 family and Pentium processors.

22-30 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2 (level 2). The L1 cache is divided
into an instruction cache and a data cache; the L2 cache is a general-purpose cache. See Section 11.1, “Internal
Caches, TLBs, and Buffers,” for a description of these caches. (Note that although the Pentium II processor L2
cache is physically located on a separate chip in the cassette, it is considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The data cache supports a writeback
(or alternatively write-through, on a line by line basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data.

The meaning of the CD and NW flags in control register CR0 have been redefined for the P6 family and Pentium
processors. For these processors, the recommended value (00B) enables writeback for the data cache of the
Pentium processor and for the L1 data cache and L2 cache of the P6 family processors. In the Intel486 processor,
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to use the write-through cache
policy should that be required. In the P6 family processors, the MTRRs can be used to override the CD and NW flags
(see Table 11-6).

The P6 family and Pentium processors support page-level cache management in the same manner as the Intel486
processor by using the PCD and PWT flags in control register CR3, the page-directory entries, and the page-table
entries. The Intel486 processor, however, is not affected by the state of the PWT flag since the internal cache of the
Intel486 processor is a write-through cache.

22.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both the cache and memory. If the
instruction was prefetched before the write, however, the old version of the instruction could be the one executed.
To prevent this problem, it is necessary to flush the instruction prefetch unit of the Intel486 processor by coding a
jump instruction immediately after any write that modifies an instruction. The P6 family and Pentium processors,
however, check whether a write may modify an instruction that has been prefetched for execution. This check is
based on the linear address of the instruction. If the linear address of an instruction is found to be present in the

Figure 22-1. I/O Map Base Address Differences

Intel486 Processor

FFFFHI/O Map
Base Addres

FFFFH

FFFFH + 10H = FH
for I/O Validation

0H

FFFFH

FFFFH

I/O access at port 10H checks

0H

FFFFH + 10H = Outside Segment
for I/O Validation

bitmap at I/O address FFFFH + 10H,
which exceeds segment limit.
Wrap around does not occur,
general-protection exception (#GP)

I/O access at port 10H checks
bitmap at I/O map base address
FFFFH + 10H = offset 10H.
Offset FH from beginning of
TSS segment results because

P6 family and Pentium Processors

I/O Map
Base Addres

occurs. wraparound occurs.

Vol. 3B 22-31

ARCHITECTURE COMPATIBILITY

prefetch queue, the P6 family and Pentium processors flush the prefetch queue, eliminating the need to code a
jump instruction after any writes that modify an instruction.

Because the linear address of the write is checked against the linear address of the instructions that have been
prefetched, special care must be taken for self-modifying code to work correctly when the physical addresses of the
instruction and the written data are the same, but the linear addresses differ. In such cases, it is necessary to
execute a serializing operation to flush the prefetch queue after the write and before executing the modified
instruction. See Section 8.3, “Serializing Instructions,” for more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a concern for compatibility. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the
instruction. System software, such as a debugger, that might possibly modify an instruction using
a different linear address than that used to fetch the instruction must execute a serializing
operation, such as IRET, before the modified instruction is executed.

22.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitecture (see Section 11.1,
“Internal Caches, TLBs, and Buffers”) provides the third-level cache disable flag, bit 6 of the IA32_MISC_ENABLE
MSR. The third-level cache disable flag allows the L3 cache to be disabled and enabled, independently of the L1 and
L2 caches (see Section 11.5.4, “Disabling and Enabling the L3 Cache”). The third-level cache disable flag applies
only to processors based on Intel NetBurst microarchitecture. Processors with L3 and based on other microarchi-
tectures do not support the third-level cache disable flag.

22.30 PAGING
This section identifies enhancements made to the paging mechanism and implementation differences in the paging
mechanism for various IA-32 processors.

22.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the IA-32 to allow large (4 MBytes)
pages sizes (see Section 4.3, “32-Bit Paging”). The first P6 family processor (the Pentium Pro processor) added a
2 MByte page size to the IA-32 in conjunction with the physical address extension (PAE) feature (see Section 4.4,
“PAE Paging”).

The availability of large pages with 32-bit paging on any IA-32 processor can be determined via feature bit 3 (PSE)
of register EDX after the CPUID instruction has been execution with an argument of 1. (Large pages are always
available with PAE paging and 4-level paging.) Intel processors that do not support the CPUID instruction support
only 32-bit paging and do not support page size enhancements. (See “CPUID—CPU Identification” in Chapter 3,
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A for more information on the CPUID instruction.)

22.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback caching policy on a page-by-page

basis. Since the internal cache of the Intel486 processor is a write-through cache, it is not affected by the state
of the PWT flag.

22-32 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modifies the PG flag. For backward
and forward compatibility with all IA-32 processors, Intel recommends that the following operations be performed
when enabling or disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear (disable paging) the PG flag.

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped (that is, the instructions should
reside on a page whose linear and physical addresses are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the jump operation is not required.
However, for backwards compatibility, the JMP instruction should still be included.

22.31 STACK OPERATIONS AND SUPERVISOR SOFTWARE
This section identifies the differences in the stack mechanism for the various IA-32 processors.

22.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors
decrement the ESP register by the operand size and then write 2 bytes. If the operand size is 32-bits, the upper two
bytes of the write are not modified. The Pentium processor decrements the ESP register by the operand size and
determines the size of the write by the operand size. If the operand size is 32-bits, the upper two bytes are written
as 0s.

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors
read 2 bytes and increment the ESP register by the operand size of the instruction. The Pentium processor deter-
mines the size of the read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates an exception on a Pentium
processor and not on an Pentium 4, Intel Xeon, P6 family, or Intel486 processor. This could occur if the third and/or
fourth byte of the operation lies beyond the limit of the segment or if the third and/or fourth byte of the operation
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and will wrap around to 0H as a

result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family processors, the result of the
memory write is SS:0H plus any scaled index and displacement. In Pentium processors, the result of the memory
write may be either a stack fault (real mode or protected mode with stack segment size of 64 KByte), or write to
SS:10000H plus any scaled index and displacement (protected mode and stack segment size exceeds 64 KByte).

22.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit value. When pushed onto a 32-
bit stack, the Intel486 processor only pushes 2 bytes and updates ESP by 4. The P6 family and Pentium processors’
error code is a full 32 bits with the upper 16 bits set to zero. The P6 family and Pentium processors, therefore, push
4 bytes and update ESP by 4. Any code that relies on the state of the upper 16 bits may produce inconsistent
results.

Vol. 3B 22-33

ARCHITECTURE COMPATIBILITY

22.31.3 Fault Handling Effects on the Stack
During the handling of certain instructions, such as CALL and PUSHA, faults may occur in different sequences for
the different processors. For example, during far calls, the Intel486 processor pushes the old CS and EIP before a
possible branch fault is resolved. A branch fault is a fault from a branch instruction occurring from a segment limit
or access rights violation. If a branch fault is taken, the Intel486 and P6 family processors will have corrupted
memory below the stack pointer. However, the ESP register is backed up to make the instruction restartable. The
P6 family processors issue the branch before the pushes. Therefore, if a branch fault does occur, these processors
do not corrupt memory below the stack pointer. This implementation difference, however, does not constitute a
compatibility problem, as only values at or above the stack pointer are considered to be valid. Other operations
that encounter faults may also corrupt memory below the stack pointer and this behavior may vary on different
implementations.

22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, only 16 bits of the old ESP can
be pushed onto the stack. On the subsequent RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated
since control is being resumed in a 32-bit stack environment. The Intel486 processor writes the SS selector into the
upper 16 bits of ESP. The P6 family and Pentium processors write zeros into the upper 16 bits.

22.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset of those of the 32-bit IA-32
processors. The D (default operation size) flag in segment descriptors indicates whether the processor treats a
code or data segment as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors indicates
whether the processor treats a stack segment as a 16-bit or 32-bit segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit IA-32 processors if the Intel-
reserved word (highest word) of the descriptor is clear. On the 32-bit IA-32 processors, this word includes the
upper bits of the base address and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables (there are no descriptors for
global descriptor tables), and task gates are the same for the 16- and 32-bit processors. Other 16-bit descriptors
(TSS segment, call gate, interrupt gate, and trap gate) are supported by the 32-bit processors.

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt gates, and trap gates that
support the 32-bit architecture. Both kinds of descriptors can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits in the reserved word cause the
32-bit processors to interpret these descriptors exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the 16-bit limit is interpreted in units

of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment descriptor used by the 32-bit

processors, indicating the segment is no larger than 64 KBytes.
• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit addressing and operands are

the default. In a stack-segment descriptor, the D flag is clear, indicating use of the SP register (instead of the
ESP register) and a 64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 21, “Mixing 16-Bit and 32-Bit Code.”

22.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the P6 family, Pentium, Intel486,
Intel386, Intel 286, and 8086 processors.

22-34 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 65,535 or 0FFFFH or offset 0
(for example, moving a word to offset 65,535 or pushing a word when the stack pointer is set to 1) causes the
offset to wrap around modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combination
that addresses beyond 16 MBytes wraps around to the 1 MByte of the address space. The P6 family, Pentium,
Intel486, and Intel386 processors in real-address mode generate an exception in these cases:
• A general-protection exception (#GP) if the segment is a data segment (that is, if the CS, DS, ES, FS, or GS

register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS register is being used).

An exception to this behavior occurs when a stack access is data aligned, and the stack pointer is pointing to the
last aligned piece of data that size at the top of the stack (ESP is FFFFFFFCH). When this data is popped, no
segment limit violation occurs and the stack pointer will wrap around to 0.

The address space of the P6 family, Pentium, and Intel486 processors may wraparound at 1 MByte in real-address
mode. An external A20M# pin forces wraparound if enabled. On Intel 8086 processors, it is possible to specify
addresses greater than 1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effective
address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, which can form addresses up to 20
bits long, truncates the uppermost bit, which “wraps” this address to FFEFH. However, the P6 family, Pentium, and
Intel486 processors do not truncate this bit if A20M# is not enabled.

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor does not have a shut-
down mode or a limit.)

The behavior when executing near the limit of a 4-GByte selector (limit = FFFFFFFFH) is different between the
Pentium Pro and the Pentium 4 family of processors. On the Pentium Pro, instructions which cross the limit -- for
example, a two byte instruction such as INC EAX that is encoded as FFH C0H starting exactly at the limit faults for
a segment violation (a one byte instruction at FFFFFFFFH does not cause an exception). Using the Pentium 4 micro-
processor family, neither of these situations causes a fault.

Segment wraparound and the functionality of A20M# is used primarily by older operating systems and not used by
modern operating systems. On newer Intel 64 processors, A20M# may be absent.

22.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for temporary storage of writes (stores)
to memory (see Section 11.10, “Store Buffer”). Writes stored in the store buffer(s) are always written to memory
in program order, with the exception of “fast string” store operations (see Section 8.2.4, “Fast-String Operation and
Out-of-Order Stores”).

The Pentium processor has two store buffers, one corresponding to each of the pipelines. Writes in these buffers
are always written to memory in the order they were generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The Pentium 4, Intel Xeon, P6
family, Pentium, and Intel486 processors do not synchronize the completion of memory writes on the bus and
instruction execution after a write. An I/O, locked, or serializing instruction needs to be executed to synchronize
writes with the next instruction (see Section 8.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to maintain consistency in the order
that data is read (loaded) and written (stored) in a program and the order the processor actually carries out the
reads and writes. With this type of ordering, reads can be carried out speculatively and in any order, reads can pass
buffered writes, and writes to memory are always carried out in program order. (See Section 8.2, “Memory
Ordering,” for more information about processor ordering.) The Pentium III processor introduced a new instruction
to serialize writes and make them globally visible. Memory ordering issues can arise between a producer and a
consumer of data. The SFENCE instruction provides a performance-efficient way of ensuring ordering between
routines that produce weakly-ordered results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition noted in Section 8.2.1,
“Memory Ordering in the Intel® Pentium® and Intel486™ Processors,” and in the following paragraph describing the
Intel486 processor.

Vol. 3B 22-35

ARCHITECTURE COMPATIBILITY

Specifically, the store buffers are flushed before the IN instruction is executed. No reads (as a result of cache miss)
are reordered around previously generated writes sitting in the store buffers. The implication of this is that the
store buffers will be flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory read will go onto the external
bus before the pending memory writes in the buffer even though the writes occurred earlier in the program execu-
tion. A memory read will only be reordered in front of all writes pending in the buffers if all writes pending in the
buffers are cache hits and the read is a cache miss. Under these conditions, the Intel486 and Pentium processors
will not read from an external memory location that needs to be updated by one of the pending writes.

During a locked bus cycle, the Intel486 processor will always access external memory, it will never look for the
location in the on-chip cache. All data pending in the Intel486 processor's store buffers will be written to memory
before a locked cycle is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for elimi-
nating the possibility of reordering read cycles on the Intel486 processor. The Pentium processor does check its
cache on a read-modify-write access and, if the cache line has been modified, writes the contents back to memory
before locking the bus. The P6 family processors write to their cache on a read-modify-write operation (if the
access does not split across a cache line) and does not write back to system memory. If the access does split across
a cache line, it locks the bus and accesses system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 processor. This ensures an update of
all memory locations before reading the status from an I/O device.

22.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family, Pentium, Intel486, and
Intel386 processors. Programs that use forms of memory locking specific to the Intel 286 processor may not run
properly when run on later processors.

A locked instruction is guaranteed to lock only the area of memory defined by the destination operand, but may
lock a larger memory area. For example, typical 8086 and Intel 286 configurations lock the entire physical memory
space. Programmers should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater than the IOPL, a general-
protection exception (#GP) is generated. On the Intel386 DX, Intel486, and Pentium, and P6 family processors, no
check against IOPL is performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging external interrupts. After
signaling an interrupt request, an external interrupt controller may use the data bus to send the interrupt vector to
the processor. After receiving the interrupt request signal, the processor asserts LOCK# to insure that no other
data appears on the data bus until the interrupt vector is received. This bus locking does not occur on the P6 family
processors.

22.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the P6 family and Pentium
processors respond to requests for control of the bus from other potential bus masters, such as DMA controllers,
between transfers of parts of an unaligned operand, such as two words which form a doubleword. Unlike the
Intel386 processor, the P6 family, Pentium and Intel486 processors respond to bus hold during reset initialization.

22.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 processors and may not be imple-
mented or implemented in the same way in future processors. The following sections describe these model-specific
extensions. The CPUID instruction indicates the availability of some of the model-specific features.

22-36 Vol. 3B

ARCHITECTURE COMPATIBILITY

22.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in controlling hardware functions
and performance monitoring. To access these MSRs, two new instructions were added to the IA-32 architecture:
read MSR (RDMSR) and write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be dupli-
cated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to software. See Chapter 2, “Model-
Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 for a
complete list of the available MSRs. The new registers control the debug extensions, the performance counters, the
machine-check exception capability, the machine-check architecture, and the MTRRs. These registers are acces-
sible using the RDMSR and WRMSR instructions. Specific information on some of these new MSRs is provided in the
following sections. As with the Pentium processor MSR, the P6 family processor MSRs are not guaranteed to be
duplicated or provided in the next generation IA-32 processors.

22.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions recognize a
much larger number of model-specific registers in the P6 family processors. (See “RDMSR—Read from Model
Specific Register” and “WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 2A, 2B, 2C & 2D for more information.)

22.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in the Pentium Pro processor.
MTRRs allow the processor to optimize memory operations for different types of memory, such as RAM, ROM, frame
buffer memory, and memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are mapped to various types of
memory. The processor uses this internal memory map to determine the cacheability of various physical memory
locations and the optimal method of accessing memory locations. For example, if a memory location is specified in
an MTRR as write-through memory, the processor handles accesses to this location as follows. It reads data from
that location in lines and caches the read data or maps all writes to that location to the bus and updates the cache
to maintain cache coherency. In mapping the physical address space with MTRRs, the processor recognizes five
types of memory: uncacheable (UC), uncacheable, speculatable, write-combining (WC), write-through (WT),
write-protected (WP), and writeback (WB).

Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the KEN# (cache enable) pin and
external logic to maintain an external memory map and signal cacheable accesses to the processor. The MTRR
mechanism simplifies hardware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 9, “Processor Management and Initialization,” and Chapter 2, “Model-Specific Registers (MSRs)” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 for more information on the MTRRs.

22.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check exception (#MC, interrupt 18). This
exception is used to detect hardware-related errors, such as a parity error on a read cycle.

The P6 family processors extend the types of errors that can be detected and that generate a machine-check
exception. It also provides a new machine-check architecture for recording information about a machine-check
error and provides extended recovery capability.

The machine-check architecture provides several banks of reporting registers for recording machine-check errors.
Each bank of registers is associated with a specific hardware unit in the processor. The primary focus of the
machine checks is on bus and interconnect operations; however, checks are also made of translation lookaside
buffer (TLB) and cache operations.

Vol. 3B 22-37

ARCHITECTURE COMPATIBILITY

The machine-check architecture can correct some errors automatically and allow for reliable restart of instruction
execution. It also collects sufficient information for software to use in correcting other machine errors not corrected
by hardware.

See Chapter 15, “Machine-Check Architecture,” for more information on the machine-check exception and the
machine-check architecture.

22.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters for use in monitoring internal
hardware operations. The number of performance monitoring counters and associated programming interfaces
may be implementation specific for Pentium 4 processors, Pentium M processors. Later processors may have
implemented these as part of an architectural performance monitoring feature. The architectural and non-architec-
tural performance monitoring interfaces for different processor families are described in Chapter 18, “Performance
Monitoring,”. Chapter 19, “Performance Monitoring Events.” lists all the events that can be counted for architectural
performance monitoring events and non-architectural events. The counters are set up, started, and stopped using
two MSRs and the RDMSR and WRMSR instructions. For the P6 family processors, the current count for a particular
counter can be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code, diagnosing system fail-
ures, or refining hardware designs. See Chapter 18, “Performance Monitoring,” for more information on these
counters.

22.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the old operating system, loader,

and system builder. Here, all tasks will have 16-bit TSSs. The 32-bit processor is being used as if it were a faster
version of the 16-bit processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with a 32-bit operating system,
loader, and system builder. Here, the TSSs used to represent 286 tasks should be changed to 32-bit TSSs. It is
possible to mix 16 and 32-bit TSSs, but the benefits are small and the problems are great. All tasks in a 32-bit
software system should have 32-bit TSSs. It is not necessary to change the 16-bit object modules themselves;
TSSs are usually constructed by the operating system, by the loader, or by the system builder. See Chapter 21,
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit segment descriptors, 16-bit
programs that place values in this word may not run correctly on the 32-bit processors.

22.39 INITIAL STATE OF PENTIUM, PENTIUM PRO AND PENTIUM 4 PROCESSORS
Table 22-10 shows the state of the flags and other registers following power-up for the Pentium, Pentium Pro and
Pentium 4 processors. The state of control register CR0 is 60000010H (see Figure 9-1 “Contents of CR0 Register
after Reset” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This places the
processor in real-address mode with paging disabled.

Table 22-10. Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

22-38 Vol. 3B

ARCHITECTURE COMPATIBILITY

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 00000FxxH 000n06xxH3 000005xxH

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP,
ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status Word5 Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag Word5 Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data
Operand and CS Seg.
Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data
Operand and Inst.
Pointers5

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

MM0 through MM75 Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium II and Pentium III
Processors Only—

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium with MMX Technology
Only—

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

XMM0 through XMM7 Pwr up or Reset: 0H
INIT: Unchanged

If CPUID.01H:SSE is 1 —

Pwr up or Reset: 0H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-

Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

Table 22-10. Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor

Vol. 3B 22-39

ARCHITECTURE COMPATIBILITY

DR7 00000400H 00000400H 00000400H

Time-Stamp Counter Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Data and Code Cache,
TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

R8-R157 0000000000000000H 0000000000000000H N.A.

XMM8-XMM157 Pwr up or Reset: 0H
INIT: Unchanged

Pwr up or Reset: 0H
INIT: Unchanged

N.A.

NOTES:
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of

any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.
7. If the processor supports IA-32e mode.

Table 22-10. Processor State Following Power-up/Reset/INIT for Pentium, Pentium Pro and Pentium 4 Processors

Register Pentium 4 Processor Pentium Pro Processor Pentium Processor

22-40 Vol. 3B

ARCHITECTURE COMPATIBILITY

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

15.Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

Changes to this chapter: Minor typo correction.

Vol. 3C 27-1

CHAPTER 27
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation as detailed in Section 25.1
through Section 25.2. VM exits perform the following operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields and VM-entry control
fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4). This step is not performed for SMM VM exits
that activate the dual-monitor treatment of SMIs and SMM.

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some VM-exit controls. This step is not
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM. See Section
34.15.6 for information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is not performed for SMM
VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and do not update the
branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins. The steps described above are
detailed in Section 27.2 through Section 27.6.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, ordinary transitions to SMM are replaced by VM exits to a sepa-
rate SMM monitor. Called SMM VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are detailed in Section 34.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events
that would normally be delivered through the IDT. Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception bitmap.

A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is 1. An
external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1. A start-
up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit directly.
INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see Section
27.4), EPT violation, EPT misconfiguration, or page-modification log-full event that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not

caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. (Information about the nature
of the debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

27-2 Vol. 3C

VM EXITS

— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending,
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is
acknowledged and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from
being updated. These are updated by the machine-check event itself and not the resulting machine-check
exception.

— If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some
events may be blocked but others may return the logical processor to the active state. Unblocked events
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated
when the active state is entered from that activity state.

MTF VM exits (see Section 25.5.2 and Section 26.6.8) are not blocked in the HLT activity state. If an MTF
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are considered
pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit
commences, generates any special bus cycle that is normally generated when the active state is entered
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an event through the IDT
(before it can encounter a nested exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case where nested exceptions lead
to a triple fault).

• Other processors delay making a last-exception record until event delivery has reached some event
handler successfully (perhaps after one or more nested exceptions). Such processors do not update the
last-exception record if a VM exit or triple fault occurs before an event handler is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a
nested exception, double fault, task switch, or APIC access that causes a VM exit, virtual-NMI blocking is in
effect before the VM exit commences.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32
bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have
become active before the VM exit.

Vol. 3C 27-3

VM EXITS

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is
encountered during execution of IRET and the “NMI exiting” VM-execution control is 0, any blocking by NMI is
cleared before the VM exit commences. However, the previous state of blocking by NMI may be recorded in the
exit qualification or in the VM-exit interruption-information field; see Section 27.2.1 and Section 27.2.2.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is
encountered during execution of IRET and the “virtual NMIs” VM-execution control is 1, virtual-NMI blocking is
cleared before the VM exit commences. However, the previous state of blocking by NMI may be recorded in the
exit qualification or in the VM-exit interruption-information field; see Section 27.2.1 and Section 27.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no
blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an
event results in a VM exit before delivery is complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check
exception.

• If a VM exit results from a fault, APIC access (see Section 29.4), EPT violation, EPT misconfiguration, or page-
modification log-full event is encountered while executing an instruction, data breakpoints due to that
instruction may have been recognized and information about them may be saved in the pending debug
exceptions field (unless the VM exit clears that field; see Section 27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is 0
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only from
64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the
value of ECX is in the range 800H–8FFH; and the bit corresponding to the ECX value in write bitmap for low
MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs.
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

A VM exit that occurs in enclave mode sets bit 27 of the exit-reason field and bit 4 of the guest interruptibility-state
field. Before such a VM exit is delivered, an Asynchronous Enclave Exit (AEX) occurs (see Chapter 39, “Enclave
Exiting Events”). An AEX modifies architectural state (Section 39.3). In particular, the processor establishes the
following architectural state as indicated:
• The following bits in RFLAGS are cleared: CF, PF, AF, ZF, SF, OF, and RF.
• FS and GS are restored to the values they had prior to the most recent enclave entry.
• RIP is loaded with the AEP of interrupted enclave thread.
• RSP is loaded from the URSP field in the enclave’s state-save area (SSA).

27-4 Vol. 3C

VM EXITS

27.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL
FIELDS

VM exits begin by recording information about the nature of and reason for the VM exit in the VM-exit information
fields. Section 27.2.1 to Section 27.2.4 detail the use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared in the VM-entry interruption-
information field. If bit 5 of the IA32_VMX_MISC MSR (index 485H) is read as 1 (see Appendix A.6), the value of
IA32_EFER.LMA is stored into the “IA-32e mode guest” VM-entry control.1

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause
of the VM exit. Appendix C lists the numbers used and their meaning.

— Bit 27 of this field is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered
during the delivery of such events incident to enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1).

— The remainder of the field (bits 31:28 and bits 26:16) is cleared to 0 (certain SMM VM exits may set some
of these bits; see Section 34.15.2.3).2

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the
retirement of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES;
control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section
29.4); EPT violations; EOI virtualization (see Section 29.1.4); APIC-write emulation (see Section 29.4.3.3);
and page-modification log full (see Section 28.2.5). For all other VM exits, this field is cleared. The following
items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The
information has the format given in Table 27-1.

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control.

2. Bit 31 of this field is set on certain VM-entry failures; see Section 26.7.

Table 27-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

Vol. 3C 27-5

VM EXITS

— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

If the page-fault exception occurred during execution of an instruction in enclave mode (and not during
delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 of
the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in
Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not
in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. This
address is not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD,
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value of
the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on processors
that do not support Intel 64 architecture). If the instruction has no displacement (for example, has a
register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the
displacement field and the value of RIP that references the following instruction. In this case, the exit
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section
27.2.4) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel 64
architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in
Table 27-4.

— For an I/O instruction, the exit qualification contains information about the instruction and has the format
given in Table 27-5.

Table 27-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

27-6 Vol. 3C

VM EXITS

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not
armed) or to 1 (if address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access
page (see Section 29.4), the exit qualification contains information about the access and has the format
given in Table 27-6.1

If the access to the APIC-access page occurred during execution of an instruction in enclave mode (and not
during delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction execution)
or 0001b (data write during instruction execution) set bit 12—which distinguishes data read from data
write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the access
caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is
“data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during
instruction execution.”

1. The exit qualification is undefined if the access was part of the logging of a branch record or a processor-event-based-sampling
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS
save area translates to an address on the APIC-access page.

Table 27-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that do not support Intel 64
architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

Vol. 3C 27-7

VM EXITS

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction, the
access type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during
instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.3) if and only if it
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 29.4.6),
the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation
and has the format given in Table 27-7.

As noted in that table, the format and meaning of the exit qualification depends on the setting of the
“mode-based execute control for EPT” VM-execution control and whether the processor supports advanced
VM-exit information for EPT violations.1

An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1 (data
write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implementation,
may differ for different kinds of read-modify-write operations.

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

1. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

Table 27-4. Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 27-3. Exit Qualification for Control-Register Accesses (Contd.)

Bit Positions Contents

27-8 Vol. 3C

VM EXITS

Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was in effect before
execution of IRET, bit 12 is set to 1.

Table 27-5. Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

Table 27-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

Vol. 3C 27-9

VM EXITS

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was caused by a memory access as part
of execution of the IRET instruction, and virtual-NMI blocking was in effect before execution of IRET,
bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

— For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

— For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

— For a VM exit due to a page-modification log-full event (Section 28.2.5), only bit 12 of the exit qualification
is defined, and only in some cases. It is undefined in the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, it is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the page-modification log-full event was caused by a
memory access as part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was
in effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the page-modification log-full event was caused by a
memory access as part of execution of the IRET instruction, and virtual-NMI blocking was in effect
before execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

For these VM exits, all bits other than bit 12 are undefined.
• Guest-linear address. For some VM exits, this field receives a linear address that pertains to the VM exit. The

field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical processor
was not in 64-bit mode before the VM exit.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-write
VM exit is 3F0H.

Table 27-7. Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates whether the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates whether the guest-physical address was writeable).

27-10 Vol. 3C

VM EXITS

— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR
instruction). The linear address may translate to the guest-physical address whose access caused the EPT
violation. Alternatively, translation of the linear address may reference a paging-structure entry whose
access caused the EPT violation. Bits 63:32 are cleared if the logical processor was not in 64-bit mode
before the VM exit.

5 The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation.

If the “mode-based execute control for EPT” VM-execution control is 0, this indicates whether the guest-physical
address was executable. If that control is 1, this indicates whether the guest-physical address was executable
for supervisor-mode linear addresses.

6 If the “mode-based execute control” VM-execution control is 0, the value of this bit is undefined. If that control is
1, this bit is the logical-AND of bit 10 in the EPT paging-structures entries used to translate the guest-physical
address of the access causing the EPT violation. In this case, it indicates whether the guest-physical address was
executable for user-mode linear addresses.

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the
guest PDPTEs as part of the execution of the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear
address.

• Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the
update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

9 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0
if the linear address is a supervisor-mode linear address and 1 if it is a user-mode linear address. (If CR0.PG = 0,
the translation of every linear address is a user-mode linear address and thus this bit will be 1.) Otherwise, this
bit is undefined.

10 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0
if paging translates the linear address to a read-only page and 1 if it translates to a read/write page. (If CR0.PG =
0, every linear address is read/write and thus this bit will be 1.) Otherwise, this bit is undefined.

11 If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,3 this bit is 0
if paging translates the linear address to an executable page and 1 if it translates to an execute-disable page. (If
CR0.PG = 0, CR4.PAE = 0, or IA32_EFER.NXE = 0, every linear address is executable and thus this bit will be 0.)
Otherwise, this bit is undefined.

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with

regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of
the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structure entries used to translate the guest-physical address of the access causing the
EPT violation is not present (see Section 28.2.2).

3. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

Table 27-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents

Vol. 3C 27-11

VM EXITS

If the EPT violation occurred during execution of an instruction in enclave mode (and not during delivery of
an event incident to enclave mode), bits 11:0 of this field are cleared.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT misconfiguration, this field receives

the guest-physical address that caused the EPT violation or EPT misconfiguration. For all other VM exits, the
field is undefined.
If the EPT violation or EPT misconfiguration occurred during execution of an instruction in enclave mode (and
not during delivery of an event incident to enclave mode), bits 11:0 of this field are cleared.

27.2.2 Information for VM Exits Due to Vectored Events
Section 24.9.2 defines fields containing information for VM exits due to the following events: exceptions (including
those generated by the instructions INT3, INTO, BOUND, and UD); external interrupts that occur while the
“acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits include
those that occur on an attempt at a task switch that causes an exception before generating the VM exit due to the
task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-15). The following items detail how this field is

established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI, bits 7:0 are set to 2. For
an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), or 6
(software exception). Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP;
generated by INT3) and overflow exceptions (#OF; generated by INTO); these are software exceptions. (A
#BP that occurs in enclave mode is considered a hardware exception.) BOUND-range exceeded exceptions
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated by UD are hardware
exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have delivered an error code
on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in real-address
mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the VM-exit interruption error code (see
below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a fault on the IRET instruction
(other than a debug exception for an instruction breakpoint), and blocking by NMI (see Table 24-3) was
in effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a fault on the IRET instruction
(other than a debug exception for an instruction breakpoint), and virtual-NMI blocking was in effect
before execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.2

— Bits 30:13 are always set to 0.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

2. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-execution control is 1, bit 12 is
always cleared to 0 by VM exits due to debug exceptions.

27-12 Vol. 3C

VM EXITS

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the “acknowledge interrupt on exit” VM-exit
control is 0), the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit interruption-information
field, this field receives the error code that would have been pushed on the stack had the event causing the
VM exit been delivered normally through the IDT. The EXT bit is set in this field exactly when it would be set
normally. For exceptions that occur during the delivery of double fault (if the IDT-vectoring information field
indicates a double fault), the EXT bit is set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the error code uses the EXT bit
(not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the
IDT and as a result of any of the following cases:1

• A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1
in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after the
initial checks of the task switch pass (see Section 25.4.2).

• Event delivery causes an APIC-access VM exit (see Section 29.4).
• An EPT violation, EPT misconfiguration, or page-modification log-full event that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section
26.5.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:
• The original event causes the VM exit directly (for example, because the original event is a non-maskable

interrupt (NMI) and the “NMI exiting” VM-execution control is 1).
• The original event results in a double-fault exception that causes the VM exit directly.
• The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-16). The following items detail how this field is established

for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31).
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during
delivery of an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: 0
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP; generated by INT3) and
overflow exceptions (#OF; generated by INTO); these are software exceptions. (A #BP that occurs in
enclave mode is considered a hardware exception.) BOUND-range exceeded exceptions (#BR; generated
by BOUND) and invalid opcode exceptions (#UD) generated by UD are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was injected as part of VM entry.

1. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).

Vol. 3C 27-13

VM EXITS

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered
an error code on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in
real-address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the IDT-vectoring error
code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field,
this field receives the error code that would have been pushed on the stack by the event that was being
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set
normally.

— For other VM exits, the value of this field is undefined.

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software
exception.) The following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section
25.1.3): CLTS, CPUID, ENCLS, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT,
LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC,
RDRAND, RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH,
VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, XRSTORS,
XSETBV, and XSAVES.2

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating
that the task gate was encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For APIC-access VM exits and for VM exits caused by EPT violations and page-modification log-full events
encountered during delivery of a software interrupt, privileged software exception, or software exception.3

— For VM exits due executions of VMFUNC that fail because one of the following is true:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

2. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the
“virtualize x2APIC mode” VM-execution control is 1.

3. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

27-14 Vol. 3C

VM EXITS

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function controls;
see Section 25.5.5.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section
25.5.5.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any instruction
prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or
software exception include those encountered during delivery of events injected as part of VM entry (see
Section 26.5.1.2). If the original event was injected as part of VM entry, this field receives the value of the VM-
entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.
If the VM exit occurred in enclave mode, this field is cleared (none of the previous items apply).

• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID,
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that
caused the VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.1

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in
Table 27-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in
Table 27-11.

— For VM exits due to attempts to execute RDRAND or RDSEED, the field has the format is given in
Table 27-12.

Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS
Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

1. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC
(see Appendix A.1).

Vol. 3C 27-15

VM EXITS

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES,
the field has the format is given in Table 27-13.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in
Table 27-14.

For all other VM exits, the field is undefined, unless the VM exit occurred in enclave mode, in which case the
field is cleared.

• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for SMM VM exits due to system-
management interrupts (SMIs) that arrive immediately after retirement of I/O instructions. See Section
34.15.2.3. Note that, if the VM exit occurred in enclave mode, these fields are all cleared.

Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

27-16 Vol. 3C

VM EXITS

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

Vol. 3C 27-17

VM EXITS

31:30 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear
and bit 27 is set).

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT (Contd.)
Bit Position(s) Content

27-18 Vol. 3C

VM EXITS

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for RDRAND and RDSEED
Bit Position(s) Content

2:0 Undefined.

6:3 Destination register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST,
VMXON, XRSTORS, and XSAVES

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR (Contd.)
Bit Position(s) Content

Vol. 3C 27-19

VM EXITS

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

2 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST,
VMXON, XRSTORS, and XSAVES (Contd.)

Bit Position(s) Content

27-20 Vol. 3C

VM EXITS

27.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 24.4) is written with the corresponding component of
processor state. On processors that support Intel 64 architecture, the full values of each natural-width field (see
Section 24.11.2) is saved regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the VM exit commences. See
Section 27.1 for a discussion of which architectural updates occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how certain components of processor state are saved.
These sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these references
are to fields in the guest-state area.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear
and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE (Contd.)
Bit Position(s) Content

Vol. 3C 27-21

VM EXITS

27.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP

MSRs are saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On
processors that do not support Intel 64 architecture, bits 63:32 of the IA32_SYSENTER_ESP and
IA32_SYSENTER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the IA32_DEBUGCTL MSR are saved
into the corresponding fields. The first processors to support the virtual-machine extensions supported only the
1-setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR are saved into the corresponding
field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR are saved into the corre-
sponding field.

• If the processor supports either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the
“clear IA32_BNDCFGS” VM-exit control, the contents of the IA32_BNDCFGS MSR are saved into the corre-
sponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See Section 34.15.2.

27.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the base-address, segment-
limit, and access rights are based on whether the register was unusable (see Section 24.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are undefined: (1) base address;

(2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value saved for the base address are
always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of the values saved for the base
addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
• If the register was not unusable, the values saved into the following fields are those which were in the register

before the VM exit: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.
• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and only if the segment is

unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address and limit fields.

27.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurred in enclave mode, the value saved is the AEP of interrupted enclave thread (the
remaining items do not apply).

27-22 Vol. 3C

VM EXITS

— If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally or
that has been configured to cause a VM exit via the VM-execution controls, the value saved references that
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had
the VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the
stack had the event been delivered through a trap or interrupt gate,1 or into the old task-state segment had
the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-state
segment had the event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO), the value saved
references the INT3 or INTO instruction that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by
execution of a software interrupt (INT n) or software exception (due to execution of INT3 or INTO) that
encountered a task gate in the IDT. The value saved references the instruction that caused the task switch
(CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was
encountered for any reason except the direct access by a software interrupt or software exception. The
value saved is that which would have been saved in the old task-state segment had the task switch
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the value
saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC access
as part of instruction execution, the value saved references the instruction following the one whose
execution caused the APIC-write emulation.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the

RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit occurred in enclave mode, the value saved is 0 (the remaining items do not apply).

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the
stack had the event been delivered through a trap or interrupt gate2 or into the old task-state segment had
the event been delivered through a task gate) had the event been delivered through the IDT. See below for
VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the task
switch completed normally without exception.

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16
bits.

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or
16 bits.

Vol. 3C 27-23

VM EXITS

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or one
that was configured to do with a VM-execution control, the value saved is 0.1

— For APIC-access VM exits and for VM exits caused by EPT violations, EPT misconfigurations, and page-
modification log-full events, the value saved depends on whether the VM exit occurred during delivery of an
event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field (because the VM exit did not occur
during delivery of an event through the IDT; see Section 27.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur
during delivery of an event through the IDT), the value saved is the value that would have appeared in
the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before the VM exit.2 See Section 27.1

for details of how events leading to a VM exit may affect the activity state.
• The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit.

— See Section 27.1 for details of how events leading to a VM exit may affect this state.

— VM exits that end outside system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless
of the state of such blocking before the VM exit.

— Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

— Bit 4 (enclave interruption) is set to 1 if the VM exit occurred while the logical processor was in enclave
mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered
during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit unmodified.
• The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt (SMI).

— A VM exit with basic exit reason “TPR below threshold”,3 “virtualized EOI”, “APIC write”, or “monitor trap
flag.”

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

1. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by set-
ting the guest value of RFLAGS.RF to 1 before resuming guest software.

2. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP
by that VM exit will reference the following instruction.

3. This item includes VM exits that occur as a result of certain VM entries (Section 26.6.7).

27-24 Vol. 3C

VM EXITS

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on
VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 in any of the following cases:

— If there was at least one matched data or I/O breakpoint that was enabled in DR7.

— If it had been set on VM entry, causing there to be valid pending debug exceptions (see Section
26.6.3) and the VM exit occurred before those exceptions were either delivered or lost.

— If the XBEGIN instruction was executed immediately before the VM exit and advanced debugging of
RTM transactional regions had been enabled (see Section 16.3.7, “RTM-Enabled Debugger
Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). (This does
not apply to VM exits with basic exit reason “monitor trap flag.”)

In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a single
instruction.

— IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

• Bit 16 (RTM) is set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM
region while advanced debugging of RTM transactional regions had been enabled. (This does not apply
to VM exits with basic exit reason “monitor trap flag.”)

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is MOV-
SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes of any
debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately after
VM entry (no instructions were executed in VMX non-root operation), the value saved may match that
which was loaded on VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that was
enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending debug
exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either delivered
or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently decremented
(see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also save the value
0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit control is 0, VM exit
does not modify the value of the VMX-preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into
the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time of
the VM exit, the PDPTE values currently in use are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any
value that might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the
field is a guest-physical address.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31
of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution control were 0.
See Section 24.6.2.

Vol. 3C 27-25

VM EXITS

— If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time
of the VM exit, the values saved are undefined.

27.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored into the VM-exit MSR-store
area (see Section 24.7.2). Specifically each entry in that area (up to the number specified in the VM-exit MSR-store
count) is processed in order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register

when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be read only in system-management mode (SMM) and the

VM exit will not end in SMM. (IA32_SMBASE is an MSR that can be read only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for model-specific reasons. A

processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on VM exits, even if
they can normally be read by RDMSR. Such model-specific behavior is documented in Chapter 2, “Model-
Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-protection exception if executed via

RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

27.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field loaded (for example, the base
address for GDTR) is loaded regardless of the mode of the logical processor before and after the VM exit.

The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These sections reference VMCS fields that
correspond to processor state. Unless otherwise stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space size” VM-exit control is 1. If
the logical processor was in IA-32e mode before the VM exit and this control is 0, a VMX abort occurs. See Section
27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 27.5.6).

After the state loading described in this section, VM exits may load MSRs from the VM-exit MSR-load area (see
Section 27.6). This loading occurs only after the state loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field, respectively, with the

following exceptions:

— The following bits are not modified:

27-26 Vol. 3C

VM EXITS

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 architecture), 28:19, 17, and
15:6; and any bits that are fixed in VMX operation (see Section 23.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address width (they
are cleared to 0).2 (This item applies only to processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since that field has only 32
bits, bits 63:32 of the MSR are cleared to 0.

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from the IA32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the
MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor supports N < 64 linear-address
bits, each of bits 63:N is set to the value of bit N–1.3

— The following steps are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively
(see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting of the “host address-
space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded
from the IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are maintained with their
reserved values.

— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field. Bits that
are reserved in that MSR are maintained with their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field. Bits
that are reserved in that MSR are maintained with their reserved values.

— If the “clear IA32_BNDCFGS” VM-exit control is 1, the IA32_BNDCFGS MSR is cleared to
00000000_00000000H; otherwise, it is not modified.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-exit MSR-load area. See Section 27.6.

27.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its selector is loaded with zero. The

checks specified Section 26.3.1.2 limit the selector values that may be loaded. In particular, CS and TR are
never loaded with zero and are thus never unusable. SS can be loaded with zero only on processors that

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is always 1 and the other bits are
always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is
returned in bits 15:8 of EAX.

Vol. 3C 27-27

VM EXITS

support Intel 64 architecture and only if the VM exit is to 64-bit mode (64-bit mode allows use of segments
marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture, canonical) if the segment is
unusable and the VM exit is not to 64-bit mode; otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-address bits,
each of bits 63:N is set to the value of bit N–1.1 The values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to FFFFFFFFH.

— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type set to 3 and S set to 1
(read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.
• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
• On processors that support Intel 64 architecture, CS.L is loaded with the setting of the “host address-space

size” VM-exit control. Because the value of this control is also loaded into IA32_EFER.LMA (see Section 27.5.1),
no VM exit is ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit control. For example, if
that control is 0, indicating a 32-bit guest, CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is
returned in bits 15:8 of EAX.

27-28 Vol. 3C

VM EXITS

The host-state area does not contain a selector field for LDTR. LDTR is established as follows on all VM exits: the
selector is cleared to 0000H, the segment is marked unusable and is otherwise undefined (although the base
address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the IDTR base-address
field, respectively. If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-
address bits, each of bits 63:N of each base address is set to the value of bit N–1 of that base address. The GDTR
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is cleared, except bit 1, which is
always set.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses PAE paging. See Section 4.4 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3
when PAE paging is in use checks the validity of the PDPTEs and, if they are valid, loads them into the processor
(into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in the CR4 field in the host-
state area of the VMCS; and (2) the “host address-space size” VM-exit control is 0. Such a VM exit may check the
validity of the PDPTEs referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must check
their validity if either (1) PAE paging was not in use before the VM exit; or (2) the value of CR3 is changing as a
result of the VM exit. A VM exit to a VMM that does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with
MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a general-protection exception due to the
PDPTEs that would be loaded (e.g., because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a
VM exit to a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the processor as would
MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by NMI (see Table 24-3). Other
VM exits do not affect blocking by NMI. (See Section 27.1 for the case in which an NMI causes a VM exit
indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs
and paging-structure caches. The following items detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits.
Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

Vol. 3C 27-29

VM EXITS

• VM exits are not required to invalidate any guest-physical mappings, nor are they required to invalidate any
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

27.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. VM exits clear any address-range monitoring that may be in effect.

27.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2). Specifically each entry in that area
(up to the number specified in the VM-exit MSR-load count) is processed in order by loading the MSR indexed by
bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101H (the IA32_GS_BASE

MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register

when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the

VM exit will not end in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-specific reasons. A

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection

exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so
that, after VM exit, the logical processor does not use any translations that were cached before the transition.

27.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical processor into a shut-
down state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The contents of these data
are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte offset 4 in the VMCS
region of the VMCS whose misconfiguration caused the failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that
the logical processor cannot complete the VM exit properly.

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a gen-
eral-protection exception if it would modify the LME bit. Since CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not
be included in the VM-exit MSR-load area for the purpose of modifying the LME bit.

27-30 Vol. 3C

VM EXITS

4. There was a failure on loading host MSRs (see Section 27.6).

5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host address-space size” VM-entry
control was 0 (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the host-state area. Because the
loading of such state may be done in any order (see Section 27.5) a VM exit that might lead to a VMX abort for
multiple reasons (for example, the current VMCS may be corrupt and the host PDPTEs might not be properly
configured). In such cases, the VMX-abort indicator could correspond to any one of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only with one of the non-
zero values mentioned above. The VMX-abort indicator allows software on one logical processor to diagnose the
VMX-abort on another. For this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a VMX abort depends on
whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code used is
000DH, indicating “VMX abort.” See Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to notify the chipset) and enters
the VMX-abort shutdown state. RESET is the only event that wakes a logical processor from the VMX-abort
shutdown state. The following events do not affect a logical processor in this state: machine-check events; INIT
signals; external interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-management
interrupts (SMIs).

27.8 MACHINE-CHECK EVENTS DURING VM EXIT
If a machine-check event occurs during VM exit, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX
operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code
000CH (unrecoverable machine-check condition).

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Vol. 3C 27-31

VM EXITS

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is delivered through the host IDT.
• A VMX abort is generated (see Section 27.7). The logical processor blocks events as done normally in

VMX abort. The VMX abort indicator is 5, for “machine-check event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has been loaded. The second
option is used only if VM entry is able to load all host state.

27-32 Vol. 3C

VM EXITS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

16.Updates to Chapter 34, Volume 3C
Change bars show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

Changes to this chapter: SMRAM typo corrections in Section 34.4.2 “SMRAM Caching”.

Vol. 3C 34-1

CHAPTER 34
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and manage various system
resources for more efficient energy usage, to control system hardware, and/or to run proprietary code. It was
introduced into the IA-32 architecture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and Pentium and Intel486
processors (beginning with the enhanced versions of the Intel486 SL and Intel486 processors).

34.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide functions like power management,
system hardware control, or proprietary OEM-designed code. It is intended for use only by system firmware, not by
applications software or general-purpose systems software. The main benefit of SMM is that it offers a distinct and
easily isolated processor environment that operates transparently to the operating system or executive and soft-
ware applications.

When SMM is invoked through a system management interrupt (SMI), the processor saves the current state of the
processor (the processor’s context), then switches to a separate operating environment defined by a new address
space. The system management software executive (SMI handler) starts execution in that environment, and the
critical code and data of the SMI handler reside in a physical memory region (SMRAM) within that address space.
While in SMM, the processor executes SMI handler code to perform operations such as powering down unused disk
drives or monitors, executing proprietary code, or placing the whole system in a suspended state. When the SMI
handler has completed its operations, it executes a resume (RSM) instruction. This instruction causes the processor
to reload the saved context of the processor, switch back to protected or real mode, and resume executing the
interrupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space that can be made inaccessible from the other

operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program or task.
• All interrupts normally handled by the operating system are disabled upon entry into SMM.
• The RSM instruction can be executed only in SMM.

Section 34.3 describes transitions into and out of SMM. The execution environment after entering SMM is in real-
address mode with paging disabled (CR0.PE = CR0.PG = 0). In this initial execution environment, the SMI handler
can address up to 4 GBytes of memory and can execute all I/O and system instructions. Section 34.5 describes in
detail the initial SMM execution environment for an SMI handler and operation within that environment. The SMI
handler may subsequently switch to other operating modes while remaining in SMM.

NOTES
Software developers should be aware that, even if a logical processor was using the physical-
address extension (PAE) mechanism (introduced in the P6 family processors) or was in IA-32e
mode before an SMI, this will not be the case after the SMI is delivered. This is because delivery of
an SMI disables paging (see Table 34-4). (This does not apply if the dual-monitor treatment of SMIs
and SMM is active; see Section 34.15.)

34.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes program execution (back to the soft-
ware stack consisting of executive and application software; see Section 34.2 through Section 34.13).

34-2 Vol. 3C

SYSTEM MANAGEMENT MODE

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual machines and each virtual machine
can support its own software stack of executive and application software. On processors that support VMX, virtual-
machine extensions may use system-management interrupts (SMIs) and system-management mode (SMM) in one
of two ways:
• Default treatment. System firmware handles SMIs. The processor saves architectural states and critical

states relevant to VMX operation upon entering SMM. When the firmware completes servicing SMIs, it uses
RSM to resume VMX operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing of SMIs: one VMM operates
outside of SMM to provide basic virtualization in support for guests; the other VMM operates inside SMM (while
in VMX operation) to support system-management functions. The former is referred to as executive monitor,
the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 34.14, “Default Treatment of SMIs and SMM with VMX Operation and
SMX Operation”. Dual-monitor treatment of SMM is described in Section 34.15, “Dual-Monitor Treatment of SMIs
and SMM”.

34.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or through an SMI
message received through the APIC bus. The SMI is a nonmaskable external interrupt that operates independently
from the processor’s interrupt- and exception-handling mechanism and the local APIC. The SMI takes precedence
over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in
SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that is designated as an
application processor during an MP initialization sequence is waiting for a startup IPI (SIPI), it is in
a mode where SMIs are masked. However if a SMI is received while an application processor is in
the wait for SIPI mode, the SMI will be pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before handling the SIPI.
An SMI may be blocked for one instruction following execution of STI, MOV to SS, or POP into SS.

34.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor operating modes (protected,
real-address, and virtual-8086). Signaling an SMI while the processor is in real-address, protected, or virtual-8086
modes always causes the processor to switch to SMM. Upon execution of the RSM instruction, the processor always
returns to the mode it was in when the SMI occurred.

34.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible” point in program execution
(which is commonly at an IA-32 architecture instruction boundary). When the processor receives an SMI, it waits
for all instructions to retire and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 34.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMI handling has begun. The signaling mecha-
nism used is implementation dependent. For the P6 family processors, an SMI acknowledge transaction is gener-

1. The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

Vol. 3C 34-3

SYSTEM MANAGEMENT MODE

ated on the system bus and the multiplexed status signal EXF4 is asserted each time a bus transaction is generated
while the processor is in SMM. For the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI, maskable hardware
interrupt, or a debug exception occurs at an instruction boundary along with an SMI, only the SMI is handled.
Subsequent SMI requests are not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to external hardware) is latched
and serviced when the processor exits SMM with the RSM instruction. The processor will latch only one SMI while
in SMM.

See Section 34.5 for a detailed description of the execution environment when in SMM.

34.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only available to the SMI
handler; if the processor is not in SMM, attempts to execute the RSM instruction result in an invalid-opcode excep-
tion (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from SMRAM back into the
processor’s registers. The processor then returns an SMIACK transaction on the system bus and returns program
control back to the interrupted program.

Upon successful completion of the RSM instruction, the processor signals external hardware that SMM has been
exited. For the P6 family processors, an SMI acknowledge transaction is generated on the system bus and the
multiplexed status signal EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, the
SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown state and generates
a special bus cycle to indicate it has entered shutdown state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not happen unless SMI

handler code modifies reserved areas of the SMRAM saved state map (see Section 34.4.1). CR4 is saved in the
state map in a reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG set to 1 and PE set to 0, or NW
set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an RSM

instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the P6 family
processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted.
While Pentium family processors recognize the SMI# signal in shutdown state, P6 family and Intel486 processors
do not. Intel does not support using SMI# to recover from shutdown states for any processor family; the response
of processors in this circumstance is not well defined. On Pentium 4 and later processors, shutdown will inhibit INTR
and A20M but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no action is
taken in the SMI handler to uninhibit them (see Section 34.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM slightly
differently (see Section 34.10). Also, the SMBASE address can be changed on a return from SMM (see Section
34.11).

34.4 SMRAM
Upon entering SMM, the processor switches to a new address space. Because paging is disabled upon entering
SMM, this initial address space maps all memory accesses to the low 4 GBytes of the processor's physical address
space. The SMI handler's critical code and data reside in a memory region referred to as system-management RAM
(SMRAM). The processor uses a pre-defined region within SMRAM to save the processor's pre-SMI context. SMRAM
can also be used to store system management information (such as the system configuration and specific informa-
tion about powered-down devices) and OEM-specific information.

34-4 Vol. 3C

SYSTEM MANAGEMENT MODE

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory called the SMBASE
(see Figure 34-1). The SMBASE default value following a hardware reset is 30000H. The processor looks for the
first instruction of the SMI handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 34.4.1 for a description of the mapping of the state
save area.

The system logic is minimally required to decode the physical address range for the SMRAM from [SMBASE +
8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The size of this SMRAM can be between 32
KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section 34.11). It should be noted
that all processors in a multiple-processor system are initialized with the same SMBASE value (30000H). Initializa-
tion software must sequentially place each processor in SMM and change its SMBASE so that it does not overlap
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM memory. The processor
generates an SMI acknowledge transaction (P6 family processors) or asserts the SMIACT# pin (Pentium and
Intel486 processors) when the processor receives an SMI (see Section 34.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to decode accesses to
the SMRAM and redirect them (if desired) to specific SMRAM memory. If a separate RAM memory is used for
SMRAM, system logic should provide a programmable method of mapping the SMRAM into system memory space
when the processor is not in SMM. This mechanism will enable start-up procedures to initialize the SMRAM space
(that is, load the SMI handler) before executing the SMI handler during SMM.

34.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters SMM, it writes its state to the
state save area of the SMRAM. The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to
[SMBASE + 8000H + 7E00H]. Table 34-1 shows the state save map. The offset in column 1 is relative to the
SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read and changed by the
SMI handler, with the changed values restored to the processor registers by the RSM instruction. Some register
images are read-only, and must not be modified (modifying these registers will result in unpredictable behavior).
An SMI handler should not rely on any values stored in an area that is marked as reserved.

Figure 34-1. SMRAM Usage

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point

Vol. 3C 34-5

SYSTEM MANAGEMENT MODE

The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS, ES, FS, GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all reserved locations in
the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM instruction, respectively:

Table 34-1. SMRAM State Save Map

Offset
(Added to SMBASE + 8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 34.7 No

7FA0H I/O Memory Address Field, see Section 34.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

34-6 Vol. 3C

SYSTEM MANAGEMENT MODE

• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test registers TR3 through TR7 (for

the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down should
first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile storage.
After the power-on reset, the continuation of the SMI handler should restore these values, along with the rest of
the system's state. Anytime the SMI handler changes these registers in the processor, it must also save and restore
them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and performance-monitoring
counters) are not arbitrarily writable and therefore cannot be saved and restored. SMM-based
power-down and restoration should only be performed with operating systems that do not use or
rely on the values of these registers.
Operating system developers should be aware of this fact and insure that their operating-system
assisted power-down and restoration software is immune to unexpected changes in these register
values.

34.4.1.1 SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of the SMRAM. The state save area
on an Intel 64 processor at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H + 7C00H].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state save
map is shown in Table 34-3.

Additionally, the SMRAM state save map shown in Table 34-3 also applies to processors with the following CPUID
signatures listed in Table 34-2, irrespective of the value in CPUID.80000001:EDX[29].

Table 34-2. Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9xxx, Intel Core 2 Duo
processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme,
Intel Core 2 Duo processors, Intel Pentium dual-core processors

06_1CH 45 nm Intel® Atom™ processors

Vol. 3C 34-7

SYSTEM MANAGEMENT MODE

Table 34-3. SMRAM State Save Map for Intel 64 Architecture

Offset
(Added to SMBASE + 8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

34-8 Vol. 3C

SYSTEM MANAGEMENT MODE

34.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before entering SMM or before
exiting SMM. Because of this behavior, care must be taken in the placement of the SMRAM in system memory and
in the caching of the SMRAM to prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Any of the following three methods of locating the SMRAM in system memory will guar-
antee cache coherency.
• Place the SMRAM in a dedicated section of system memory that the operating system and applications are

prevented from accessing. Here, the SMRAM can be designated as cacheable (WB, WT, or WC) for optimum
processor performance, without risking cache incoherence when entering or exiting SMM.

• Place the SMRAM in a section of memory that overlaps an area used by the operating system (such as the video
memory), but designate the SMRAM as uncacheable (UC). This method prevents cache access when in SMM to
maintain cache coherency, but the use of uncacheable memory reduces the performance of SMM code.

• Place the SMRAM in a section of system memory that overlaps an area used by the operating system and/or
application code, but explicitly flush (write back and invalidate) the caches upon entering and exiting SMM
mode. This method maintains cache coherency, but incurs the overhead of two complete cache flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of locating the SMRAM
is recommended. Here the SMRAM is split between an overlapping and a dedicated region of memory. Upon
entering SMM, the SMRAM space that is accessed overlaps video memory (typically located in low memory). This
SMRAM section is designated as UC memory. The initial SMM code then jumps to a second SMRAM section that is
located in a dedicated region of system memory (typically in high memory). This SMRAM section can be cached for
optimum processor performance.

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_RIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 34-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE + 8000H)

Register Writable?

Vol. 3C 34-9

SYSTEM MANAGEMENT MODE

For systems that explicitly flush the caches upon entering SMM (the third method described above), the cache flush
can be accomplished by asserting the FLUSH# pin at the same time as the request to enter SMM (generally initi-
ated by asserting the SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is serviced
first. To guarantee this behavior, the processor requires that the following constraints on the interaction of FLUSH#
and SMI# be met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold times
are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous systems, the
FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee that the FLUSH# pin is serviced
first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction should be executed prior
to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin to write back and invalidate
cache contents before entering SMM, the processor will prefetch at least one cache line in between
when the Flush Acknowledge cycle is run and the subsequent recognition of SMI# and the assertion
of SMIACT#.
It is the obligation of the system to ensure that these lines are not cached by returning KEN#
inactive to the Pentium processor.

34.4.2.1 System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR interface is an enhancement in Intel
64 architecture to limit cacheable reference of addresses in SMRAM to code running in SMM. The SMRR interface
can be configured only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

34.5 SMI HANDLER EXECUTION ENVIRONMENT
Section 34.5.1 describes the initial execution environment for an SMI handler. An SMI handler may re-configure its
execution environment to other supported operating modes. Section 34.5.2 discusses modifications an SMI
handler can make to its execution environment.

34.5.1 Initial SMM Execution Environment
After saving the current context of the processor, the processor initializes its core registers to the values shown in
Table 34-4. Upon entering SMM, the PE and PG flags in control register CR0 are cleared, which places the processor
in an environment similar to real-address mode. The differences between the SMM execution environment and the
real-address mode execution environment are as follows:
• The addressable address space ranges from 0 to FFFFFFFFH (4 GBytes).
• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.
• The default operand and address sizes are set to 16 bits, which restricts the addressable SMRAM address space

to the 1-MByte real-address mode limit for native real-address-mode code. However, operand-size and
address-size override prefixes can be used to access the address space beyond the 1-MByte.

Table 34-4. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

34-10 Vol. 3C

SYSTEM MANAGEMENT MODE

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit operand-size override
prefix is used. Due to the real-address-mode style of base-address formation, a far call or jump cannot transfer
control to a segment with a base address of more than 20 bits (1 MByte). However, since the segment limit in
SMM is 4 GBytes, offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit
operand-size override prefixes. Any program control transfer that does not have a 32-bit operand-size override
prefix truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but can be accessed only with a 32-
bit address-size override if they are located above 1 MByte. As with the code segment, the base address for a
data or stack segment cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE shifted 4 bits to the
right; that is, 3000H. The EIP register is set to 8000H. When the EIP value is added to shifted CS value (the
SMBASE), the resulting linear address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits are set to 4 GBytes.
In this state, the SMRAM address space may be treated as a single flat 4-GByte linear address space. If a segment
register is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded into the segment base
(hidden part of the segment register). The limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single-step traps,
breakpoint traps, and INIT operations are inhibited when the processor enters SMM. Maskable hardware interrupts,
exceptions, single-step traps, and breakpoint traps can be enabled in SMM if the SMM execution environment
provides and initializes an interrupt table and the necessary interrupt and exception handlers (see Section 34.6).

34.5.2 SMI Handler Operating Mode Switching
Within SMM, an SMI handler may change the processor's operating mode (e.g., to enable PAE paging, enter 64-bit
mode, etc.) after it has made proper preparation and initialization to do so. For example, if switching to 32-bit
protected mode, the SMI handler should follow the guidelines provided in Chapter 9, “Processor Management and
Initialization”. If the SMI handler does wish to change operating mode, it is responsible for executing the appro-
priate mode-transition code after each SMI.

It is recommended that the SMI handler make use of all means available to protect the integrity of its critical code
and data. In particular, it should use the system-management range register (SMRR) interface if it is available (see
Section 11.11.2.4). The SMRR interface can protect only the first 4 GBytes of the physical address space. The SMI
handler should take that fact into account if it uses operating modes that allow access to physical addresses beyond
that 4-GByte limit (e.g. PAE paging or 64-bit mode).

Execution of the RSM instruction restores the pre-SMI processor state from the SMRAM state-state map (see
Section 34.4.1) into which it was stored when the processor entered SMM. (The SMBASE field in the SMRAM state-
save map does not determine the state following RSM but rather the initial environment following the next entry to
SMM.) Any required change to operating mode is performed by the RSM instruction; there is no need for the SMI
handler to change modes explicitly prior to executing RSM.

34.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following manner:

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

Table 34-4. Processor Register Initialization in SMM

Vol. 3C 34-11

SYSTEM MANAGEMENT MODE

• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware interrupts from being
generated.

• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a debugger from acciden-

tally breaking into an SMI handler if a debug breakpoint is set in normal address space that overlays code or
data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 34.8 for more information
about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts can be enabled by
setting the IF flag. Intel recommends that SMM code be written in so that it does not invoke software interrupts
(with the INT n, INTO, INT 3, or BOUND instructions) or generate exceptions.

If the SMI handler requires interrupt and exception handling, an SMM interrupt table and the necessary exception
and interrupt handlers must be created and initialized from within SMM. Until the interrupt table is correctly initial-
ized (using the LIDT instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-address mode style interrupt

vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or exception cannot transfer control

to a segment with a base address of more that 20 bits.
• An interrupt or exception cannot transfer control to a segment offset of more than 16 bits (64 KBytes).
• When an exception or interrupt occurs, only the 16 least-significant bits of the return address (EIP) are pushed

onto the stack. If the offset of the interrupted procedure is greater than 64 KBytes, it is not possible for the
interrupt/exception handler to return control to that procedure. (One solution to this problem is for a handler
to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an interrupt or exception
generated while the SMI handler is executing. For example, if the SMBASE is relocated to above 1 MByte, but
the exception handlers are below 1 MByte, a normal return to the SMI handler is not possible. One solution is
to provide the exception handler with a mechanism for calculating a return address above 1 MByte from the 16-
bit return address on the stack, then use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an SMM accessible debug handler
is available and save the current contents of debug registers DR0 through DR3 (for later restoration). Debug
registers DR0 through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that an SMM accessible single-
step handler is available, and then set the TF flag in the EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware interrupts or software-generated
interrupts while in SMM, it must ensure that SMM accessible interrupt handlers are available and then set the
IF flag in the EFLAGS register (using the STI instruction). Software interrupts are not blocked upon entry to
SMM, so they do not need to be enabled.

34.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not always possible for an
SMI handler to distinguish between a synchronous SMI (triggered during an I/O instruction) and an asynchronous
SMI. To facilitate the discrimination of these two events, incremental state information has been added to the SMM
state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental state information described
below.

34-12 Vol. 3C

SYSTEM MANAGEMENT MODE

34.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only when an SMI is either taken
immediately after a successful I/O instruction or is taken after a successful iteration of a REP I/O instruction (the
successful notion pertains to the processor point of view; not necessarily to the corresponding platform function).
When set, the IO_SMI bit provides a strong indication that the corresponding SMI was synchronous. In this case,
the SMM State Save Map also supplies the port address of the I/O operation. The IO_SMI bit and the I/O Port
Address may be used in conjunction with the information logged by the platform to confirm that the SMI was
indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchronous. This is because an
asynchronous SMI might coincidentally be taken after an I/O instruction. In such a case, the IO_SMI bit would still
be set in the SMM state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM State Save Map (Table 34-5).
The IO_SMI bit also serves as a valid bit for the rest of the I/O information fields. The contents of these I/O infor-
mation fields are not defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 34-6)

Table 34-5. I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or higher) Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 34-6. I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Vol. 3C 34-13

SYSTEM MANAGEMENT MODE

34.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI handler.
If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not blocked before the SMI occurred. If
NMIs were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled through software by
executing an IRET instruction. If the SMI handler requires the use of NMI interrupts, it should invoke a dummy
interrupt service routine for the purpose of executing an IRET instruction. Once an IRET instruction is executed,
NMI interrupt requests are serviced in the same “real mode” manner in which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then another NMI occurs. During NMI
interrupt handling, NMI interrupts are disabled, so normally NMI interrupts are serviced and completed with an
IRET instruction one at a time. When the processor enters SMM while executing an NMI handler, the processor
saves the SMRAM state save map but does not save the attribute to keep NMI interrupts disabled. Potentially, an
NMI could be latched (while in SMM or upon exit) and serviced upon exit of SMM even though the previous NMI
handler has still not completed. One or more NMIs could thus be nested inside the first NMI handler. The NMI inter-
rupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI interrupts from inside
of SMM. This behavior is implementation specific for the Pentium processor and is not part of the IA-32 architec-
ture.

34.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM extensions that are supported
by the processor (see Figure 34-2). The SMM revision identifier is written during SMM entry and can be examined
in SMRAM space at offset 7EFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If the I/O instruction restart flag
(bit 16) is set, the processor supports the I/O instruction restart (see Section 34.12); if the SMBASE relocation flag
(bit 17) is set, SMRAM base address relocation is supported (see Section 34.11).

34.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it receives an SMI, the
processor records the fact in the auto HALT restart flag in the saved processor state (see Figure 34-3). (This flag is
located at offset 7F02H and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI occurred when the
processor was in the HALT state), the SMI handler has two options:

Figure 34-2. SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH
31 0

Reserved

18 17 16 15

34-14 Vol. 3C

SYSTEM MANAGEMENT MODE

• It can leave the auto HALT restart flag set, which instructs the RSM instruction to return program control to the
HLT instruction. This option in effect causes the processor to re-enter the HALT state after handling the SMI.
(This is the default operation.)

• It can clear the auto HALT restart flag, which instructs the RSM instruction to return program control to the
instruction following the HLT instruction.

These options are summarized in Table 34-7. If the processor was not in a HALT state when the SMI was received
(the auto HALT restart flag is cleared), setting the flag to 1 will cause unpredictable behavior when the RSM instruc-
tion is executed.

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT instruction (if it is
not in the internal cache), and execute a HLT bus transaction. This behavior results in multiple HLT bus transactions
for the same HLT instruction.

34.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been enabled by setting the IF flag
in the EFLAGS register. If the processor is halted in SMM, the only event that can remove the processor from this
state is a maskable hardware interrupt or a hardware reset.

34.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an internal processor register called
the SMBASE register. The operating system or executive can relocate the SMRAM by setting the SMBASE field in the
saved state map (at offset 7EF8H) to a new value (see Figure 34-4). The RSM instruction reloads the internal
SMBASE register with the value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use
the new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and the SMRAM state
save area (from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its internal SMBASE
register to 30000H on a RESET, but does not change it on an INIT.)

Figure 34-3. Auto HALT Restart Field

Table 34-7. Auto HALT Restart Flag Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015
Reserved Register Offset

7F02H

1

Vol. 3C 34-15

SYSTEM MANAGEMENT MODE

In multiple-processor systems, initialization software must adjust the SMBASE value for each processor so that the
SMRAM state save areas for each processor do not overlap. (For Pentium and Intel486 processors, the SMBASE
values must be aligned on a 32-KByte boundary or the processor will enter shutdown state during the execution of
a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability to relocate the
SMBASE (see Section 34.9).

34.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 34.9), the I/O instruction
restart mechanism is present on the processor. This mechanism allows an interrupted I/O instruction to be re-
executed upon returning from SMM mode. For example, if an I/O instruction is used to access a powered-down I/O
device, a chip set supporting this device can intercept the access and respond by asserting SMI#. This action
invokes the SMI handler to power-up the device. Upon returning from the SMI handler, the I/O instruction restart
mechanism can be used to re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see Figure 34-5) controls I/O instruc-
tion restart. When an RSM instruction is executed, if this field contains the value FFH, then the EIP register is modi-
fied to point to the I/O instruction that received the SMI request. The processor will then automatically re-execute
the I/O instruction that the SMI trapped. (The processor saves the necessary machine state to insure that re-
execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is executed, then the processor
begins program execution with the instruction following the I/O instruction. (When a repeat prefix is being used,
the next instruction may be the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O
instruction is the default behavior; the processor automatically initializes the I/O instruction restart field to 00H
upon entering SMM. Table 34-8 summarizes the states of the I/O instruction restart field.

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is the responsibility of the SMI
handler to examine the state of the processor to determine the cause of the SMI and to determine if an I/O instruc-
tion was interrupted and should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O
instruction boundary, setting the I/O instruction restart field to FFH prior to executing the RSM instruction will likely
result in a program error.

Figure 34-4. SMBASE Relocation Field

Figure 34-5. I/O Instruction Restart Field

Table 34-8. I/O Instruction Restart Field Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

031

SMM Base Register Offset
7EF8H

015

I/O Instruction Restart Field Register Offset
7F00H

34-16 Vol. 3C

SYSTEM MANAGEMENT MODE

34.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used
If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred on an I/O instruction
boundary, the processor will service the new SMI request before restarting the originally interrupted I/O instruc-
tion. If the I/O instruction restart field is set to FFH prior to returning from the second SMI handler, the EIP will point
to an address different from the originally interrupted I/O instruction, which will likely lead to a program error. To
avoid this situation, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts when
I/O instruction restart is being used and insure that the handler sets the I/O instruction restart field to 00H prior to
returning from the second invocation of the SMI handler.

34.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory space. The only stipulation is that

each processor needs its own state save area and its own dynamic data storage area. (Also, for the Pentium
and Intel486 processors, the SMBASE address must be located on a 32-KByte boundary.) Code and static data
can be shared among processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family
processors because they do not require that the SMBASE address be on a 32-KByte boundary.

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received through the APIC interface.

The APIC interface can distribute SMIs to different processors.
• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is driven only by the MRM

processor and should be sampled with ADS#. For additional details, see Chapter 14 of the Pentium Processor
Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE. If there is a need to
support two or more processors in SMM mode at the same time then each processor should have dedicated SMRAM
spaces. This can be done by using the SMBASE Relocation feature (see Section 34.11).

34.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND
SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation are few. This section details
those interactions. It also explains how this treatment affects SMX operation.

34.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based on architectural definitions.
Under the default treatment, processors that support VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

Vol. 3C 34-17

SYSTEM MANAGEMENT MODE

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H
are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This state consists of the following:
(1) SS.DPL (the current privilege level); (2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see
Table 24-3 in Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX non-root oper-
ation and the “virtual NMIs” VM-execution control is 1); and (5) an indication of whether an MTF VM exit is pending
(see Section 25.5.2). These data may be saved internal to the processor or in the VMCS region of the current
VMCS. Processors that do not support SMI recognition while there is blocking by STI or by MOV SS need not save
the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution control and the logical processor
was in VMX non-root operation at the time of an SMI, it saves the value of that control into bit 0 of the 32-bit field
at offset SMBASE + 8000H + 7EE0H (SMBASE + FEE0H; see Table 34-3).3 If the logical processor was not in VMX
non-root operation at the time of the SMI, it saves 0 into that bit. If the logical processor saves 1 into that bit (it
was in VMX non-root operation and the “enable EPT” VM-execution control was 1), it saves the value of the EPT
pointer (EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the controls associated with VMX non-
root operation are disabled in SMM and thus cannot cause VM exits while the logical processor in SMM.

34.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default treatment, processors that
support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; combined mappings are invalidated

for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);
IF the logical processor supports SMX operation andthe Intel® TXT private space was unlocked at the time of the last SMI (as

saved)
THEN unlock the TXT private space;

FI;
CR4.VMXE ← value stored internally;

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.

2. Section 34.14 and Section 34.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that
support VMX operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation
refers to the 32-bit forms of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer spe-
cifically to the lower 32 bits of the register.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, SMI functions as the “enable EPT” VM-execution control were 0. See Section 24.6.2.

34-18 Vol. 3C

SYSTEM MANAGEMENT MODE

IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 34.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in VMX operation (see Section 23.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-execution control is 0)2

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 24-3 in Section 24.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution control will be 0, the state of

NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution control will be 1, NMIs are not

blocked after RSM. The state of virtual-NMI blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls associated with the
current VMCS. If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs immediately after RSM
if the enabling conditions apply. The same is true for the “NMI-window exiting” VM-execution control. Such
VM exits occur with their normal priority. See Section 25.2.

If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is pending on the instruction
boundary following execution of RSM. The following items detail the treatment of MTF VM exits that may be
pending following RSM:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these MTF

VM exits. These MTF VM exits take priority over debug-trap exceptions and lower priority events.
• These MTF VM exits wake the logical processor if RSM caused the logical processor to enter the HLT state (see

Section 34.10). They do not occur if the logical processor just entered the shutdown state.

34.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is in SMM. Any
attempt by software running in SMM to set this bit causes a general-protection exception. In addition, software
cannot use VMX instructions or enter VMX operation while in SMM.

34.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section 34.15.1) and only outside
SMM. If SMIs are blocked when VMXOFF is executed, VMXOFF unblocks them unless

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control and bit 31 of the primary proces-
sor-based VM-execution controls will be 1, CR0.PE and CR0.PG retain the values that were loaded from SMRAM regardless of what is
reported in the capability MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

Vol. 3C 34-19

SYSTEM MANAGEMENT MODE

IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.15.5 for details regarding this MSR).1 Section 34.15.7 iden-
tifies a case in which SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC
(see Appendix A.6) to determine whether this is allowed.

34.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive monitor (the VMM that operates
outside of SMM to provide basic virtualization) and the SMM-transfer monitor (STM; the VMM that operates
inside SMM—while in VMX operation—to support system-management functions). Control is transferred to the STM
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability
MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

34.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor (STM). Transitions from the
executive monitor or its guests to the STM are called SMM VM exits and are discussed in Section 34.15.2. SMM
VM exits are caused by SMIs as well as executions of VMCALL in VMX root operation. The latter allow the executive
monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS and perform VM entries to its
own guests. This is done all inside SMM (see Section 34.15.3). The STM returns from SMM, not by using the RSM
instruction, but by using a VM entry that returns from SMM. Such VM entries are described in Section 34.15.4.

Initially, there is no STM and the default treatment (Section 34.14) is used. The dual-monitor treatment is not used
until it is enabled and activated. The steps to do this are described in Section 34.15.5 and Section 34.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF will fail if executed. The dual-
monitor treatment must be deactivated first. The STM deactivates dual-monitor treatment using a VM entry that
returns from SMM with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 34.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive monitor. SMM VM exits, which
transfer control to the STM, use a different VMCS. Under the dual-monitor treatment, each logical processor uses
a separate VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active, the logical
processor maintains another VMCS pointer called the SMM-transfer VMCS pointer. The SMM-transfer VMCS
pointer is established when the dual-monitor treatment is activated.

34.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits result from the arrival of an
SMI outside SMM or from execution of VMCALL in VMX root operation outside SMM. Execution of VMCALL in VMX
root operation causes an SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see Section
34.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the default treatment. This SMM
VM exit activates the dual-monitor treatment (see Section 34.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 34.15.2.1 through 34.15.2.5.
Differences between SMM VM exits that activate the dual-monitor treatment and other SMM VM exits are described
in Section 34.15.6.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s valid
bit (bit 0).

34-20 Vol. 3C

SYSTEM MANAGEMENT MODE

34.15.2.1 Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so directly. They do not save state to
SMRAM as they do under the default treatment.

34.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit information is recorded in that
VMCS, and VM-entry control fields in that VMCS are updated. State is saved into the guest-state area of that VMCS.
The VM-exit controls and host-state area of that VMCS determine how the VM exit operates.

34.15.2.3 Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit information. The differences
follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with the reason for the SMM VM exit:
I/O SMI (an SMI arrived immediately after retirement of an I/O instruction), other SMI, or VMCALL. See
Appendix C, “VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation. Because the SMM-transfer
monitor may need to know whether it was invoked from VMX root or VMX non-root operation, this
information is stored in bit 29 of the exit-reason field (see Table 24-14 in Section 24.9.1). The bit is set by
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit was pending, bit 28 of the exit-
reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately after the retirement of an I/O

instruction, the exit qualification contains information about the I/O instruction that retired immediately before
the SMI. It has the format given in Table 34-9.

Table 34-9. Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

Vol. 3C 34-21

SYSTEM MANAGEMENT MODE

• Guest linear address. This field is used for VM exits due to SMIs that arrive immediately after the retirement
of an INS or OUTS instruction for which the relevant segment (ES for INS; DS for OUTS unless overridden by
an instruction prefix) is usable. The field receives the value of the linear address generated by ES:(E)DI (for
INS) or segment:(E)SI (for OUTS; the default segment is DS but can be overridden by a segment override
prefix) at the time the instruction started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical processor was not in 64-bit
mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI that arrives immediately after
the retirement of an I/O instruction, these fields receive the values that were in RCX, RSI, RDI, and RIP, respec-
tively, before the I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O instruction.

34.15.2.4 Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field in the guest-state area.

The value of the VMX-preemption timer is saved into the corresponding field in the guest-state area if the “save
VMX-preemption timer value” VM-exit control is 1. That field becomes undefined if, in addition, either the SMM
VM exit is from VMX root operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

34.15.2.5 Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be unblocked through execution

of IRET or through a VM entry (depending on the value loaded for the interruptibility state and the setting of
the “virtual NMIs” VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that returns from SMM (see
Section 34.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with VPID 0000H for all PCIDs.
Combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP;
see Section 28.3). (Ordinary VM exits are not required to perform such invalidation if the “enable VPID” VM-execu-
tion control is 1; see Section 27.5.5.)

34.15.3 Operation of the SMM-Transfer Monitor
Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use VMX instructions to configure
VMCSs and to cause VM entries to virtual machines supported by those structures. As noted in Section 34.15.1, the
VMXOFF instruction cannot be used under the dual-monitor treatment and thus cannot be used by the STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted in Section 25.1.3, it causes
a VM exit if executed in SMM in VMX non-root operation. If executed in VMX root operation, it causes an invalid-
opcode exception. The STM uses VM entries to return from SMM (see Section 34.15.4).

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.

Table 34-9. Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O Instruction (Contd.)

Bit Position(s) Contents

34-22 Vol. 3C

SYSTEM MANAGEMENT MODE

34.15.4 VM Entries that Return from SMM
The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry to SMM” VM-entry control
clear. VM entries that return from SMM reverse the effects of an SMM VM exit (see Section 34.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not necessarily enter VMX non-
root operation. If the executive-VMCS pointer field in the current VMCS contains the VMXON pointer, the logical
processor remains in VMX root operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see Sections 34.15.4.1 through
34.15.4.10.

34.15.4.1 Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-VMCS pointer field in the current
VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer must contain the processor’s
VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 34.15.4.2 and before any of the following
checks:
• 'If the “deactivate dual-monitor treatment” VM-entry control is 0 and the executive-VMCS pointer field does not

contain the VMXON pointer, the launch state of the executive VMCS (the VMCS referenced by the executive-
VMCS pointer field) must be launched (see Section 24.11.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS pointer field must
contain the VMXON pointer (see Section 34.15.7).3

34.15.4.2 Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-
execution control fields specified in Section 26.2.1.1. They do not apply the checks to the current VMCS. Instead,
VM-entry behavior depends on whether the executive-VMCS pointer field contains the VMXON pointer:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),

the checks are not performed at all.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root

operation), the checks are performed on the VM-execution control fields in the executive VMCS (the VMCS
referenced by the executive-VMCS pointer field in the current VMCS). These checks are performed after
checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-
preemption timer value” VM-exit control is also 0. This check is not performed by VM entries that return from SMM.

34.15.4.3 Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-entry
control fields specified in Section 26.2.1.3.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit
that activates the dual-monitor treatment.

Vol. 3C 34-23

SYSTEM MANAGEMENT MODE

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root
operation), the VM-entry interruption-information field must not indicate injection of a pending MTF VM exit (see
Section 26.5.2). Specifically, the following cannot all be true for that field:
• the valid bit (bit 31) is 1
• the interruption type (bits 10:8) is 7 (other event); and
• the vector (bits 7:0) is 0 (pending MTF VM exit).

34.15.4.4 Checks on the Guest State Area
Section 26.3.1 specifies checks performed on fields in the guest-state area of the VMCS. Some of these checks are
conditioned on the settings of certain VM-execution controls (e.g., “virtual NMIs” or “unrestricted guest”).
VM entries that return from SMM modify these checks based on whether the executive-VMCS pointer field contains
the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),
the checks are performed as all relevant VM-execution controls were 0. (As a result, some checks may not be
performed at all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root
operation), this check is performed based on the settings of the VM-execution controls in the executive VMCS
(the VMCS referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI state if the execu-
tive-VMCS pointer field contains the VMXON pointer (the VM entry is to VMX root operation).

34.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings associated with all VPIDs.
Combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section
28.3). (Ordinary VM entries are required to perform such invalidation only for VPID 0000H and are not required to
do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

34.15.4.6 VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the executive-VMCS pointer field
does not contain the VMXON pointer (the VM entry enters VMX non-root operation) and the “activate VMX-preemp-
tion timer” VM-execution control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS pointer
field). In this case, VM entry starts the VMX-preemption timer with the value in the VMX-preemption timer-value
field in the current VMCS.

34.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer with the current-VMCS pointer.
Following this, they load the current-VMCS pointer from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),

the current-VMCS pointer is loaded from the VMCS-link pointer field.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root

operation), the current-VMCS pointer is loaded with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution controls in effect after the VM entry
are those from the new current VMCS. This includes any structures external to the VMCS referenced by VM-execu-
tion control fields.

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit
that activates the dual-monitor treatment.

34-24 Vol. 3C

SYSTEM MANAGEMENT MODE

The updating of these VMCS pointers occurs before event injection. Event injection is determined, however, by the
VM-entry control fields in the VMCS that was current when the VM entry commenced.

34.15.4.8 VM Exits Induced by VM Entry
Section 26.5.1.2 describes how the event-delivery process invoked by event injection may lead to a VM exit.
Section 26.6.3 to Section 26.6.7 describe other situations that may cause a VM exit to occur immediately after a
VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the current VMCS. For VM entries
that return from SMM, they can occur only if the executive-VMCS pointer field does not contain the VMXON pointer
(the VM entry enters VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS that is current after the
VM entry. This is the VMCS referenced by the value of the executive-VMCS pointer field at the time of the VM entry
(see Section 34.15.4.7). This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a
VM entry returning from SMM are to the executive monitor and not to the STM.

34.15.4.9 SMI Blocking
VM entries that return from SMM determine the blocking of system-management interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are blocked after VM entry if and only if

the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of SMIs depends on whether the

logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treatment may leave SMIs blocked.
This feature exists to allow the STM to invoke functionality outside of SMM without unblocking SMIs.

34.15.4.10 Failures of VM Entries That Return from SMM
Section 26.7 describes the treatment of VM entries that fail during or after loading guest state. Such failures record
information in the VM-exit information fields and load processor state as would be done on a VM exit. The VMCS
used is the one that was current before the VM entry commenced. Control is thus transferred to the STM and the
logical processor remains in SMM.

34.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM called the monitor segment
(MSEG). Code running in SMM determines the location of MSEG and establishes its content. This code is also
responsible for enabling the dual-monitor treatment.

SMM code enables the dual-monitor treatment and specifies the location of MSEG by writing to the
IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this bit is 1. Because VMCALL is

used to activate the dual-monitor treatment (see Section 34.15.6), the dual-monitor treatment cannot be
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference‚” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.

Vol. 3C 34-25

SYSTEM MANAGEMENT MODE

• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default treatment of SMIs and SMM.
Executions of VMXOFF unblock SMIs unless bit 2 is 1 (the value of bit 0 is irrelevant). See Section 34.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 6, “Safer Mode Extensions
Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted left 12 bits, is the physical address of MSEG (the MSEG base

address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support the dual-monitor treatment.1

On other processors, accesses to the MSR using RDMSR or WRMSR generate a general-protection fault
(#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-protection fault (#GP(0)) if
executed outside of SMM or if an attempt is made to set any reserved bit. An attempt to write to the
IA32_SMM_MONITOR_CTL MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

• Reads from the IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time RDMSR is allowed. The
MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the MSEG header is
given in Table 34-10 (each field is 32 bits).

To ensure proper behavior in VMX operation, software should maintain the MSEG header in writeback cacheable
memory. Future implementations may allow or require a different memory type.2 Software should consult the VMX
capability MSR IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in IA32_SMM_MONITOR_CTL MSR)
only after establishing the content of the MSEG header as follows:

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor
treatment is supported.

Table 34-10. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

2. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary, depending on how memory is
organized. Doing so is strongly discouraged unless necessary as it will cause the performance of transitions using those structures
to suffer significantly. In addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

34-26 Vol. 3C

SYSTEM MANAGEMENT MODE

• Bytes 3:0 contain the MSEG revision identifier. Different processors may use different MSEG revision identi-
fiers. These identifiers enable software to avoid using an MSEG header formatted for one processor on a
processor that uses a different format. Software can discover the MSEG revision identifier that a processor uses
by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this field are reserved and must be
zero. Bit 0 of the field is the IA-32e mode SMM feature bit. It indicates whether the logical processor will be
in IA-32e mode after the STM is activated (see Section 34.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the STM is activated (see Section
34.15.6.5). SMM code should establish these fields so that activating of the STM invokes the STM’s initialization
code.

34.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section 34.15.5. The dual-monitor treat-
ment is activated only if it is enabled and only by the executive monitor. The executive monitor activates the dual-
monitor treatment by executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. Differences between this SMM
VM exit and other SMM VM exits are discussed in Sections 34.15.6.1 through 34.15.6.6. See also “VMCALL—Call to
VM Monitor” in Chapter 30.

34.15.6.1 Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the processor supports the dual-
monitor treatment;1 (2) the logical processor is in VMX root operation; (3) the logical processor is outside SMM and
the valid bit is set in the IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 mode and
not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treatment is not active.

Such an execution of VMCALL begins with some initial checks. These checks are performed before updating the
current-VMCS pointer and the executive-VMCS pointer field (see Section 34.15.2.2).

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS established by the executive
monitor. The VMCALL performs the following checks on the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. Reserved bits in the VM-exit controls in the current VMCS must be set properly. Software may consult the VMX
capability MSR IA32_VMX_EXIT_CTLS to determine the proper settings (see Appendix A.4).

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks succeed, the logical
processor uses the IA32_SMM_MONITOR_CTL MSR to determine the base address of MSEG. The following checks
are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the processor’s MSEG
revision identifier.

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether the logical processor will be
in IA-32e mode after the SMM-transfer monitor (STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64 architecture, the IA-32e mode
SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor
treatment is supported.

Vol. 3C 34-27

SYSTEM MANAGEMENT MODE

34.15.6.2 Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 34.15.2.2, SMM VM exits that activate the dual-monitor treatment begin by
loading the SMM-transfer VMCS pointer with the value of the current-VMCS pointer.

34.15.6.3 Saving Guest State
As noted in Section 34.15.2.4, SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area. While this is true also for SMM VM exits that activate the dual-monitor treatment, the
VMCS used for those VM exits exists outside SMRAM.

The SMM-transfer monitor (STM) can also discover the current value of the SMBASE register by using the RDMSR
instruction to read the IA32_SMBASE MSR (MSR address 9EH). The following items detail use of this MSR:
• The MSR is supported only if IA32_VMX_MISC[15] = 1 (see Appendix A.6).
• A write to the IA32_SMBASE MSR using WRMSR generates a general-protection fault (#GP(0)). An attempt to

write to the IA32_SMBASE MSR fails if made as part of a VM exit or part of a VM entry.
• A read from the IA32_SMBASE MSR using RDMSR generates a general-protection fault (#GP(0)) if executed

outside of SMM. An attempt to read from the IA32_SMBASE MSR fails if made as part of a VM exit that does not
end in SMM.

34.15.6.4 Saving MSRs
The VM-exit MSR-store area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are
saved into that area.

34.15.6.5 Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment was established by the
executive monitor. It does not contain the VM-exit controls and host state required to initialize the STM. For this
reason, such SMM VM exits do not load processor state as described in Section 27.5. Instead, state is set to fixed
values or loaded based on the content of the MSEG header (see Table 34-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that support IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the CR3-offset field in the MSEG
header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the MSEG header are
ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE, PGE, and PCIDE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the processor; if the bit is set,
PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

34-28 Vol. 3C

SYSTEM MANAGEMENT MODE

• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the high 16 bits are ignored), with
bits 2:0 cleared to 0. If the result is 0000H, CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is 0000H (if the CS
selector was FFF8H), these selectors are instead set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code segment).

• For SS, DS, ES, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the value of the IA-32e mode SMM
feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM feature bit.

• For each of SS, DS, ES, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is otherwise undefined (although the

base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in the MSEG header

(bits 63:32 are always cleared on processors that support IA-32e mode). GDTR.limit is set to the corresponding
field in the MSEG header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the MSEG header

(bits 63:32 are always cleared on logical processors that support IA-32e mode).
• RSP is set to the sum of the MSEG base address and the value of the RSP-offset field in the MSEG header

(bits 63:32 are always cleared on logical processor that supports IA-32e mode).
• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that LME and LMA both contain

the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after
VM exit, the logical processor does not use translations that were cached before the transition. This is not neces-
sary for changes that would not affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).

34.15.6.6 Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are
loaded from that area.

Vol. 3C 34-29

SYSTEM MANAGEMENT MODE

34.15.7 Deactivating the Dual-Monitor Treatment
The SMM-transfer monitor may deactivate the dual-monitor treatment and return the processor to default treat-
ment of SMIs and SMM (see Section 34.14). It does this by executing a VM entry with the “deactivate dual-monitor
treatment” VM-entry control set to 1.

As noted in Section 26.2.1.3 and Section 34.15.4.1, an attempt to deactivate the dual-monitor treatment fails in
the following situations: (1) the processor is not in SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the
executive-VMCS pointer does not contain the VMXON pointer (the VM entry is to VMX non-root operation).

As noted in Section 34.15.4.9, VM entries that deactivate the dual-monitor treatment ignore the SMI bit in the
interruptibility-state field of the guest-state area. Instead, the blocking of SMIs following such a VM entry depends
on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry. SMIs may later be unblocked by
the VMXOFF instruction (see Section 34.14.4) or by certain leaf functions of the GETSEC instruction (see
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2D).

• If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

34.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT
On processors that support processor extended states using XSAVE/XRSTOR (see Chapter 13, “Managing State
Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1),
the processor does not save any XSAVE/XRSTOR related state on an SMI. It is the responsibility of the SMI handler
code to properly preserve the state information (including CR4.OSXSAVE, XCR0, and possibly processor extended
states using XSAVE/XRSTOR). Therefore, the SMI handler must follow the rules described in Chapter 13,
“Managing State Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

34.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT
This section describes enhancement of system management features that apply only to the 4th generation Intel
Core processors. These features are model-specific. BIOS and SMM handler must use CPUID to enumerate
DisplayFamily_DisplayModel signature when programming with these interfaces.

34.17.1 SMM Handler Code Access Control
The BIOS may choose to restrict the address ranges of code that SMM handler executes. When SMM handler code
execution check is enabled, an attempt by the SMM handler to execute outside the ranges specified by SMRR (see
Section 34.4.2.1) will cause the assertion of an unrecoverable machine check exception (MCE).

The interface to enable SMM handler code access check resides in a per-package scope model-specific register
MSR_SMM_FEATURE_CONTROL at address 4E0H. An attempt to access MSR_SMM_FEATURE_CONTROL outside of
SMM will cause a #GP. Writes to MSR_SMM_FEATURE_CONTROL is further protected by configuration interface of
MSR_SMM_MCA_CAP at address 17DH.

Details of the interface of MSR_SMM_FEATURE_CONTROL and MSR_SMM_MCA_CAP are described in Table 2-28 in
Chapter 2, “Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

34-30 Vol. 3C

SYSTEM MANAGEMENT MODE

34.17.2 SMI Delivery Delay Reporting
Entry into the system management mode occurs at instruction boundary. In situations where a logical processor is
executing an instruction involving a long flow of internal operations, servicing an SMI by that logical processor will
be delayed. Delayed servicing of SMI of each logical processor due to executing long flows of internal operation in
a physical processor can be queried via a package-scope register MSR_SMM_DELAYED at address 4E2H.

The interface to enable reporting of SMI delivery delay due to long internal flows resides in a per-package scope
model-specific register MSR_SMM_DELAYED. An attempt to access MSR_SMM_DELAYED outside of SMM will cause
a #GP. Availability to MSR_SMM_DELAYED is protected by configuration interface of MSR_SMM_MCA_CAP at
address 17DH.

Details of the interface of MSR_SMM_DELAYED and MSR_SMM_MCA_CAP are described in Table 2-28 in Chapter 2,
“Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
4.

34.17.3 Blocked SMI Reporting
A logical processor may have entered into a state and blocked from servicing other interrupts (including SMI).
Logical processors in a physical processor that are blocked in serving SMI can be queried in a package-scope
register MSR_SMM_BLOCKED at address 4E3H. An attempt to access MSR_SMM_BLOCKED outside of SMM will
cause a #GP.

Details of the interface of MSR_SMM_BLOCKED is described in Table 2-28 in Chapter 2, “Model-Specific Registers
(MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

17.Updates to Chapter 41, Volume 3D
Change bars show changes to Chapter 41 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--

Change to chapter: Update to Section 41.2.2 “Intel SGX Launch Control Configuration”.

Vol. 3D 41-1

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

CHAPTER 41
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® SGX provides Intel® Architecture with a collection of enclave instructions for creating protected execution
environments on processors supporting IA32 and Intel® 64 architectures. These Intel SGX instructions are
designed to work with legacy software and the various IA32 and Intel 64 modes of operation.

41.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES
The Intel SGX extensions (see Table 36-1) are available only when the processor is executing in protected mode of
operation. Additionally, the extensions are not available in System Management Mode (SMM) of operation or in
Virtual 8086 (VM86) mode of operation. Finally, all leaf functions of ENCLU and ENCLS require CR0.PG enabled.
The exact details of exceptions resulting from illegal modes and their priority are listed in the reference pages of
ENCLS and ENCLU.

41.2 IA32_FEATURE_CONTROL
IA32_FEATURE_CONTROL MSR provides two new bits related to two aspects of Intel SGX: using the instruction
extensions and launch control configuration.

41.2.1 Availability of Intel SGX
IA32_FEATURE_CONTROL[bit 18] allows BIOS to control the availability of Intel SGX extensions. For Intel SGX
extensions to be available on a logical processor, bit 18 in the IA32_FEATURE_CONTROL MSR on that logical
processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be locked (bit 0 must be
set). See Section 36.7.1 for additional details. OS is expected to examine the value of bit 18 prior to enabling Intel
SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

41.2.2 Intel SGX Launch Control Configuration
The IA32_SGXLEPUBKEYHASHn MSRs used to configure authorized launch enclaves' MRSIGNER digest value. They
are present on logical processors that support the collection of SGX1 leaf functions (i.e. CPUID.(EAX=12H,
ECX=00H):EAX[0] = 1) and that CPUID.(EAX=07H, ECX=00H):ECX[30] = 1. IA32_FEATURE_CONTROL[bit 17]
allows to BIOS to enable write access to these MSRs. If IA32_FEATURE_CONTROL.LE_WR (bit 17) is set to 1 and
IA32_FEATURE_CONTROL is locked on that logical processor, IA32_SGXLEPUBKEYHASH MSRs on that logical
processor are writeable. If this bit 17 is not set or IA32_FEATURE_CONTROL is not locked,
IA32_SGXLEPUBKEYHASH MSRs are read only. See Section 38.1.4 for additional details.

41.3 INTERACTIONS WITH SEGMENTATION

41.3.1 Scope of Interaction
Intel SGX extensions are available only when the processor is executing in a protected mode operation (see Section
41.1 for Intel SGX availability in various processor modes). Enclaves abide by all the segmentation policies set up
by the OS, but they can be more restrictive than the OS.
Intel SGX interacts with segmentation at two levels:
• The Intel SGX instruction (see the enclave instruction in Table 36-1).

41-2 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

• While executing inside an enclave (legacy instructions and enclave instructions permitted inside an enclave).

41.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing
Prefixes

All the memory operands used by the Intel SGX instructions are interpreted as offsets within the data segment
(DS). The segment-override prefix on Intel SGX instructions is ignored.
Operand size is fixed for each enclave instruction. The operand-size prefix is reserved, and results in a #UD excep-
tion if used.
All address sizes are determined by the operating mode of the processor. The address-size prefix is ignored. This
implies that while operating in 64-bit mode of operation, the address size is always 64 bits, and while operating in
32-bit mode of operation, the address size is always 32 bits. Additionally, when operating in 16-bit addressing,
memory operands used by enclave instructions use 32 bit addressing; the value of CS.D is ignored.

41.3.3 Interaction of Intel® SGX Instructions with Segmentation
All leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an expand-up
segment. Failing this check results in generation of a #GP(0) exception.
The Intel SGX leaf functions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) operate as
follows:
• All usable segment registers except for FS and GS have a zero base.
• The contents of the FS/GS segment registers (including the hidden portion) is saved in the processor.
• New FS and GS values compatible with enclave security are loaded from the TCS
• The linear ranges and access rights available under the newly-loaded FS and GS must abide to OS policies by

ensuring they are subsets of the linear-address range and access rights available for the DS segment.
• The CS segment mode (64-bit, compatible, or 32 bit modes) must be consistent with the segment mode for

which the enclave was created, as indicated by the SECS.ATTRIBUTES.MODE64 bit, and that the CPL of the
logical processor is 3

An exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment regis-
ters.

41.3.4 Interactions of Enclave Execution with Segmentation
During the course of execution, enclave code abides by all segmentation policies as dictated by IA32 and Intel 64
Architectures, and generates appropriate exceptions on violations.
Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state
(e.g. via MOV seg register, POP seg register, LDS, far jump, etc; excluding WRFSBASE/WRGSBASE) results in the
generation of a #UD. See Section 38.6.1 for more information.
Upon enclave entry via the EENTER leaf function, FS is loaded from the (TCS.OFSBASE + SECS.BASEADDR) and
TCS.FSLIMIT fields and GS is loaded from the (TCS.OGSBASE + SECS.BASEADDR) and TCS.GSLIMIT fields.
Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave is allowed. The processor will save the new
values into the current SSA frame on an asynchronous exit (AEX) and restore them back on enclave entry via
ENCLU[ERESUME] instruction.

41.4 INTERACTIONS WITH PAGING
Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only if paging is enabled. Any
attempt to execute these leaf functions with paging disabled results in an invalid-opcode exception (#UD). As with

Vol. 3D 41-3

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

segmentation, enclaves abide by all the paging policies set up by the OS, but they can be more restrictive than the
OS.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and
the linear addresses generated by combining these offsets with DS segment register are subject to paging-based
access control if paging is enabled at the time of the execution of the leaf function.
Since the ENCLU[EENTER] and ENCLU[ERESUME] can only be executed when paging is enabled, and since paging
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL = 3), enclave
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as
an extension to the existing paging modes. See Section 37.5 for details.
Execution of Intel SGX instructions may set accessed and dirty flags on accesses to EPC pages that do not fault
even if the instruction later causes a fault for some other reason.

41.5 INTERACTIONS WITH VMX
Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX root
operation or VMX non-root operation, as long as the processor is using a legal mode of operation (see Section
41.1).
A VMM has the flexibility to configure a VMCS to permit a guest to use any subset of the ENCLS leaf functions. Avail-
ability of the ENCLU leaf functions in VMX non-root operation has the same requirement as ENCLU leaf functions
outside of a virtualized environment.
Details of the VMCS control to allow VMM to configure support of Intel SGX in VMX non-root operation is described
in Section 41.5.1

41.5.1 VMM Controls to Configure Guest Support of Intel® SGX
Intel SGX capabilities are primarily exposed to the software via the CPUID instruction. VMMs can virtualize CPUID
instruction to expose/hide this capability to/from guests.
Some of Intel SGX resources are exposed/controlled via model-specific registers (see Section 36.7). VMMs can
virtualize these MSRs for the guests using the MSR bitmaps referenced by pointers in the VMCS.
The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the
usual memory-virtualization techniques such as paging or the extended page table mechanism (EPT).
The VMM can set the “enable ENCLS exiting” VM-execution controls to cause a VM exit when the ENCLS instruction
is executed in VMX non-root operation. If the “enable ENCLS exiting” control is 0, all of the ENCLS leaf functions are
permitted in VMX non-root operation. If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf functions
in VMX non-root operation is governed by consulting the bits in a new 64-bit VM-execution control field called the
ENCLS-exiting bitmap (Each bit in the bitmap corresponds to an ENCLS leaf function with an EAX value that is iden-
tical to the bit’s position). When bits in the “ENCLS-exiting bitmap” are set, attempts to execute the corresponding
ENCLS leaf functions in VMX non-root operation causes VM exits. The checking for these VM exits occurs immedi-
ately after checking that CPL = 0.

41.5.2 Interactions with the Extended Page Table Mechanism (EPT)
Intel SGX instructions are fully compatible with the extended page-table mechanism (EPT; see Section 28.2).
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and
the linear addresses generated by combining these offsets with DS segment register are subject to paging and EPT.
As with paging, enclaves abide by all the policies set up by the VMM.
The Intel SGX access control itself is implemented as an extension to paging and EPT, and may be more restrictive.
See Section 41.4 for details of this extension.
An execution of an Intel SGX instruction may set accessed and dirty flags for EPT (when enabled; see Section
28.2.4) on accesses to EPC pages that do not fault or cause VM exits even if the instruction later causes a fault or
VM exit for some other reason.

41-4 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.5.3 Interactions with APIC Virtualization
This section applies to Intel SGX in VMX non-root operation when the “virtualize APIC accesses” VM-execution
control is 1.
A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave
(see Section 37.5.3.2).
An explicit Enclave Access (a linear memory access which is either from within an enclave into its ELRANGE, or an
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page
causes a #PF exception (APIC page is expected to be outside of EPC).
Non-Enclave accesses made either by an Intel SGX instruction or by a logical processor inside an enclave to an
address that without SGX would have caused redirection to the virtual-APIC page instead cause an APIC-access
VM exit.
Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses result in undefined behavior if these accesses eventually
reach EPC. This applies to any non-enclave physical accesses.
While a logical processor is executing inside an enclave, an attempt to execute an instruction outside of ELRANGE
results in a #GP(0), even if the linear address would translate to a physical address that overlaps the APIC-access
page.

41.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS
All architecturally visible vectored events (IA32 exceptions, interrupts, SMI, NMI, INIT, VM exit) can be detected
while inside an enclave and will cause an asynchronous enclave exit if they are not blocked. Additionally, INT3, and
the SignalTXTMsg[SENTER] (i.e. GETSEC[SENTER]’s rendezvous event message) events also cause asynchronous
enclave exits. Note that SignalTXTMsg[SEXIT] (i.e. GETSEC[SEXIT]’s teardown message) does not cause an AEX.
On an AEX, information about the event causing the AEX is stored in the SSA (see Section 39.4 for details of AEX).
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the
first event results in detection of further events (e.g. VM exit, double fault, etc.), then the event information in the
SSA is not updated to reflect these subsequently detected events.

41.7 INTERACTIONS WITH THE PROCESSOR EXTENDED STATE AND
MISCELLANEOUS STATE

41.7.1 Requirements and Architecture Overview
Processor extended states are the ISA features that are enabled by the settings of CR4.OSXSAVE and the XCR0
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions.
Details of discovery of processor extended states and management of these states are described in CHAPTER 13 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Additionally, the following requirements apply to Intel SGX:
• On an AEX, the Intel SGX architecture must protect the processor extended state and miscellaneous state by

saving them in the enclave’s state-save area (SSA), and clear the secrets from the processor extended state
that is used by an enclave.

• Intel SGX architecture must verify that the SSA frame size is large enough to contain all the processor extended
states and miscellaneous state used by the enclave.

• Intel SGX architecture must ensure that enclaves can only use processor extended state that is enabled by
system software in XCR0.

Vol. 3D 41-5

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

• Enclave software should be able to discover only those processor extended state and miscellaneous state for
which such protection is enabled.

• The processor extended states that are enabled inside the enclave must be approved by the enclave developer:

— Certain processor extended state (e.g., Memory Protection Extensions, see Chapter 17, “Intel® MPX” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) modify the behavior of the
legacy ISA software. If such features are enabled for enclaves that do not understand those features, then
such a configuration could lead to a compromise of the enclave's security.

• The processor extended states that are enabled inside the enclave must form an integral part of the enclave's
identity. This requirement has two implications:

— Service providers may decide to assign different trust level to the same enclave depending on the ISA
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-Feature Request Mask (XFRM)
in the ATTRIBUTES field of the SECS. On enclave creation (ENCLS[ECREATE] leaf function), the required SSA frame
size is calculated by the processor from the list of enabled extended and miscellaneous states and verified against
the actual SSA frame size defined by SECS.SSAFRAMESIZE.
On enclave entry, after verifying that XFRM is only enabling features that are already enabled in XCR0, the value in
the XCR0 is saved internally by the processor, and is replaced by the XFRM. On enclave exit, the original value of
XCR0 is restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are in
enabled state, and those that are disabled in XFRM are in disabled state.
The entire ATTRIBUTES field, including the XFRM subfield is integral part of enclave's identity (i.e., its value is
included in reports generated by ENCLU[EREPORT], and select bits from this field can be included in key-derivation
for keys obtained via the ENCLU[EGETKEY] leaf function).
Enclave developers can create their enclave to work with certain features and fallback to another code path in case
those features aren't available (e.g. optimize for AVX and fallback to SSE). For this purpose Intel SGX provides the
following fields in SIGSTRUCT: ATTRIBUTES, ATTRIBUTESMASK, MISCSELECT, and MISCMASK. EINIT ensures that
the final SECS.ATTRIBUTES and SECS.MISCSELECT comply with the enclave developer's requirements as follows:
SIGSTRUCT.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK = SECS.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK
SIGSTRUCT.MISCSELECT & SIGSTRUCT.MISCMASK = SECS.MISCSELECT & SIGSTRUCT.MISCMASK.
On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA
frame, and overwritten by synthetic state (see Section 39.3 for the definition of the synthetic state). When the
interrupted enclave is resumed via the ENCLU[ERESUME] leaf function, the saved state for processor extended
states enabled by XFRM is restored.

41.7.2 Relevant Fields in Various Data Structures

41.7.2.1 SECS.ATTRIBUTES.XFRM
The ATTRIBUTES field of the SECS data structure (see Section 37.7) contains a sub-field called XSAVE-Feature
Request Mask (XFRM). Software populates this field at the time of enclave creation according to the features that
are enabled by the operating system and approved by the enclave developer.
Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of the
processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in XFRM
are saved on AEX from the enclave and restored on ERESUME.
The XFRM sub-field has the same layout as XCR0, and has consistency requirements that are similar to those for
XCR0. Specifically, the consistency requirements on XFRM values depend on the processor implementation and the
set of features enabled in CR4.
Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
• XFRM[1:0] must be set to 0x3.
• If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2]

must be zero.
• If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCR0.

41-6 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

The various consistency requirements are enforced at different times in the enclave's life cycle, and the exact
enforcement mechanisms are elaborated in Section 41.7.3 through Section 41.7.6.
On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE,
software should initialize XFRM to be a subset of XCR0 that would be present at the time of enclave execution.
Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled (CR4.OSFXSR
= 1).

41.7.2.2 SECS.SSAFRAMESIZE
The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated1 for
each SSA frame, including both the GPRSGX area, MISC area, the XSAVE area (x87 and XMM states are stored in
the latter area), and optionally padding between the MISC and XSAVE area. The GPRSGX area must hold all the
general-purpose registers and additional Intel SGX specific information. The MISC area must hold the Miscella-
neous state as specified by SECS.MISCSELECT, the XSAVE area holds the set of processor extended states specified
by SECS.ATTRIBUTES.XFRM (see Section 37.9 for the layout of SSA and Section 41.7.3 for ECREATE's consistency
checks). The SSA is always in non-compacted format.
If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be
set to 0x3) is saved at offset 512 on an AEX.
If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The
length would be equal to what CPUID.(EAX=0DH, ECX= 0):EBX would return if XCR0 were set to XFRM. The
following pseudo code illustrates how software can calculate this length using XFRM as the input parameter without
modifying XCR0:

offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] != 0) Then

tmp_offset = CPUID.(EAX=0DH, ECX= x):EBX[31:0];
IF (tmp_offset >= offset + size_last_x) Then

offset = tmp_offset;
size_last_x = CPUID.(EAX=0DH, ECX= x):EAX[31:0];

FI;
FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the Enclave
Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCR0.
The size of the MISC region depends on the setting of SECS.MISCSELECT and can be calculated using the layout
information described in Section 37.9.2

41.7.2.3 XSAVE Area in SSA
The XSAVE area of an SSA frame begins at offset 0 of the frame.

41.7.2.4 MISC Area in SSA
The MISC area of an SSA frame is positioned immediately before the GPRSGX region.

41.7.2.5 SIGSTRUCT Fields
Intel SGX provides the flexibility for an enclave developer to choose the enclave's code path according to the
features that are enabled on the platform (e.g. optimize for AVX and fallback to SSE). See Section 41.7.1 for
details.

1. It is the responsibility of the enclave to actually allocate this memory.

Vol. 3D 41-7

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

SIGSTRUCT includes the following fields:
SIGSTRUCT.ATTRIBUTES, SIGSTRUCT.ATTRIBUTEMASK, SIGSTRUCT.MISCSELECT, SIGSTRUCT.MISCMASK.

41.7.2.6 REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT
The processor extended states and miscellaneous states that are enabled inside the enclave form an integral part
of the enclave's identity and are therefore included in the enclave's report, as provided by the ENCLU[EREPORT]
leaf function. The REPORT structure includes the enclave's XFRM and MISCSELECT configurations.

41.7.2.7 KEYREQUEST
An enclave developer can specify which bits out of XFRM and MISCSELECT ENCLU[EGETKEY] should include in the
derivation of the sealing key by specifying ATTRIBUTESMASK and MISCMASK in the KEYREQUEST structure.

41.7.3 Processor Extended States and ENCLS[ECREATE]
The ECREATE leaf function of the ENCLS instruction enforces a number of consistency checks described earlier. The
execution of ENCLS[ECREATE] leaf function results in a #GP(0) in any of the following cases:
• SECS.ATTRIBUTES.XFRM[1:0] is not 3.
• The processor does not support XSAVE and any of the following is true:

— SECS.ATTRIBUTES.XFRM[63:2] is not 0.

— SECS.SSAFRAMESIZE is 0.
• The processor supports XSAVE and any of the following is true:

— XSETBV would fault on an attempt to load XFRM into XCR0.

— XFRM[63]=1.

— The SSAFRAME is too small to hold required, enabled states (see Section 41.7.2.2).

41.7.4 Processor Extended States and ENCLU[EENTER]

41.7.4.1 Fault Checking
The EENTER leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. The execution of the ENCLU[EENTER] leaf function results in a #GP(0) in any of the following cases:
• If CR4.OSFXSR=0.
• If The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM

41.7.4.2 State Loading
If ENCLU[EENTER] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.

41-8 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.7.5 Processor Extended States and AEX

41.7.5.1 State Saving
On an AEX, processor extended states are saved into the XSAVE area of the SSA frame in a compatible format with
XSAVE that was executed with EDX:EAX = SECS.ATTRIBUTES.XFRM, with the memory operand being the XSAVE
area, and (for 64-bit enclaves) as if REX.W=1. The XSTATE_BV part of the XSAVE header is saved with 0 for every
bit that is 0 in XFRM. Other bits may be saved as 0 if the state saved is initialized.
Note that enclave entry ensures that if CR4.OSXSAVE is set to 0, then SECS.ATTRIBUTES.XFRM is set to 3. It
should also be noted that it is not possible to enter an enclave with FXSAVE disabled.

41.7.5.2 State Synthesis
After saving the extended state, the processor restores XCR0 to the value it held at the time of the most recent
enclave entry.
The state of features corresponding to bits set in XFRM is synthesized. In general, these states are initialized.
Details of state synthesis on AEX are documented in Section 39.3.1.

41.7.6 Processor Extended States and ENCLU[ERESUME]

41.7.6.1 Fault Checking
The ERESUME leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. Specifically, the ENCLU[ERESUME] leaf function results in a #GP(0) in any of the following cases:
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.
A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault
will cause the ENCLU[ERESUME] leaf function to fault. Examples include, but are not restricted to the following:
• A bit is set in the XSTATE_BV field and clear in XFRM.
• The required bytes in the header are not clear.
• Loading data would set a reserved bit in MXCSR.
Any of these conditions will cause ERESUME to fault, even if CR4.OSXSAVE=0.

41.7.6.2 State Loading
If ENCLU[ERESUME] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.
State is loaded from the XSAVE area of the SSA frame as if the XRSTOR instruction were executed with
XCR0=XFRM, EDX:EAX = XFRM, with the memory operand being the XSAVE area, and (for 64-bit enclaves) as if
REX.W=1.
ENCLU[ERESUME] ensures that a subsequent execution of XSAVEOPT inside the enclave will operate properly (e.g.,
by marking all state as modified).

41.7.7 Processor Extended States and ENCLU[EEXIT]
The ENCLU[EEXIT] leaf function does not perform any X-feature specific consistency checks, nor performs any
state synthesis. It is the responsibility of enclave software to clear any sensitive data from the registers before

Vol. 3D 41-9

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

executing EEXIT. However, successful execution of the ENCLU[EEXIT] leaf function restores XCR0 to the value it
held at the time of the most recent enclave entry.

41.7.8 Processor Extended States and ENCLU[EREPORT]

The ENCLU[EREPORT] leaf function creates the MAC-protected REPORT structure that reports on the enclave’s
identity. ENCLU[EREPORT] includes in the report the values of SECS.ATTRIBUTES.XFRM and SECS.MISCSELECT.

41.7.9 Processor Extended States and ENCLU[EGETKEY]
The ENCLU[EGETKEY] leaf function returns a cryptographic key based on the information provided by the KEYRE-
QUEST structure. Intel SGX provides the means for isolation between different operating conditions by allowing an
enclave developer to select which bits out of XFRM and MISCSELECT need to be included in the derivation of the
keys.

41.8 INTERACTIONS WITH SMM

41.8.1 Availability of Intel® SGX instructions in SMM
Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside SMM
results in an invalid-opcode exception (#UD).

41.8.2 SMI while Inside an Enclave
If the logical processor executing inside an enclave receives an SMI, the logical processor exits the enclave asyn-
chronously. The response to an SMI received while executing inside an enclave depends on whether the dual-
monitor treatment is enabled. For detailed discussion of transfer to SMM, see Chapter 34, “System Management
Mode” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled,
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition to
saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the
“Enclave Interruption” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EE0H).
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the
logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit.
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 41-1) and in the Guest Interrupt-
ibility State field (see Table 41-2) of the SMM VMCS.

41.8.3 SMRAM Synthetic State of AEX Triggered by SMI
All processor registers saved in the SMRAM have the same synthetic values listed in Section 39.3. Additional
SMRAM fields that are treated specially on SMI are:

Table 41-1. SMRAM Synthetic States on Asynchronous Enclave Exit
Position Field Value Writable

SMRAM Offset 07EE0H.Bit 1 ENCLAVE_INTERRUPTION Set to 1 if exit occurred in enclave mode No

41-10 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX
INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor to
exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on” state
(Table 9.1 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). If the logical processor
is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters wait-for-
SIPI state.
INIT received inside an enclave, while the logical processor (LP) is in VMX root operation, follows regular Intel
Architecture behavior and is blocked.
INIT received inside an enclave, while the logical processor is in VMX non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT causes a VM exit with the Enclave Interruption bit in the exit-reason field in the VMCS.
A processor cannot be inside an enclave in the wait-for-SIPI state. Consequently, a SIPI received while inside an
enclave is lost.
Intel SGX does not change the behavior of the processor in the wait-for-SIPI state.
The SGX-related processor states after INIT-SIPI-SIPI is as follows:
• EPC Settings: Unchanged
• EPCM: Unchanged
• CPUID.LEAF_12H.*: Unchanged
• ENCLAVE_MODE: 0 (LP exits enclave asynchronously)
• MEE state: Unchanged
Software should be aware that following INIT-SIPI-SIPI, the EPC might contain valid pages and should take appro-
priate measures such as initialize the EPC with the EREMOVE leaf function.

41.10 INTERACTIONS WITH DMA
DMA is not allowed to access any Processor Reserved Memory.

41.11 INTERACTIONS WITH TXT

41.11.1 Enclaves Created Prior to Execution of GETSEC
Enclaves which have been created before the GETSEC[SENTER] leaf function are available for execution after the
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Actions that a TXT Launched Envi-
ronment performs in preparation to execute code in the Launched Environment, also applies to enclave code that
would run after GETSEC[SENTER].

41.11.2 Interaction of GETSEC with Intel® SGX
All leaf functions of the GETSEC instruction are illegal inside an enclave, and results in an invalid-opcode exception
(#UD).
Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state.
RLP executing inside an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is, the
RLPs pause during execution of SEXIT and resume after the completion of SEXIT.
The execution of a TXT launch does not affect Intel SGX configuration or security parameters.

Vol. 3D 41-11

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.11.3 Interactions with Authenticated Code Modules (ACMs)
Intel SGX only allows launching ACMs with an Intel SGX SVN that is at the same level or higher than the expected
Intel SGX SVN. The expected Intel SGX SVN is specified by BIOS and locked down by the processor on the first
successful execution of an Intel SGX instruction that doesn’t return an error code. Intel SGX provides interfaces for
system software to discover whether a non faulting Intel SGX instruction has been executed, and evaluate the suit-
ability of the Intel SGX SVN value of any ACM that is expected to be launched by the OS or the VMM.
These interfaces are provided through a read-only MSR called the IA32_SGX_SVN_STATUS MSR (MSR address
500h). The IA32_SGX_SVN_STATUS MSR has the format shown in Table 41-2.

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the IA32_SGX_SVN_STATUS
MSR to determine whether the ACM can be launched or a new ACM is needed:
• If either the Intel SGX SVN of the ACM is greater than the value reported by IA32_SGX_SVN_STATUS, or the

lock bit in the IA32_SGX_SVN_STATUS is not set, then the OS/VMM can safely launch the ACM.
• If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS is greater

than the Intel SGX SVN value in the ACM's header, and if bit 0 of IA32_SGX_SVN_STATUS is 1, then the
OS/VMM should not launch that version of the ACM. It should obtain an updated version of the ACM either from
the BIOS or from an external resource.

However, OSVs/VMMs are strongly advised to update their version of the ACM any time they detect that the Intel
SGX SVN of the ACM carried by the OS/VMM is lower than that reported by IA32_SGX_SVN_STATUS MSR, irrespec-
tive of the setting of the lock bit.

41.12 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS
Entering and exiting an enclave causes the logical processor to flush all the global linear-address context as well as
the linear-address context associated with the current VPID and PCID. The MONITOR FSM is also cleared.

41.13 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION
EXTENSIONS (INTEL® TSX)

1. ENCLU or ENCLS instructions inside an HLE region will cause the flow to be aborted and restarted non-specula-
tively. ENCLU or ENCLS instructions inside an RTM region will cause the flow to be aborted and transfer control to
the fallback handler.
2. If XBEGIN is executed inside an enclave, the processor does NOT check whether the address of the fallback
handler is within the enclave.
3. If an RTM transaction is executing inside an enclave and there is an attempt to fetch an instruction outside the
enclave, the transaction is aborted and control is transferred to the fallback handler. No #GP is delivered.

Table 41-2. Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. • If 1, indicates that a non-faulting Intel SGX instruction has been
executed, consequently, launching a properly signed ACM but with Intel
SGX SVN value less than the BIOS specified Intel SGX SVN threshold
would lead to an TXT shutdown.

• If 0, indicates that the processor will allow a properly signed ACM to
launch irrespective of the Intel SGX SVN value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT SINIT ACM • If CPUID.01H:ECX.SMX =1, this field reflects the expected threshold of
Intel SGX SVN for the SINIT ACM.

• If CPUID.01H:ECX.SMX =0, this field is reserved (0).

63:24 RSVD N.A. 0

41-12 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

4. If an RTM transaction is executing inside an enclave and there is a data access to an address within the enclave
that denied due to EPCM content (e.g., to a page belonging to a different enclave), the transaction is aborted and
control is transferred to the fallback handler. No #GP is delivered.
5. If an RTM transaction executing inside an enclave aborts and the address of the fallback handler is outside the
enclave, a #GP is delivered after the abort (EIP reported is that of the fallback handler).

41.13.1 HLE and RTM Debug
RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if
IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no
exception delivered.
After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP detected inside an RTM
transaction region will just cause an abort with no exception delivered.
After opt-in entry, if DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM transla-
tion will
• terminate speculative execution,
• set RIP to the address of the XBEGIN instruction, and
• be delivered as #DB (implying an Intel SGX AEX; any #BP is converted to #DB).
• DR6[16] will be cleared, indicating RTM debug (if the #DB causes a VM exit, DR6 is not modified but bit 16 of

the pending debug exceptions field in the VMCS will be set).

41.14 INTEL® SGX INTERACTIONS WITH S STATES
Whenever an Intel SGX enabled processor enters S3-S5 state, enclaves are destroyed. This is due to the EPC being
destroyed when power down occurs. It is the application runtime’s responsibility to re-instantiate an enclave after
a power transition for which the enclaves were destroyed.

41.15 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA)

41.15.1 Interactions with MCA Events
All architecturally visible machine check events (#MC and CMCI) that are detected while inside an enclave cause an
asynchronous enclave exit.
Any machine check exception (#MC) that occurs after Intel SGX is first enables causes Intel SGX to be disabled,
(CPUID.SGX_Leaf.0:EAX[SGX1] == 0). It cannot be enabled until after the next reset.

41.15.2 Machine Check Enables (IA32_MCi_CTL)
All supported IA32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available
(CPUID.SGX_Leaf.0:EAX[SGX1] == 1). Any act of clearing bits from '1 to '0 in any of the IA32_MCi_CTL register
may disable Intel SGX (set CPUID.SGX_Leaf.0:EAX[SGX1] to 0) until the next reset.

41.15.3 CR4.MCE
CR4.MCE can be set or cleared with no interactions with Intel SGX.

Vol. 3D 41-13

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.16 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL
INTERRUPTS

ENCLS[EENTER] modifies neither EFLAGS.VIP nor EFLAGS.VIF.
ENCLS[ERESUME] loads EFLAGS in a manner similar to that of an execution of IRET with CPL = 3. This means that
ERESUME modifies neither EFLAGS.VIP nor EFLAGS.VIF regardless of the value of the EFLAGS image in the SSA
frame.
AEX saves EFLAGS.VIP and EFLAGS.VIF unmodified into the EFLAGS image in the SSA frame. AEX modifies neither
EFLAGS.VIP nor EFLAGS.VIF after saving EFLAGS.
If CR4.PVI = 1, CPL = 3, EFLAGS.VM = 0, IOPL < 3, EFLAGS.VIP = 1, and EFLAGS.VIF = 0, execution of STI causes
a #GP fault. In this case, STI modifies neither EFLAGS.IF nor EFLAGS.VIF. This behavior applies without change
within an enclave (where CPL is always 3). Note that, if IOPL = 3, STI always sets EFLAGS.IF without fault;
CR4.PVI, EFLAGS.VIP, and EFLAGS.VIF are neither consulted nor modified in this case.

41.17 INTEL SGX INTERACTION WITH PROTECTION KEYS
SGX interactions with PKRU are as follows:
• CPUID.(EAX=12H, ECX=1):ECX.PKRU indicates whether SECS.ATTRIBUTES.XFRM.PKRU can be set. If

SECS.ATTRIBUTES.XFRM.PKRU is set, then PKRU is saved and cleared as part of AEX and is restored as part of
ERESUME. If CR4.PKE is set, an enclave can execute RDPKRU and WRKRU independent of whether
SECS.ATTRIBUTES.XFRM.PKRU is set.

SGX interactions with domain permission checks are as follows:

1) If CR4.PKE is not set, then legacy and SGX permission checks are not effected.

2) If CR4.PKE is set, then domain permission checks are applied to all non-enclave access and
enclave accesses to user pages in addition to legacy and SGX permission checks at a higher
priority than SGX permission checks.

3) Implicit accesses aren't subject to domain permission checks.

41-14 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

18.Updates to Chapter 2, Volume 4
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 4: Model-Specific Registers.

--

Changes to this chapter: Various updates/additions throughout chapter. Added Section 2.16.1 “MSRs Specific to
7th Generation Intel® Core™ Processors based on Kaby Lake Microarchitecture”.

Vol. 4 2-1

CHAPTER 2
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with
the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To distin-
guish between different processor family and/or models, software must use CPUID.01H leaf function to query the
combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Table 2-1 lists the signature values of DisplayFamily and DisplayModel for various
processor families or processor number series.

Table 2-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_85H Future Intel® Xeon Phi™ Processor based on Knights Mill microarchitecture

06_57H Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series based on Knights Landing microarchitecture

06_66H Future Intel® Core™ processors based on Cannon Lake microarchitecture

06_8EH, 06_9EH 7th generation Intel® Core™ processors based on Kaby Lake microarchitecture

06_55H Intel® Xeon® Processor Scalable Family based on Skylake microarchitecture

06_4EH, 06_5EH 6th generation Intel Core processors and Intel Xeon processor E3-1500m v5 product family and E3-
1200 v5 product family based on Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Intel Xeon processor E5 v4 Family based on Broadwell microarchitecture, Intel Xeon processor E7 v4
Family, Intel Core i7-69xx Processor Extreme Edition

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

2-2 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered
architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural MSRs”
were given the prefix “IA32_”. Table 2-2 lists the architectural MSRs, their addresses, their current names, their
names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table
2-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-specific.

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_7AH Intel® Atom™ processors based on Goldmont Plus Microarchitecture

06_5FH Intel Atom processors based on Goldmont Microarchitecture (code name Denverton)

06_5CH Intel Atom processors based on Goldmont Microarchitecture

06_4CH Intel Atom processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel Atom processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor

06_01H Intel Pentium Pro processor

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

The Intel® Quark™ SoC X1000 processor can be identified by the signature of DisplayFamily_DisplayModel = 05_09H and
SteppingID = 0

Table 2-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Vol. 4 2-3

MODEL-SPECIFIC REGISTERS (MSRS)

Code that accesses a machine specified MSR and that is executed on a processor that does not support that MSR
will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 2-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 2-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYADDR” in Table 2-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

Table 2-2. IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 2.22, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 2.22, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.17, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) This register holds the APIC base address,
permitting the relocation of the APIC
memory map. See Section 10.4.4, “Local
APIC Status and Location” and Section
10.4.5, “Relocating the Local APIC
Registers”.

06_01H

7:0 Reserved

8 BSP flag (R/W)

2-4 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR - 1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If any one enumeration
condition for defined bit
field holds

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support for Intel Virtualization
Technology and prior to transferring control
to an option ROM or the OS. Hence, once
the Lock bit is set, the entire
IA32_FEATURE_CONTROL contents are
preserved across RESET when PWRGOOD is
not deasserted.

If any one enumeration
condition for defined bit
field position greater than
bit 0 holds

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[5] = 1
&& CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[5] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

16 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-5

MODEL-SPECIFIC REGISTERS (MSRS)

17 SGX Launch Control Enable (R/WL): This bit
must be set to enable runtime
reconfiguration of SGX Launch Control via
IA32_SGXLEPUBKEYHASHn MSR.

If CPUID.(EAX=07H,
ECX=0H): ECX[30] = 1

18 SGX Global Enable (R/WL): This bit must be
set to enable SGX leaf functions.

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

19 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

If IA32_MCG_CAP[27] = 1

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-6 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8CH 140 IA32_SGXLEPUBKEYHASH0 IA32_SGXLEPUBKEYHASH[63:0] (R/W)

Bits 63:0 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

Read permitted If
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1,

Write permitted if
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
IA32_FEATURE_CONTROL[
17] = 1 &&
IA32_FEATURE_CONTROL[
0] = 1

8DH 141 IA32_SGXLEPUBKEYHASH1 IA32_SGXLEPUBKEYHASH[127:64] (R/W)

Bits 127:64 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

Read permitted If
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1,

Write permitted if
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
IA32_FEATURE_CONTROL[
17] = 1 &&
IA32_FEATURE_CONTROL[
0] = 1

8EH 142 IA32_SGXLEPUBKEYHASH2 IA32_SGXLEPUBKEYHASH[191:128] (R/W)

Bits 191:128 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

Read permitted If
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1,

Write permitted if
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
IA32_FEATURE_CONTROL[
17] = 1 &&
IA32_FEATURE_CONTROL[
0] = 1

8FH 143 IA32_SGXLEPUBKEYHASH3 IA32_SGXLEPUBKEYHASH[255:192] (R/W)

Bits 255:192 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 ||
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[28]

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[15]

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-7

MODEL-SPECIFIC REGISTERS (MSRS)

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear).

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector.

31:16 Not used. Can be read and written.

63:32 Not used. Writes ignored; reads

return zero.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-8 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If
IA32_MCG_CAP.LMCE_P[2
7] =1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8]
=1

180H-
185H

384-
389

Reserved 06_0EH1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-9

MODEL-SPECIFIC REGISTERS (MSRS)

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS Current performance status. (RO)

See Section 14.1.1, “Software Interface For
Initiating Performance State Transitions”.

0F_03H

15:0 Current performance State Value

63:16 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-10 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

199H 409 IA32_PERF_CTL Performance Control MSR. (R/W)

Software makes a request for a new
Performance state (P-State) by writing this
MSR. See Section 14.1.1, “Software
Interface For Initiating Performance State
Transitions”.

0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

If CPUID.01H:EDX[22] = 1

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

If CPUID.01H:EDX[22] = 1

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

If CPUID.01H:EDX[22] = 1

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

If CPUID.01H:EDX[22] = 1

0 High-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

1 Low-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

2 PROCHOT# Interrupt Enable If CPUID.01H:EDX[22] = 1

3 FORCEPR# Interrupt Enable If CPUID.01H:EDX[22] = 1

4 Critical Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

7:5 Reserved.

14:8 Threshold #1 Value If CPUID.01H:EDX[22] = 1

15 Threshold #1 Interrupt Enable If CPUID.01H:EDX[22] = 1

22:16 Threshold #2 Value If CPUID.01H:EDX[22] = 1

23 Threshold #2 Interrupt Enable If CPUID.01H:EDX[22] = 1

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-11

MODEL-SPECIFIC REGISTERS (MSRS)

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

If CPUID.01H:EDX[22] = 1

0 Thermal Status (RO): If CPUID.01H:EDX[22] = 1

1 Thermal Status Log (R/W): If CPUID.01H:EDX[22] = 1

2 PROCHOT # or FORCEPR# event (RO) If CPUID.01H:EDX[22] = 1

3 PROCHOT # or FORCEPR# log (R/WC0) If CPUID.01H:EDX[22] = 1

4 Critical Temperature Status (RO) If CPUID.01H:EDX[22] = 1

5 Critical Temperature Status log (R/WC0) If CPUID.01H:EDX[22] = 1

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-12 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled.
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

The default value of this field varies with
product . See respective tables where
default value is listed.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Processor Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-13

MODEL-SPECIFIC REGISTERS (MSRS)

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not supported.

Software attempts to execute
MONITOR/MWAIT will cause #UD when this
bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 2.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 2.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 2, this bit is
supported.

Otherwise, this bit is not supported. Setting
this bit when the maximum value is not
greater than 2 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 2.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-14 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log
(R/WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-15

MODEL-SPECIFIC REGISTERS (MSRS)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-16 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 38FH) on a
PMI request

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

If
IA32_PERF_CAPABILITIES[
12] = 1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If
IA32_MTRRCAP.SMRR[11]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.01H: ECX[18] = 1

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-17

MODEL-SPECIFIC REGISTERS (MSRS)

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 If CPUID.01H:
EDX.MTRR[12] =1

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 If CPUID.01H:
EDX.MTRR[12] =1

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 If CPUID.01H:
EDX.MTRR[12] =1

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 If CPUID.01H:
EDX.MTRR[12] =1

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 If CPUID.01H:
EDX.MTRR[12] =1

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If CPUID.01H:
EDX.MTRR[12] =1

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If CPUID.01H:
EDX.MTRR[12] =1

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If CPUID.01H:
EDX.MTRR[12] =1

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If CPUID.01H:
EDX.MTRR[12] =1

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 If CPUID.01H:
EDX.MTRR[12] =1

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If CPUID.01H:
EDX.MTRR[12] =1

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If CPUID.01H:
EDX.MTRR[12] =1

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If CPUID.01H:
EDX.MTRR[12] =1

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If CPUID.01H:
EDX.MTRR[12] =1

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 If CPUID.01H:
EDX.MTRR[12] =1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-18 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.01H:
EDX.MTRR[12] =1

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.01H:
EDX.MTRR[12] =1

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.01H:
EDX.MTRR[12] =1

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.01H:
EDX.MTRR[12] =1

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 If CPUID.01H:
EDX.MTRR[12] =1

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.01H:
EDX.MTRR[12] =1

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 If CPUID.01H:
EDX.MTRR[12] =1

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.01H:
EDX.MTRR[12] =1

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 If CPUID.01H:
EDX.MTRR[12] =1

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.01H:
EDX.MTRR[12] =1

277H 631 IA32_PAT IA32_PAT (R/W) If CPUID.01H:
EDX.MTRR[16] =1

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-19

MODEL-SPECIFIC REGISTERS (MSRS)

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 MSR to enable/disable CMCI capability for
bank 0. (R/W)

See Section 15.3.2.5, “IA32_MCi_CTL2
MSRs”.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
0

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
1

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
2

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
3

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
4

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
5

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
6

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
7

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
8

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
9

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
10

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
11

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-20 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
12

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
13

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
14

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
15

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
16

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
17

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
18

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
19

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
20

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
21

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
22

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
23

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
24

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
25

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
26

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-21

MODEL-SPECIFIC REGISTERS (MSRS)

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
27

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
28

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
29

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
30

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
31

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) If CPUID.01H:
EDX.MTRR[12] =1

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0
(R/W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 2
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES Read Only MSR that enumerates the
existence of performance monitoring
features. (RO)

If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-22 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-23

MODEL-SPECIFIC REGISTERS (MSRS)

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] >
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] >
3

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

57:56 Reserved.

58 LBR_Frz: LBRs are frozen due to

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1,
• The LBR stack overflowed

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz: Performance counters in the core
PMU are frozen due to

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1,

• one or more core PMU counters
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in
the core PMU may include contributions
from the direct or indirect operation intel
SGX to protect an enclave.

If CPUID.(EAX=07H,
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-24 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] >
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] >
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] >
2

n EN_PMCn If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0
&& CPUID.0AH: EAX[7:0]
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-25

MODEL-SPECIFIC REGISTERS (MSRS)

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA[8] =
1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1 If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to cause Ovf_PMC2 = 1 If CPUID.0AH: EAX[15:8] >
2

n Set 1 to cause Ovf_PMCn = 1 If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-26 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator of core perfmon interface is in use
(RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use

1 IA32_PERFEVTSEL1 in use If CPUID.0AH: EAX[15:8] >
1

2 IA32_PERFEVTSEL2 in use If CPUID.0AH: EAX[15:8] >
2

n IA32_PERFEVTSELn in use If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved.

32 IA32_FIXED_CTR0 in use

33 IA32_FIXED_CTR1 in use

34 IA32_FIXED_CTR2 in use

62:35 Reserved or Model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or Model specific.

31:4 Reserved.

35:32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL If IA32_MCG_CAP.CNT >0

401H 1025 IA32_MC0_STATUS MC0_STATUS If IA32_MCG_CAP.CNT >0

402H 1026 IA32_MC0_ADDR1 MC0_ADDR If IA32_MCG_CAP.CNT >0

403H 1027 IA32_MC0_MISC MC0_MISC If IA32_MCG_CAP.CNT >0

404H 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1

405H 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1

406H 1030 IA32_MC1_ADDR2 MC1_ADDR If IA32_MCG_CAP.CNT >1

407H 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1

408H 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2

409H 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAP.CNT >2

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-27

MODEL-SPECIFIC REGISTERS (MSRS)

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR If IA32_MCG_CAP.CNT >2

40BH 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2

40CH 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3

40DH 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAP.CNT >3

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR If IA32_MCG_CAP.CNT >3

40FH 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAP.CNT >3

410H 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAP.CNT >4

411H 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAP.CNT >4

412H 1042 IA32_MC4_ADDR1 MC4_ADDR If IA32_MCG_CAP.CNT >4

413H 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAP.CNT >4

414H 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5

415H 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAP.CNT >5

416H 1046 IA32_MC5_ADDR1 MC5_ADDR If IA32_MCG_CAP.CNT >5

417H 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5

418H 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAP.CNT >6

419H 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAP.CNT >6

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR If IA32_MCG_CAP.CNT >6

41BH 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAP.CNT >6

41CH 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAP.CNT >7

41DH 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAP.CNT >7

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR If IA32_MCG_CAP.CNT >7

41FH 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAP.CNT >7

420H 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H 1058 IA32_MC8_ADDR1 MC8_ADDR If IA32_MCG_CAP.CNT >8

423H 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H 1062 IA32_MC9_ADDR1 MC9_ADDR If IA32_MCG_CAP.CNT >9

427H 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAP.CNT >10

429H 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR If IA32_MCG_CAP.CNT >10

42BH 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10

42CH 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11

42DH 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAP.CNT >11

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR If IA32_MCG_CAP.CNT >11

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-28 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

42FH 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11

430H 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAP.CNT >12

431H 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAP.CNT >12

432H 1074 IA32_MC12_ADDR1 MC12_ADDR If IA32_MCG_CAP.CNT >12

433H 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAP.CNT >12

434H 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAP.CNT >13

435H 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13

436H 1078 IA32_MC13_ADDR1 MC13_ADDR If IA32_MCG_CAP.CNT >13

437H 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAP.CNT >13

438H 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAP.CNT >14

439H 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAP.CNT >14

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR If IA32_MCG_CAP.CNT >14

43BH 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAP.CNT >14

43CH 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAP.CNT >15

43DH 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAP.CNT >15

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR If IA32_MCG_CAP.CNT >15

43FH 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAP.CNT >15

440H 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAP.CNT >16

441H 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16

442H 1090 IA32_MC16_ADDR1 MC16_ADDR If IA32_MCG_CAP.CNT >16

443H 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16

444H 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAP.CNT >17

445H 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAP.CNT >17

446H 1094 IA32_MC17_ADDR1 MC17_ADDR If IA32_MCG_CAP.CNT >17

447H 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAP.CNT >17

448H 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAP.CNT >18

449H 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAP.CNT >18

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR If IA32_MCG_CAP.CNT >18

44BH 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAP.CNT >18

44CH 1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAP.CNT >19

44DH 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAP.CNT >19

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR If IA32_MCG_CAP.CNT >19

44FH 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19

450H 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAP.CNT >20

451H 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAP.CNT >20

452H 1106 IA32_MC20_ADDR1 MC20_ADDR If IA32_MCG_CAP.CNT >20

453H 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAP.CNT >20

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-29

MODEL-SPECIFIC REGISTERS (MSRS)

454H 1108 IA32_MC21_CTL MC21_CTL If IA32_MCG_CAP.CNT >21

455H 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21

456H 1110 IA32_MC21_ADDR1 MC21_ADDR If IA32_MCG_CAP.CNT >21

457H 1111 IA32_MC21_MISC MC21_MISC If IA32_MCG_CAP.CNT >21

458H IA32_MC22_CTL MC22_CTL If IA32_MCG_CAP.CNT >22

459H IA32_MC22_STATUS MC22_STATUS If IA32_MCG_CAP.CNT >22

45AH IA32_MC22_ADDR1 MC22_ADDR If IA32_MCG_CAP.CNT >22

45BH IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22

45CH IA32_MC23_CTL MC23_CTL If IA32_MCG_CAP.CNT >23

45DH IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23

45EH IA32_MC23_ADDR1 MC23_ADDR If IA32_MCG_CAP.CNT >23

45FH IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23

460H IA32_MC24_CTL MC24_CTL If IA32_MCG_CAP.CNT >24

461H IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAP.CNT >24

462H IA32_MC24_ADDR1 MC24_ADDR If IA32_MCG_CAP.CNT >24

463H IA32_MC24_MISC MC24_MISC If IA32_MCG_CAP.CNT >24

464H IA32_MC25_CTL MC25_CTL If IA32_MCG_CAP.CNT >25

465H IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25

466H IA32_MC25_ADDR1 MC25_ADDR If IA32_MCG_CAP.CNT >25

467H IA32_MC25_MISC MC25_MISC If IA32_MCG_CAP.CNT >25

468H IA32_MC26_CTL MC26_CTL If IA32_MCG_CAP.CNT >26

469H IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26

46AH IA32_MC26_ADDR1 MC26_ADDR If IA32_MCG_CAP.CNT >26

46BH IA32_MC26_MISC MC26_MISC If IA32_MCG_CAP.CNT >26

46CH IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27

46DH IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27

46EH IA32_MC27_ADDR1 MC27_ADDR If IA32_MCG_CAP.CNT >27

46FH IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27

470H IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28

471H IA32_MC28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28

472H IA32_MC28_ADDR1 MC28_ADDR If IA32_MCG_CAP.CNT >28

473H IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-30 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[5] = 1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63] && (
IA32_VMX_PROCBASED_C
TLS2[33] ||
IA32_VMX_PROCBASED_C
TLS2[37]))

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-31

MODEL-SPECIFIC REGISTERS (MSRS)

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &&

IA32_PERF_CAPABILITIES[
13] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-32 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &&

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL Allows software to signal some MCEs to
only single logical processor in the system.
(R/W)

See Section 15.3.1.4, “IA32_MCG_EXT_CTL
MSR”.

If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

500H 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of SGX Support
for ACM (RO).

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

0 Lock. See Section 41.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 41.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register
(R/W)

If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-33

MODEL-SPECIFIC REGISTERS (MSRS)

570H 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 TraceEn

1 CYCEn If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

2 OS

3 User

4 PwrEvtEn

5 FUPonPTW

6 FabricEn If (CPUID.(EAX=07H,
ECX=0):ECX[3] = 1)

7 CR3 filter

8 ToPA

9 MTCEn If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 PTWEn

13 BranchEn

17:14 MTCFreq If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

18 Reserved, MBZ

22:19 CYCThresh If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

23 Reserved, MBZ

27:24 PSBFreq If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

31:28 Reserved, MBZ

35:32 ADDR0_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

63:48 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 FilterEn (writes ignored) If (CPUID.(EAX=07H,
ECX=0):EBX[2] = 1)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-34 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1 ContexEn (writes ignored)

2 TriggerEn (writes ignored)

3 Reserved

4 Error

5 Stopped

31:6 Reserved, MBZ

48:32 PacketByteCnt If (CPUID.(EAX=07H,
ECX=0):EBX[1] > 3)

63:49 Reserved

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Region 0 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

581H 1409 IA32_RTIT_ADDR0_B Region 0 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

582H 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

583H 1411 IA32_RTIT_ADDR1_B Region 1 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

584H 1412 IA32_RTIT_ADDR2_A Region 2 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

585H 1413 IA32_RTIT_ADDR2_B Region 2 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

586H 1414 IA32_RTIT_ADDR3_A Region 3 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-35

MODEL-SPECIFIC REGISTERS (MSRS)

63:48 SignExt_VA

587H 1415 IA32_RTIT_ADDR3_B Region 3 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

If(CPUID.01H:EDX.DS[21]
= 1

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If CPUID.01H:ECX.[24] = 1

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1

0 HWP_ENABLE (R/W1-Once)

See Section 14.4.2, “Enabling HWP”

If CPUID.06H:EAX.[7] = 1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If CPUID.06H:EAX.[7] = 1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If CPUID.06H:EAX.[11] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-36 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1

0 EN_Guaranteed_Performance_Change

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

1 EN_Excursion_Minimum

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[10] =
1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[11] =
1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum
(R/W)

If CPUID.06H:EAX.[7] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-37

MODEL-SPECIFIC REGISTERS (MSRS)

0 Guaranteed_Performance_Change
(R/WC0)

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

1 Reserved.

2 Excursion_To_Minimum (R/WC0)

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If CPUID.01H:ECX[21] = 1
&& IA32_APIC_BASE.[10]
= 1

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-38 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-39

MODEL-SPECIFIC REGISTERS (MSRS)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-40 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features.
Default is 0

If CPUID.01H:ECX.[11] = 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If CPUID.01H:ECX.[11] = 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If CPUID.01H:ECX.[11] = 1

63:32 Reserved.

C81H 3201 IA32_L3_QOS_CFG L3 QOS Configuration (R/W) If (CPUID.(EAX=10H,
ECX=1):ECX.[2] = 1)

0 Enable (R/W)

Set 1 to enable L3 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode

63:1 Reserved.

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-41

MODEL-SPECIFIC REGISTERS (MSRS)

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[12] =1) or
(CPUID.(EAX=07H,
ECX=0):EBX[15] =1))

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

63:32 COS (R/W). The class of service (COS) to
enforce (on writes); returns the current
COS when read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[15] = 1)

C90H -
D8FH

Reserved MSR Address Space for CAT
Mask Registers

See Section 17.19.4.1, “Enumeration and
Detection Support of Cache Allocation
Technology”.

C90H 3216 IA32_L3_MASK_0 L3 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

C90H+
n

3216+n IA32_L3_MASK_n L3 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D10H -
D4FH

Reserved MSR Address Space for L2
CAT Mask Registers

See Section 17.19.4.1, “Enumeration and
Detection Support of Cache Allocation
Technology”.

D10H 3344 IA32_L2_MASK_0 L2 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[2] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D10H+
n

3344+n IA32_L2_MASK_n L2 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=2H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D90H 3472 IA32_BNDCFGS Supervisor State of MPX Configuration.
(R/W)

If (CPUID.(EAX=07H,
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-42 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1 BNDPRESERVE: Preserve the bounds
registers for near branch instructions in the
absence of the BND prefix

11:2 Reserved, must be 0

63:12 Base Address of Bound Directory.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[3]
= 1

7:0 Reserved

8 Trace Packet Configuration State (R/W)

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If CPUID.06H:EAX.[13] = 1

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If CPUID.06H:EAX.[13] = 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will not
implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001H:EDX.[2
0] ||
CPUID.80000001H:EDX.[2
9])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-43

MODEL-SPECIFIC REGISTERS (MSRS)

8 IA-32e Mode Enable: IA32_EFER.LME
(R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

Target RIP for the called procedure when
SYSCALL is executed in 64-bit mode.

If
CPUID.80000001:EDX.[29]
= 1

C000_
0083H

IA32_CSTAR IA-32e Mode System Call Target Address
(R/W)

Not used, as the SYSCALL instruction is not
recognized in compatibility mode.

If
CPUID.80000001:EDX.[29]
= 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS
(R/W)

If
CPUID.80000001:EDX.[29]
= 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as

model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.
2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section

15.3.2.4 for more information.
3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-44 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 2-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors based
on Intel Core microarchitecture, architectural MSR addresses are also included in Table 2-3. These processors have
a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 2-1.

MSRs listed in Table 2-2 and Table 2-3 are also supported by processors based on the Enhanced Intel Core micro-
architecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature
DisplayFamily_DisplayModel of 06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique”
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently.
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Unique See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZ
E

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2.

10H 16 IA32_TIME_STAMP_COUNT
ER

Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 2-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

Vol. 4 2-45

MODEL-SPECIFIC REGISTERS (MSRS)

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 MSR_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 2-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible
and writeable while in SMM.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-46 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. This To_IP part of the stack contains pointers to the
destination instruction.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask register
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

10:0 Reserved.

11 Valid. Physical address base and range mask are valid.

31:12 PhysMask. SMRR physical address range mask.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-47

MODEL-SPECIFIC REGISTERS (MSRS)

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Enhanced Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-48 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R)

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

198H 408 MSR_PERF_STATUS Shared Current performance status. See Section 14.1.1, “Software
Interface For Initiating Performance State Transitions”.

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-49

MODEL-SPECIFIC REGISTERS (MSRS)

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors
based on Enhanced Intel Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 2-2.

8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor
performance.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-50 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache line that contains
data currently required by the processor. When set to 0, the
processor fetches cache lines that comprise a cache line pair (128
bytes).

Single processor platforms should not set this bit. Server platforms
should set or clear this bit based on platform performance
observed in validation and testing.

BIOS may contain a setup option that controls the setting of this
bit.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-51

MODEL-SPECIFIC REGISTERS (MSRS)

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval (R/W)

See Table 2-2.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 2-2.

36:35 Reserved.

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The
default value after reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache prefetcher. When the DCU
prefetcher detects multiple loads from the same line done within a
time limit, the DCU prefetcher assumes the next line will be
required. The next line is prefetched in to the L1 data cache from
memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic
Acceleration feature (IDA) is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of IDA. If power-on default value is 1, IDA is
available in the processor. If power-on default value is 0, IDA is not
available.

39 Unique IP Prefetcher Disable (R/W)

When set to 1, The IP prefetcher is disabled. The default value
after reset is 0. BIOS may write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher
looks for sequential load history to determine whether to prefetch
the next expected data into the L1 cache from memory or L2.

63:40 Reserved.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-52 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 2-2

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Unique See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Unique See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Unique See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-53

MODEL-SPECIFIC REGISTERS (MSRS)

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

309H 777 MSR_PERF_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30AH 778 MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

30BH 779 MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

345H 837 IA32_PERF_CAPABILITIES Unique See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural
perfmon version 2.

5:0 LBR Format. See Table 2-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 2-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38DH 909 MSR_PERF_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register (R/W)

38EH 910 IA32_PERF_GLOBAL_
STATUS

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STATU
S

Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-54 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 IA32_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-55

MODEL-SPECIFIC REGISTERS (MSRS)

412H 1042 IA32_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 IA32_MC3_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

414H 1044 IA32_MC5_CTL Unique Machine Check Error Reporting Register - controls signaling of #MC
for errors produced by a particular hardware unit (or group of
hardware units).

415H 1045 IA32_MC5_STATUS Unique Machine Check Error Reporting Register - contains information
related to a machine-check error if its VAL (valid) flag is set.
Software is responsible for clearing IA32_MCi_STATUS MSRs by
explicitly writing 0s to them; writing 1s to them causes a general-
protection exception.

416H 1046 IA32_MC5_ADDR Unique Machine Check Error Reporting Register - contains the address of
the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is
set.

417H 1047 IA32_MC5_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

419H 1045 IA32_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.” and
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-56 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

107CC
H

MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CD
H

MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CE
H

MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CF
H

MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D0
H

MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-57

MODEL-SPECIFIC REGISTERS (MSRS)

2.3 MSRS IN THE 45 NM AND 32 NM INTEL® ATOM™ PROCESSOR FAMILY
Table 2-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR
addresses are also included in Table 2-4. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H; see Table 2-1.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

107D1
H

MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D2
H

MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D3
H

MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D8
H

MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W) See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-58 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

Vol. 4 2-59

MODEL-SPECIFIC REGISTERS (MSRS)

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 2-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-60 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The To_IP part of the stack contains pointers to the
destination instruction.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Atom microarchitecture:

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-61

MODEL-SPECIFIC REGISTERS (MSRS)

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R)

See Table 2-2.

11EH 281 MSR_BBL_CR_CTL3 Shared Control register 3.

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-62 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

198H 408 MSR_PERF_STATUS Shared Performance Status

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

19DH 413 MSR_THERM2_CTL Shared Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0H 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 0.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 2-2.

8 Reserved.

9 Reserved.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-63

MODEL-SPECIFIC REGISTERS (MSRS)

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W)

See Table 2-2.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-64 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

34 Unique XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-65

MODEL-SPECIFIC REGISTERS (MSRS)

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-66 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 IA32_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 IA32_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-67

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-5 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor with the CPUID signa-
ture with DisplayFamily_DisplayModel of 06_27H.

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W) See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-68 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.4 MSRS IN INTEL PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 2-6 lists model-specific registers (MSRs) common to Intel processors based on the Silvermont microarchitec-
ture. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH; see Table 2-1. The MSRs listed in Table 2-6 are also common to processors based on the
Airmont microarchitecture and newer microarchitectures for next generation Intel Atom processors.

Table 2-7 lists MSRs common to processors based on the Silvermont and Airmont microarchitectures, but not
newer microarchitectures.

Table 2-8, Table 2-9, and Table 2-10 lists MSRs that are model-specific across processors based on the Silvermont
microarchitecture.

In the Silvermont microarchitecture, the scope column indicates the following: “Core” means each processor core
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical
package share the same MSR or bit interface.

Table 2-5. MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_27H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3F8H 1016 MSR_PKG_C2_RESIDENCY Package Package C2 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C2 Residency Counter. (R/O)

Time that this package is in processor-specific C2 states since last
reset. Counts at 1 Mhz frequency.

3F9H 1017 MSR_PKG_C4_RESIDENCY Package Package C4 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states since last
reset. Counts at 1 Mhz frequency.

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Package C6 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states since last
reset. Counts at 1 Mhz frequency.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.22, “MSRs in Pentium Processors.”

Vol. 4 2-69

MODEL-SPECIFIC REGISTERS (MSRS)

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Module Processor Hard Power-On Configuration (R/W) Writes ignored.

63:0 Reserved (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 2-2.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 2-2.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-70 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 2-2.

175H 373 IA32_SYSENTER_ESP Core See Table 2-2.

176H 374 IA32_SYSENTER_EIP Core See Table 2-2.

179H 377 IA32_MCG_CAP Core See Table 2-2.

17AH 378 IA32_MCG_STATUS Core Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-71

MODEL-SPECIFIC REGISTERS (MSRS)

21 Reserved

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Core See Table 2-2.

198H 408 IA32_PERF_STATUS Module See Table 2-2.

199H 409 IA32_PERF_CTL Core See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

The default thermal throttling or PROCHOT# activation
temperature in degree C, The effective temperature for thermal
throttling or PROCHOT# activation is “Temperature Target” +
“Target Offset”

29:24 Target Offset (R/W)

Specifies an offset in degrees C to adjust the throttling and
PROCHOT# activation temperature from the default target
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Module Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Module Offcore Response Event Select Register (R/W)

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 2-2.

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-72 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 2-2.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-73

MODEL-SPECIFIC REGISTERS (MSRS)

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-74 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-75

MODEL-SPECIFIC REGISTERS (MSRS)

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 2-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Core See Table 2-2.

4C2H 1218 IA32_A_PMC1 Core See Table 2-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-76 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-7 lists model-specific registers (MSRs) that are common to Intel® Atom™ processors based on the Silver-
mont and Airmont microarchitectures but not newer microarchitectures.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1
states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 2-2

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Core Swap Target of BASE Address of GS (R/W) See Table 2-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 2-2

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R)

7:0 Reserved.

13:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 2-2

63:33 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Reserved

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-77

MODEL-SPECIFIC REGISTERS (MSRS)

2 Enable VMX outside SMX operation (R/WL)

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5 and record format in Section 17.4.8.1

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The To_IP part of the stack contains pointers to the
destination instruction.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-78 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

11EH 281 MSR_BBL_CR_CTL3 Module Control register 3.

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-79

MODEL-SPECIFIC REGISTERS (MSRS)

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Module Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 0.

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Module Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 2-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 2-2.

23 Module xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Module Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-80 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Core See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS for precise event on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Counts at the TSC Frequency.

664H 1636 MSR_MC6_RESIDENCY_COU
NTER

Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code names,

unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Time that this module is in module-specific C6 states since last

reset. Counts at 1 Mhz frequency.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the maximum frequency that does not require
turbo. Frequency = ratio * Scalable Bus Frequency.

63:16 Reserved.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-81

MODEL-SPECIFIC REGISTERS (MSRS)

2.4.1 MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
Table 2-8 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H) and Intel Atom processors (CPUID signatures with
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH).

Table 2-8. Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signatures 06_37H, 06_4AH, 06_5AH,
06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0101b, indicating power unit is in 32 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

19:16 Time Unit.

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

14:0 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 2-8.

15 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1. (R/W)

in unit of second. If 0 is specified in bits [23:17], defaults to 1
second window.

63:24 Reserved

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 2-8

2-82 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-9 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H).

Table 2-10 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor C2000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_4DH).

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 2-8

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture.

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved.

Table 2-9. Specific MSRs Supported by Intel® Atom™ Processor E3000 Series with CPUID Signature 06_37H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

668H 1640 MSR_CC6_DEMOTION_POLI
CY_CONFIG

Package Core C6 demotion policy config MSR

63:0 Controls per-core C6 demotion policy. Writing a value of 0 disables
core level HW demotion policy.

669H 1641 MSR_MC6_DEMOTION_POLI
CY_CONFIG

Package Module C6 demotion policy config MSR

63:0 Controls module (i.e. two cores sharing the second-level cache) C6
demotion policy. Writing a value of 0 disables module level HW
demotion policy.

664H 1636 MSR_MC6_RESIDENCY_COU
NTER

Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code names,

unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Time that this module is in module-specific C6 states since last

reset. Counts at 1 Mhz frequency.

Table 2-8. Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signatures 06_37H, 06_4AH, 06_5AH,
06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-83

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-10. Specific MSRs Supported by Intel® Atom™ Processor C2000 Series with CPUID Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

63:3 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0101b, indicating power unit is in 32 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

2-84 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.4.2 MSRs In Intel Atom Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. These proces-
sors support MSRs listed in Table 2-6, Table 2-7, Table 2-8, and Table 2-11. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel including 06_4CH; see Table 2-1.

19:16 Time Unit.

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0)

14:0 Thermal Spec Power. (R/0)

The unsigned integer value is the equivalent of thermal
specification power of the package domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT

63:15 Reserved

Table 2-11. MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Airmont microarchitecture:

3:0 • 0000B: 083.3 MHz
• 0001B: 100.0 MHz
• 0010B: 133.3 MHz
• 0011B: 116.7 MHz
• 0100B: 080.0 MHz
• 0101B: 093.3 MHz
• 0110B: 090.0 MHz
• 0111B: 088.9 MHz
• 1000B: 087.5 MHz

63:5 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 2-10. Specific MSRs Supported by Intel® Atom™ Processor C2000 Series (Contd.)with CPUID Signature

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-85

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: No limit

001b: C1

010b: C2

110b: C6

111b: C7

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - Deep Power Down Technology is the max C-State

010b - C7 is the max C-State to include

63:19 Reserved.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

14:0 PP0 Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 2-8.

15 Enable Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

16 Reserved

Table 2-11. MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-86 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.5 MSRS IN INTEL ATOM PROCESSORS BASED ON GOLDMONT
MICROARCHITECTURE

Intel Atom processors based on the Goldmont microarchitecture support MSRs listed in Table 2-6 and Table 2-12.
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_5CH; see Table 2-1.

In the Goldmont microarchitecture, the scope column indicates the following: “Core” means each processor core
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical
package share the same MSR or bit interface.

23:17 Time Window for Power Limit #1. (R/W)

Specifies the time duration over which the average power must
remain below PP0_POWER_LIMIT #1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 2-2.

63:33 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

Table 2-11. MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-87

MODEL-SPECIFIC REGISTERS (MSRS)

15 SENTER global functions enable (R/WL)

18 SGX global functions enable (R/WL)

63:19 Reserved.

3BH 59 IA32_TSC_ADJUST Core Per-Core TSC ADJUST (R/W)

See Table 2-2.

C3H 195 IA32_PMC2 Core Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Core Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the maximum frequency that does not require
turbo. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

30 Package Programmable TJ OFFSET (R/O)

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24]
is valid and writable to specify an temperature offset.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-88 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: No limit

0001b: C1

0010b: C3

0011b: C6

0100b: C7

0101b: C7S

0110b: C8

0111b: C9

1000b: C10

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

17DH 381 MSR_SMM_MCA_CAP Core Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

188H 392 IA32_PERFEVTSEL2 Core See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Core See Table 2-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Package Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-89

MODEL-SPECIFIC REGISTERS (MSRS)

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 2-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 2-2.

23 Package xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-90 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:3 Reserved.

1AAH 426 MSR_MISC_PWR_MGMT Package Miscellaneous Power Management Control; various model specific
features enumeration. See http://biosbits.org.

0 EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel
Speedstep Technology request from processor cores; When 1,
disables hardware coordination of Enhanced Intel Speedstep
Technology requests.

21:1 Reserved.

22 Thermal Interrupt Coordination Enable (R/W)

If set, then thermal interrupt on one core is routed to all cores.

63:23 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode by Core Groups (RW)

Specifies Maximum Ratio Limit for each Core Group. Max ratio
for groups with more cores must decrease monotonically.

For groups with less than 4 cores, the max ratio must be 32 or
less. For groups with 4-5 cores, the max ratio must be 22 or
less. For groups with more than 5 cores, the max ratio must be
16 or less.

7:0 Package Maximum Ratio Limit for Active cores in Group 0

Maximum turbo ratio limit when number of active cores is less or
equal to Group 0 threshold.

15:8 Package Maximum Ratio Limit for Active cores in Group 1

Maximum turbo ratio limit when number of active cores is less or
equal to Group 1 threshold and greater than Group 0 threshold.

23:16 Package Maximum Ratio Limit for Active cores in Group 2

Maximum turbo ratio limit when number of active cores is less or
equal to Group 2 threshold and greater than Group 1 threshold.

31:24 Package Maximum Ratio Limit for Active cores in Group 3

Maximum turbo ratio limit when number of active cores is less or
equal to Group 3 threshold and greater than Group 2 threshold.

39:32 Package Maximum Ratio Limit for Active cores in Group 4

Maximum turbo ratio limit when number of active cores is less or
equal to Group 4 threshold and greater than Group 3 threshold.

47:40 Package Maximum Ratio Limit for Active cores in Group 5

Maximum turbo ratio limit when number of active cores is less or
equal to Group 5 threshold and greater than Group 4 threshold.

55:48 Package Maximum Ratio Limit for Active cores in Group 6

Maximum turbo ratio limit when number of active cores is less or
equal to Group 6 threshold and greater than Group 5 threshold.

63:56 Package Maximum Ratio Limit for Active cores in Group 7

Maximum turbo ratio limit when number of active cores is less or
equal to Group 7 threshold and greater than Group 6 threshold.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-91

MODEL-SPECIFIC REGISTERS (MSRS)

1AEH 430 MSR_TURBO_GROUP_CORE
CNT

Package Group Size of Active Cores for Turbo Mode Operation (RW)

Writes of 0 threshold is ignored

7:0 Package Group 0 Core Count Threshold

Maximum number of active cores to operate under Group 0 Max
Turbo Ratio limit.

15:8 Package Group 1 Core Count Threshold

Maximum number of active cores to operate under Group 1 Max
Turbo Ratio limit. Must be greater than Group 0 Core Count.

23:16 Package Group 2 Core Count Threshold

Maximum number of active cores to operate under Group 2 Max
Turbo Ratio limit. Must be greater than Group 1 Core Count.

31:24 Package Group 3 Core Count Threshold

Maximum number of active cores to operate under Group 3 Max
Turbo Ratio limit. Must be greater than Group 2 Core Count.

39:32 Package Group 4 Core Count Threshold

Maximum number of active cores to operate under Group 4 Max
Turbo Ratio limit. Must be greater than Group 3 Core Count.

47:40 Package Group 5 Core Count Threshold

Maximum number of active cores to operate under Group 5 Max
Turbo Ratio limit. Must be greater than Group 4 Core Count.

55:48 Package Group 6 Core Count Threshold

Maximum number of active cores to operate under Group 6 Max
Turbo Ratio limit. Must be greater than Group 5 Core Count.

63:56 Package Group 7 Core Count Threshold

Maximum number of active cores to operate under Group 7 Max
Turbo Ratio limit. Must be greater than Group 6 Core Count and not
less than the total number of processor cores in the package. E.g.
specify 255.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:10 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-92 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

210H 528 IA32_MTRR_PHYSBASE8 Core See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Core See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Core See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Core See Table 2-2.

280H 640 IA32_MC0_CTL2 Module See Table 2-2.

281H 641 IA32_MC1_CTL2 Module See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Module See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH.

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

301H 769 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH.

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Core See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-93

MODEL-SPECIFIC REGISTERS (MSRS)

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI.

57:56 Reserved.

58 LBR_Frz.

59 CTR_Frz.

60 ASCI.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

Core See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved.

58 Set 1 to clear LBR_Frz.

59 Set 1 to clear CTR_Frz.

60 Set 1 to clear ASCI.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

Core See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Set 1 to cause Ovf_PMC0 = 1

1 Set 1 to cause Ovf_PMC1 = 1

2 Set 1 to cause Ovf_PMC2 = 1

3 Set 1 to cause Ovf_PMC3 = 1

31:4 Reserved.

32 Set 1 to cause Ovf_FixedCtr0 = 1

33 Set 1 to cause Ovf_FixedCtr1 = 1

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-94 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

34 Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1

59 Set 1 to cause CTR_Frz = 1

60 Set 1 to cause ASCI = 1

61 Set 1 to cause Ovf_Uncore

62 Set 1 to cause Ovf_BufDSSAVE

63 Reserved.

392H 914 IA32_PERF_GLOBAL_INUSE See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC0. (R/W)

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

406H 1030 IA32_MC1_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-95

MODEL-SPECIFIC REGISTERS (MSRS)

4C3H 1219 IA32_A_PMC2 Core See Table 2-2.

4C4H 1220 IA32_A_PMC3 Core See Table 2-2.

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its blocked state to service
an SMI. The corresponding bit will be set if the logical processor is
in one of the following states: Wait For SIPI or SENTER Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

500H 1280 IA32_SGX_SVN_STATUS Core Status and SVN Threshold of SGX Support for ACM (RO).

0 Lock. See Section 41.11.3, “Interactions with Authenticated Code
Modules (ACMs)”

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-96 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 41.11.3, “Interactions with
Authenticated Code Modules (ACMs)”

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Core Trace Output Base Register (R/W). See Table 2-2.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Core Trace Output Mask Pointers Register (R/W). See Table 2-2.

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Core Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved. MBZ

48:32 PacketByteCnt

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-97

MODEL-SPECIFIC REGISTERS (MSRS)

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH Core Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Core Region 0 Start Address (R/W)

63:0 See Table 2-2.

581H 1409 IA32_RTIT_ADDR0_B Core Region 0 End Address (R/W)

63:0 See Table 2-2.

582H 1410 IA32_RTIT_ADDR1_A Core Region 1 Start Address (R/W)

63:0 See Table 2-2.

583H 1411 IA32_RTIT_ADDR1_B Core Region 1 End Address (R/W)

63:0 See Table 2-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in Watts) is in unit of, 1W/2^PU; where
PU is an unsigned integer represented by bits 3:0. Default value is
1000b, indicating power unit is in 3.9 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in Joules) is in unit of, 1Joule/ (2^ESU);
where ESU is an unsigned integer represented by bits 12:8. Default
value is 01110b, indicating energy unit is in 61 microJoules.

15:13 Reserved

19:16 Time Unit.

Time related information (in seconds) is in unit of, 1S/2^TU; where
TU is an unsigned integer represented by bits 19:16. Default value
is 1010b, indicating power unit is in 0.977 millisecond.

63:20 Reserved

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings.

14:13 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-98 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC_IRTL1 Package Package C6/C7S Interrupt Response Limit 1 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C6 or C7S state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 or C7S state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60CH 1548 MSR_PKGC_IRTL2 Package Package C7 Interrupt Response Limit 2 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C7 state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-99

MODEL-SPECIFIC REGISTERS (MSRS)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W)

14:0 Thermal Spec Power (R/W)

See Section 14.9.3, “Package RAPL Domain.”

15 Reserved.

30:16 Minimum Power (R/W)

See Section 14.9.3, “Package RAPL Domain.”

31 Reserved.

46:32 Maximum Power (R/W)

See Section 14.9.3, “Package RAPL Domain.”

47 Reserved.

54:48 Maximum Time Window (R/W)

Specified by 2^Y * (1.0 + Z/4.0) * Time_Unit, where “Y”
is the unsigned integer value represented. by bits
52:48, “Z” is an unsigned integer represented by bits
54:53. “Time_Unit” is specified by the “Time Units” field
of MSR_RAPL_POWER_UNIT

63:55 Reserved.

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names,

63:0 Package C10 Residency Counter. (R/O)

Value since last reset that the entire SOC is in an S0i3 state. Count
at the same frequency as the TSC.

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-100 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64FH 1615 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the
operating system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

2 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

3 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

8:4 Reserved.

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

11 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

12 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

14 Maximum Efficiency Frequency Status (R0)

When set, frequency is reduced below the maximum efficiency
frequency.

15 Reserved

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-101

MODEL-SPECIFIC REGISTERS (MSRS)

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24:20 Reserved.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Maximum Efficiency Frequency Log

When set, indicates that the Maximum Efficiency Frequency Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:31 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-102 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of 32 pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6 and record format in Section 17.4.8.1

0:47 From Linear Address (R/W)

62:48 Signed extension of bits 47:0.

63 Mispred

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Core Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Core Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Core Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Core Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Core Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Core Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Core Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Core Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Core Last Branch Record 16 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-103

MODEL-SPECIFIC REGISTERS (MSRS)

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Core Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Core Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Core Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Core Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Core Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Core Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Core Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Core Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Core Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Core Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Core Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Core Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Core Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Core Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Core Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of 32 pairs of last branch record registers on the last branch
record stack. The To_IP part of the stack contains pointers to the
Destination instruction and elapsed cycles from last LBR update.
See also:

• Section 17.6

0:47 Target Linear Address (R/W)

63:48 Elapsed cycles from last update to the LBR.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-104 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Core Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Core Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Core Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Core Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Core Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Core Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Core Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Core Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Core Last Branch Record 16 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Core Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Core Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Core Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Core Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Core Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-105

MODEL-SPECIFIC REGISTERS (MSRS)

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Core Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Core Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Core Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Core Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Core Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Core Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Core Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Core Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Core Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Core Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Core x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Core x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Core x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Core x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Core x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Core x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Core x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Core x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Core x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Core x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Core x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Core x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Core x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Core x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Core x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Core x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Core x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Core x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Core x2APIC Trigger Mode register bits [127:96] (R/O)

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-106 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

81CH 2076 IA32_X2APIC_TMR4 Core x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Core x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Core x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Core x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Core x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Core x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Core x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Core x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Core x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Core x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Core x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Core x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Core x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Core x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Core x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Core x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Core x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Core x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Core x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Core x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Core x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Core x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Core x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Core x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Core x2APIC Self IPI register (W/O)

C8FH 3215 IA32_PQR_ASSOC Core Resource Association Register (R/W)

31:0 Reserved

33:32 COS (R/W).

63: 34 Reserved

D10H 3344 IA32_L2_QOS_MASK_0 Module L2 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

D11H 3345 IA32_L2_QOS_MASK_1 Module L2 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-107

MODEL-SPECIFIC REGISTERS (MSRS)

2.6 MSRS IN INTEL ATOM PROCESSORS BASED ON GOLDMONT PLUS
MICROARCHITECTURE

Intel Atom processors based on the Goldmont Plus microarchitecture support MSRs listed in Table 2-6, Table 2-12
and Table 2-13. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_7AH; see Table
2-1. For an MSR listed in Table 2-13 that also appears in the model-specific tables of prior generations, Table 2-13
supercede prior generation tables.

In the Goldmont Plus microarchitecture, the scope column indicates the following: “Core” means each processor
core has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit
field is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the
physical package share the same MSR or bit interface.

D12H 3346 IA32_L2_QOS_MASK_2 Module L2 Class Of Service Mask - COS 2 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

D13H 3347 IA32_L2_QOS_MASK_3 Package L2 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L2 ways for COS 3 enforcement

63:20 Reserved

D90H 3472 IA32_BNDCFGS Core See Table 2-2.

DA0H 3488 IA32_XSS Core See Table 2-2.

See Table 2-6, and Table 2-12 for MSR definitions applicable to processors with CPUID signature 06_5CH.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration of SGX
Launch Control via IA32_SGXLEPUBKEYHASHn MSR.

Valid if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.

18 SGX global functions enable (R/WL)

63:19 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-108 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8CH 140 IA32_SGXLEPUBKEYHASH0 Core See Table 2-2.

8DH 141 IA32_SGXLEPUBKEYHASH1 Core See Table 2-2.

8EH 142 IA32_SGXLEPUBKEYHASH2 Core See Table 2-2.

8FH 143 IA32_SGXLEPUBKEYHASH3 Core See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC0. (R/W)

1 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC1.

2 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC2.

3 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC3.

31:4 Reserved.

32 Enable PEBS trigger and recording for IA32_FIXED_CTR0.

33 Enable PEBS trigger and recording for IA32_FIXED_CTR1.

34 Enable PEBS trigger and recording for IA32_FIXED_CTR2.

63:35 Reserved.

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

4 PwrEvtEn

5 FUPonPTW

6 FabricEn

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 PTWEn

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-109

MODEL-SPECIFIC REGISTERS (MSRS)

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

680H 1664 MSR_

LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of the three MSRs that make up the first entry of the 32-entry
LBR stack. The From_IP part of the stack contains pointers to the
source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.7, “Last Branch, Call Stack, Interrupt, and Exception

Recording for Processors based on Goldmont Plus
Microarchitecture.”

681H
-

69FH

1665
-

1695

MSR_

LASTBRANCH_i_FROM_IP

Core Last Branch Record i From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP; i = 1-31.

6C0H 1728 MSR_

LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of the 3 MSRs that make up the first entry of the 32-entry
LBR stack. The To_IP part of the stack contains pointers to the
Destination instruction. See also:

• Section 17.7, “Last Branch, Call Stack, Interrupt, and Exception
Recording for Processors based on Goldmont Plus
Microarchitecture.”

6C1H
-

6DFH

1729
-

1759

MSR_

LASTBRANCH_i_TO_IP

Core Last Branch Record i To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP; i = 1-31.

DC0H 3520 MSR_LASTBRANCH_INFO_
0

Core Last Branch Record 0 Additional Information (R/W)

One of the 3 MSRs that make up the first entry of the 32-entry
LBR stack. This part of the stack contains flag and elapsed cycle
information. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9.1, “LBR Stack.”

DC1H 3521 MSR_LASTBRANCH_INFO_
1

Core Last Branch Record 1 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC2H 3522 MSR_LASTBRANCH_INFO_
2

Core Last Branch Record 2 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC3H 3523 MSR_LASTBRANCH_INFO_
3

Core Last Branch Record 3 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC4H 3524 MSR_LASTBRANCH_INFO_
4

Core Last Branch Record 4 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC5H 3525 MSR_LASTBRANCH_INFO_
5

Core Last Branch Record 5 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC6H 3526 MSR_LASTBRANCH_INFO_
6

Core Last Branch Record 6 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-110 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DC7H 3527 MSR_LASTBRANCH_INFO_
7

Core Last Branch Record 7 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC8H 3528 MSR_LASTBRANCH_INFO_
8

Core Last Branch Record 8 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC9H 3529 MSR_LASTBRANCH_INFO_
9

Core Last Branch Record 9 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCAH 3530 MSR_LASTBRANCH_INFO_
10

Core Last Branch Record 10 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCBH 3531 MSR_LASTBRANCH_INFO_
11

Core Last Branch Record 11 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCCH 3532 MSR_LASTBRANCH_INFO_
12

Core Last Branch Record 12 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCDH 3533 MSR_LASTBRANCH_INFO_
13

Core Last Branch Record 13 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCEH 3534 MSR_LASTBRANCH_INFO_
14

Core Last Branch Record 14 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCFH 3535 MSR_LASTBRANCH_INFO_
15

Core Last Branch Record 15 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD0H 3536 MSR_LASTBRANCH_INFO_
16

Core Last Branch Record 16 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD1H 3537 MSR_LASTBRANCH_INFO_
17

Core Last Branch Record 17 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD2H 3538 MSR_LASTBRANCH_INFO_
18

Core Last Branch Record 18 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD3H 3539 MSR_LASTBRANCH_INFO_
19

Core Last Branch Record 19 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD4H 3520 MSR_LASTBRANCH_INFO_
20

Core Last Branch Record 20 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD5H 3521 MSR_LASTBRANCH_INFO_
21

Core Last Branch Record 21 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD6H 3522 MSR_LASTBRANCH_INFO_
22

Core Last Branch Record 22 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD7H 3523 MSR_LASTBRANCH_INFO_
23

Core Last Branch Record 23 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD8H 3524 MSR_LASTBRANCH_INFO_
24

Core Last Branch Record 24 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD9H 3525 MSR_LASTBRANCH_INFO_
25

Core Last Branch Record 25 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDAH 3526 MSR_LASTBRANCH_INFO_
26

Core Last Branch Record 26 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-111

MODEL-SPECIFIC REGISTERS (MSRS)

2.7 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 2-14 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see Table 2-1. Additional MSRs specific to
06_1AH, 06_1EH, 06_1FH are listed in Table 2-15. Some MSRs listed in these tables are used by BIOS. More infor-
mation about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by change
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed once
for each physical package. Change of a bit filed with a package scope will affect all logical processors in that phys-
ical package.

DDBH 3527 MSR_LASTBRANCH_INFO_
27

Core Last Branch Record 27 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDCH 3528 MSR_LASTBRANCH_INFO_
28

Core Last Branch Record 28 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDDH 3529 MSR_LASTBRANCH_INFO_
29

Core Last Branch Record 29 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDEH 3530 MSR_LASTBRANCH_INFO_
30

Core Last Branch Record 30 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDFH 3531 MSR_LASTBRANCH_INFO_
31

Core Last Branch Record 31 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

See Table 2-6, Table 2-12 and Table 2-13 for MSR definitions applicable to processors with CPUID signature 06_7AH.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 2-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 2-2.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-112 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at. The
invariant TSC frequency can be computed by multiplying this ratio
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDC/TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-113

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved.

24 Interrupt filtering enable (R/W)

When set, processor cores in a deep C-State will wake only when
the event message is destined for that core. When 0, all processor
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-114 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-115

MODEL-SPECIFIC REGISTERS (MSRS)

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Thread See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Core See Table 2-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-116 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

6:4 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 2-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 2-2.

23 Thread xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-117

MODEL-SPECIFIC REGISTERS (MSRS)

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control; Various model specific
features enumeration. See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel
Speedstep Technology request from processor cores; When 1,
disables hardware coordination of Enhanced Intel Speedstep
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h)
visible to software with Ring 0 privileges. This bit’s status (1 or 0)
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ACH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-118 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-119

MODEL-SPECIFIC REGISTERS (MSRS)

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-120 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Package See Table 2-2.

281H 641 IA32_MC1_CTL2 Package See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Core See Table 2-2.

285H 645 IA32_MC5_CTL2 Core See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 2-2.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-121

MODEL-SPECIFIC REGISTERS (MSRS)

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 2-2.

11:8 PEBS_REC_FORMAT. See Table 2-2.

12 SMM_FREEZE. See Table 2-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STATU
S

Thread Provides single-bit status used by software to query the overflow
condition of each performance counter. (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.” Allows software to clear counter overflow conditions on
any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via a single WRMSR.

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.3.1.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-122 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

403H 1027 IA32_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-123

MODEL-SPECIFIC REGISTERS (MSRS)

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

407H 1031 IA32_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 IA32_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 IA32_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-124 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-125

MODEL-SPECIFIC REGISTERS (MSRS)

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration
(R/O).

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. The From_IP part of the stack contains
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9.1 and record format in Section 17.4.8.1

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-126 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-127

MODEL-SPECIFIC REGISTERS (MSRS)

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-128 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.7.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
Intel Xeon Processor 5500 and 3400 series support additional model-specific registers listed in Table 2-15. These
MSRs also apply to Intel Core i7 and i5 processor family CPUID signature with DisplayFamily_DisplayModel of
06_1AH, 06_1EH and 06_1FH, see Table 2-1.

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W) See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 2-2 and Section
17.17.2, “IA32_TSC_AUX Register and RDTSCP Support.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-129

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-15. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Actual maximum turbo frequency is multiplied by 133.33MHz. (not
available to model 06_2EH)

7:0 Maximum Turbo Ratio Limit 1C (R/O)

Maximum Turbo mode ratio limit with 1 core active.

15:8 Maximum Turbo Ratio Limit 2C (R/O)

Maximum Turbo mode ratio limit with 2 cores active.

23:16 Maximum Turbo Ratio Limit 3C (R/O)

Maximum Turbo mode ratio limit with 3 cores active.

31:24 Maximum Turbo Ratio Limit 4C (R/O)

Maximum Turbo mode ratio limit with 4 cores active.

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_MESF Package

0 From M to S (R/W)

1 From E to S (R/W)

2 From S to S (R/W)

3 From F to S (R/W)

4 From M to I (R/W)

5 From E to I (R/W)

6 From S to I (R/W)

7 From F to I (R/W)

63:8 Reserved.

391H 913 MSR_UNCORE_PERF_
GLOBAL_CTRL

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

392H 914 MSR_UNCORE_PERF_
GLOBAL_STATUS

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

393H 915 MSR_UNCORE_PERF_
GLOBAL_OVF_CTRL

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

394H 916 MSR_UNCORE_FIXED_CTR0 Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

395H 917 MSR_UNCORE_FIXED_CTR_
CTRL

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

396H 918 MSR_UNCORE_ADDR_
OPCODE_MATCH

Package See Section 18.3.1.2.3, “Uncore Address/Opcode Match MSR.”

3B0H 960 MSR_UNCORE_PMC0 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B1H 961 MSR_UNCORE_PMC1 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B2H 962 MSR_UNCORE_PMC2 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

2-130 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.7.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 2-14 (except MSR address 1ADH) and additional
model-specific registers listed in Table 2-16. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2EH.

3B3H 963 MSR_UNCORE_PMC3 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B4H 964 MSR_UNCORE_PMC4 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B6H 966 MSR_UNCORE_PMC6 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B7H 967 MSR_UNCORE_PMC7 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C0H 944 MSR_UNCORE_
PERFEVTSEL0

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C1H 945 MSR_UNCORE_
PERFEVTSEL1

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C2H 946 MSR_UNCORE_
PERFEVTSEL2

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C3H 947 MSR_UNCORE_
PERFEVTSEL3

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C4H 948 MSR_UNCORE_
PERFEVTSEL4

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C5H 949 MSR_UNCORE_
PERFEVTSEL5

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C6H 950 MSR_UNCORE_
PERFEVTSEL6

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C7H 951 MSR_UNCORE_
PERFEVTSEL7

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

Table 2-15. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-131

MODEL-SPECIFIC REGISTERS (MSRS)

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

394H 816 MSR_W_PMON_FIXED_CTR Package Uncore W-box perfmon fixed counter

395H 817 MSR_W_PMON_FIXED_
CTR_CTL

Package Uncore U-box perfmon fixed counter control MSR

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-132 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 IA32_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 IA32_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 IA32_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 IA32_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 IA32_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GLOBAL_
CTRL

Package Uncore U-box perfmon global control MSR.

C01H 3073 MSR_U_PMON_GLOBAL_
STATUS

Package Uncore U-box perfmon global status MSR.

C02H 3074 MSR_U_PMON_GLOBAL_
OVF_CTRL

Package Uncore U-box perfmon global overflow control MSR.

C10H 3088 MSR_U_PMON_EVNT_SEL Package Uncore U-box perfmon event select MSR.

C11H 3089 MSR_U_PMON_CTR Package Uncore U-box perfmon counter MSR.

C20H 3104 MSR_B0_PMON_BOX_CTRL Package Uncore B-box 0 perfmon local box control MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-133

MODEL-SPECIFIC REGISTERS (MSRS)

C21H 3105 MSR_B0_PMON_BOX_
STATUS

Package Uncore B-box 0 perfmon local box status MSR.

C22H 3106 MSR_B0_PMON_BOX_OVF_
CTRL

Package Uncore B-box 0 perfmon local box overflow control MSR.

C30H 3120 MSR_B0_PMON_EVNT_
SEL0

Package Uncore B-box 0 perfmon event select MSR.

C31H 3121 MSR_B0_PMON_CTR0 Package Uncore B-box 0 perfmon counter MSR.

C32H 3122 MSR_B0_PMON_EVNT_
SEL1

Package Uncore B-box 0 perfmon event select MSR.

C33H 3123 MSR_B0_PMON_CTR1 Package Uncore B-box 0 perfmon counter MSR.

C34H 3124 MSR_B0_PMON_EVNT_
SEL2

Package Uncore B-box 0 perfmon event select MSR.

C35H 3125 MSR_B0_PMON_CTR2 Package Uncore B-box 0 perfmon counter MSR.

C36H 3126 MSR_B0_PMON_EVNT_
SEL3

Package Uncore B-box 0 perfmon event select MSR.

C37H 3127 MSR_B0_PMON_CTR3 Package Uncore B-box 0 perfmon counter MSR.

C40H 3136 MSR_S0_PMON_BOX_CTRL Package Uncore S-box 0 perfmon local box control MSR.

C41H 3137 MSR_S0_PMON_BOX_
STATUS

Package Uncore S-box 0 perfmon local box status MSR.

C42H 3138 MSR_S0_PMON_BOX_OVF_
CTRL

Package Uncore S-box 0 perfmon local box overflow control MSR.

C50H 3152 MSR_S0_PMON_EVNT_
SEL0

Package Uncore S-box 0 perfmon event select MSR.

C51H 3153 MSR_S0_PMON_CTR0 Package Uncore S-box 0 perfmon counter MSR.

C52H 3154 MSR_S0_PMON_EVNT_
SEL1

Package Uncore S-box 0 perfmon event select MSR.

C53H 3155 MSR_S0_PMON_CTR1 Package Uncore S-box 0 perfmon counter MSR.

C54H 3156 MSR_S0_PMON_EVNT_
SEL2

Package Uncore S-box 0 perfmon event select MSR.

C55H 3157 MSR_S0_PMON_CTR2 Package Uncore S-box 0 perfmon counter MSR.

C56H 3158 MSR_S0_PMON_EVNT_
SEL3

Package Uncore S-box 0 perfmon event select MSR.

C57H 3159 MSR_S0_PMON_CTR3 Package Uncore S-box 0 perfmon counter MSR.

C60H 3168 MSR_B1_PMON_BOX_CTRL Package Uncore B-box 1 perfmon local box control MSR.

C61H 3169 MSR_B1_PMON_BOX_
STATUS

Package Uncore B-box 1 perfmon local box status MSR.

C62H 3170 MSR_B1_PMON_BOX_OVF_
CTRL

Package Uncore B-box 1 perfmon local box overflow control MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-134 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C70H 3184 MSR_B1_PMON_EVNT_
SEL0

Package Uncore B-box 1 perfmon event select MSR.

C71H 3185 MSR_B1_PMON_CTR0 Package Uncore B-box 1 perfmon counter MSR.

C72H 3186 MSR_B1_PMON_EVNT_
SEL1

Package Uncore B-box 1 perfmon event select MSR.

C73H 3187 MSR_B1_PMON_CTR1 Package Uncore B-box 1 perfmon counter MSR.

C74H 3188 MSR_B1_PMON_EVNT_
SEL2

Package Uncore B-box 1 perfmon event select MSR.

C75H 3189 MSR_B1_PMON_CTR2 Package Uncore B-box 1 perfmon counter MSR.

C76H 3190 MSR_B1_PMON_EVNT_
SEL3

Package Uncore B-box 1vperfmon event select MSR.

C77H 3191 MSR_B1_PMON_CTR3 Package Uncore B-box 1 perfmon counter MSR.

C80H 3120 MSR_W_PMON_BOX_CTRL Package Uncore W-box perfmon local box control MSR.

C81H 3121 MSR_W_PMON_BOX_
STATUS

Package Uncore W-box perfmon local box status MSR.

C82H 3122 MSR_W_PMON_BOX_OVF_
CTRL

Package Uncore W-box perfmon local box overflow control MSR.

C90H 3136 MSR_W_PMON_EVNT_SEL0 Package Uncore W-box perfmon event select MSR.

C91H 3137 MSR_W_PMON_CTR0 Package Uncore W-box perfmon counter MSR.

C92H 3138 MSR_W_PMON_EVNT_SEL1 Package Uncore W-box perfmon event select MSR.

C93H 3139 MSR_W_PMON_CTR1 Package Uncore W-box perfmon counter MSR.

C94H 3140 MSR_W_PMON_EVNT_SEL2 Package Uncore W-box perfmon event select MSR.

C95H 3141 MSR_W_PMON_CTR2 Package Uncore W-box perfmon counter MSR.

C96H 3142 MSR_W_PMON_EVNT_SEL3 Package Uncore W-box perfmon event select MSR.

C97H 3143 MSR_W_PMON_CTR3 Package Uncore W-box perfmon counter MSR.

CA0H 3232 MSR_M0_PMON_BOX_CTRL Package Uncore M-box 0 perfmon local box control MSR.

CA1H 3233 MSR_M0_PMON_BOX_
STATUS

Package Uncore M-box 0 perfmon local box status MSR.

CA2H 3234 MSR_M0_PMON_BOX_
OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow control MSR.

CA4H 3236 MSR_M0_PMON_
TIMESTAMP

Package Uncore M-box 0 perfmon time stamp unit select MSR.

CA5H 3237 MSR_M0_PMON_DSP Package Uncore M-box 0 perfmon DSP unit select MSR.

CA6H 3238 MSR_M0_PMON_ISS Package Uncore M-box 0 perfmon ISS unit select MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-135

MODEL-SPECIFIC REGISTERS (MSRS)

CA7H 3239 MSR_M0_PMON_MAP Package Uncore M-box 0 perfmon MAP unit select MSR.

CA8H 3240 MSR_M0_PMON_MSC_THR Package Uncore M-box 0 perfmon MIC THR select MSR.

CA9H 3241 MSR_M0_PMON_PGT Package Uncore M-box 0 perfmon PGT unit select MSR.

CAAH 3242 MSR_M0_PMON_PLD Package Uncore M-box 0 perfmon PLD unit select MSR.

CABH 3243 MSR_M0_PMON_ZDP Package Uncore M-box 0 perfmon ZDP unit select MSR.

CB0H 3248 MSR_M0_PMON_EVNT_
SEL0

Package Uncore M-box 0 perfmon event select MSR.

CB1H 3249 MSR_M0_PMON_CTR0 Package Uncore M-box 0 perfmon counter MSR.

CB2H 3250 MSR_M0_PMON_EVNT_
SEL1

Package Uncore M-box 0 perfmon event select MSR.

CB3H 3251 MSR_M0_PMON_CTR1 Package Uncore M-box 0 perfmon counter MSR.

CB4H 3252 MSR_M0_PMON_EVNT_
SEL2

Package Uncore M-box 0 perfmon event select MSR.

CB5H 3253 MSR_M0_PMON_CTR2 Package Uncore M-box 0 perfmon counter MSR.

CB6H 3254 MSR_M0_PMON_EVNT_
SEL3

Package Uncore M-box 0 perfmon event select MSR.

CB7H 3255 MSR_M0_PMON_CTR3 Package Uncore M-box 0 perfmon counter MSR.

CB8H 3256 MSR_M0_PMON_EVNT_
SEL4

Package Uncore M-box 0 perfmon event select MSR.

CB9H 3257 MSR_M0_PMON_CTR4 Package Uncore M-box 0 perfmon counter MSR.

CBAH 3258 MSR_M0_PMON_EVNT_
SEL5

Package Uncore M-box 0 perfmon event select MSR.

CBBH 3259 MSR_M0_PMON_CTR5 Package Uncore M-box 0 perfmon counter MSR.

CC0H 3264 MSR_S1_PMON_BOX_CTRL Package Uncore S-box 1 perfmon local box control MSR.

CC1H 3265 MSR_S1_PMON_BOX_
STATUS

Package Uncore S-box 1 perfmon local box status MSR.

CC2H 3266 MSR_S1_PMON_BOX_OVF_
CTRL

Package Uncore S-box 1 perfmon local box overflow control MSR.

CD0H 3280 MSR_S1_PMON_EVNT_
SEL0

Package Uncore S-box 1 perfmon event select MSR.

CD1H 3281 MSR_S1_PMON_CTR0 Package Uncore S-box 1 perfmon counter MSR.

CD2H 3282 MSR_S1_PMON_EVNT_
SEL1

Package Uncore S-box 1 perfmon event select MSR.

CD3H 3283 MSR_S1_PMON_CTR1 Package Uncore S-box 1 perfmon counter MSR.

CD4H 3284 MSR_S1_PMON_EVNT_
SEL2

Package Uncore S-box 1 perfmon event select MSR.

CD5H 3285 MSR_S1_PMON_CTR2 Package Uncore S-box 1 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-136 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

CD6H 3286 MSR_S1_PMON_EVNT_
SEL3

Package Uncore S-box 1 perfmon event select MSR.

CD7H 3287 MSR_S1_PMON_CTR3 Package Uncore S-box 1 perfmon counter MSR.

CE0H 3296 MSR_M1_PMON_BOX_CTRL Package Uncore M-box 1 perfmon local box control MSR.

CE1H 3297 MSR_M1_PMON_BOX_
STATUS

Package Uncore M-box 1 perfmon local box status MSR.

CE2H 3298 MSR_M1_PMON_BOX_
OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow control MSR.

CE4H 3300 MSR_M1_PMON_
TIMESTAMP

Package Uncore M-box 1 perfmon time stamp unit select MSR.

CE5H 3301 MSR_M1_PMON_DSP Package Uncore M-box 1 perfmon DSP unit select MSR.

CE6H 3302 MSR_M1_PMON_ISS Package Uncore M-box 1 perfmon ISS unit select MSR.

CE7H 3303 MSR_M1_PMON_MAP Package Uncore M-box 1 perfmon MAP unit select MSR.

CE8H 3304 MSR_M1_PMON_MSC_THR Package Uncore M-box 1 perfmon MIC THR select MSR.

CE9H 3305 MSR_M1_PMON_PGT Package Uncore M-box 1 perfmon PGT unit select MSR.

CEAH 3306 MSR_M1_PMON_PLD Package Uncore M-box 1 perfmon PLD unit select MSR.

CEBH 3307 MSR_M1_PMON_ZDP Package Uncore M-box 1 perfmon ZDP unit select MSR.

CF0H 3312 MSR_M1_PMON_EVNT_
SEL0

Package Uncore M-box 1 perfmon event select MSR.

CF1H 3313 MSR_M1_PMON_CTR0 Package Uncore M-box 1 perfmon counter MSR.

CF2H 3314 MSR_M1_PMON_EVNT_
SEL1

Package Uncore M-box 1 perfmon event select MSR.

CF3H 3315 MSR_M1_PMON_CTR1 Package Uncore M-box 1 perfmon counter MSR.

CF4H 3316 MSR_M1_PMON_EVNT_
SEL2

Package Uncore M-box 1 perfmon event select MSR.

CF5H 3317 MSR_M1_PMON_CTR2 Package Uncore M-box 1 perfmon counter MSR.

CF6H 3318 MSR_M1_PMON_EVNT_
SEL3

Package Uncore M-box 1 perfmon event select MSR.

CF7H 3319 MSR_M1_PMON_CTR3 Package Uncore M-box 1 perfmon counter MSR.

CF8H 3320 MSR_M1_PMON_EVNT_
SEL4

Package Uncore M-box 1 perfmon event select MSR.

CF9H 3321 MSR_M1_PMON_CTR4 Package Uncore M-box 1 perfmon counter MSR.

CFAH 3322 MSR_M1_PMON_EVNT_
SEL5

Package Uncore M-box 1 perfmon event select MSR.

CFBH 3323 MSR_M1_PMON_CTR5 Package Uncore M-box 1 perfmon counter MSR.

D00H 3328 MSR_C0_PMON_BOX_CTRL Package Uncore C-box 0 perfmon local box control MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-137

MODEL-SPECIFIC REGISTERS (MSRS)

D01H 3329 MSR_C0_PMON_BOX_
STATUS

Package Uncore C-box 0 perfmon local box status MSR.

D02H 3330 MSR_C0_PMON_BOX_OVF_
CTRL

Package Uncore C-box 0 perfmon local box overflow control MSR.

D10H 3344 MSR_C0_PMON_EVNT_
SEL0

Package Uncore C-box 0 perfmon event select MSR.

D11H 3345 MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter MSR.

D12H 3346 MSR_C0_PMON_EVNT_
SEL1

Package Uncore C-box 0 perfmon event select MSR.

D13H 3347 MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter MSR.

D14H 3348 MSR_C0_PMON_EVNT_
SEL2

Package Uncore C-box 0 perfmon event select MSR.

D15H 3349 MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter MSR.

D16H 3350 MSR_C0_PMON_EVNT_
SEL3

Package Uncore C-box 0 perfmon event select MSR.

D17H 3351 MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter MSR.

D18H 3352 MSR_C0_PMON_EVNT_
SEL4

Package Uncore C-box 0 perfmon event select MSR.

D19H 3353 MSR_C0_PMON_CTR4 Package Uncore C-box 0 perfmon counter MSR.

D1AH 3354 MSR_C0_PMON_EVNT_
SEL5

Package Uncore C-box 0 perfmon event select MSR.

D1BH 3355 MSR_C0_PMON_CTR5 Package Uncore C-box 0 perfmon counter MSR.

D20H 3360 MSR_C4_PMON_BOX_CTRL Package Uncore C-box 4 perfmon local box control MSR.

D21H 3361 MSR_C4_PMON_BOX_
STATUS

Package Uncore C-box 4 perfmon local box status MSR.

D22H 3362 MSR_C4_PMON_BOX_OVF_
CTRL

Package Uncore C-box 4 perfmon local box overflow control MSR.

D30H 3376 MSR_C4_PMON_EVNT_
SEL0

Package Uncore C-box 4 perfmon event select MSR.

D31H 3377 MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter MSR.

D32H 3378 MSR_C4_PMON_EVNT_
SEL1

Package Uncore C-box 4 perfmon event select MSR.

D33H 3379 MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter MSR.

D34H 3380 MSR_C4_PMON_EVNT_
SEL2

Package Uncore C-box 4 perfmon event select MSR.

D35H 3381 MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter MSR.

D36H 3382 MSR_C4_PMON_EVNT_
SEL3

Package Uncore C-box 4 perfmon event select MSR.

D37H 3383 MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-138 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

D38H 3384 MSR_C4_PMON_EVNT_
SEL4

Package Uncore C-box 4 perfmon event select MSR.

D39H 3385 MSR_C4_PMON_CTR4 Package Uncore C-box 4 perfmon counter MSR.

D3AH 3386 MSR_C4_PMON_EVNT_
SEL5

Package Uncore C-box 4 perfmon event select MSR.

D3BH 3387 MSR_C4_PMON_CTR5 Package Uncore C-box 4 perfmon counter MSR.

D40H 3392 MSR_C2_PMON_BOX_CTRL Package Uncore C-box 2 perfmon local box control MSR.

D41H 3393 MSR_C2_PMON_BOX_
STATUS

Package Uncore C-box 2 perfmon local box status MSR.

D42H 3394 MSR_C2_PMON_BOX_OVF_
CTRL

Package Uncore C-box 2 perfmon local box overflow control MSR.

D50H 3408 MSR_C2_PMON_EVNT_
SEL0

Package Uncore C-box 2 perfmon event select MSR.

D51H 3409 MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter MSR.

D52H 3410 MSR_C2_PMON_EVNT_
SEL1

Package Uncore C-box 2 perfmon event select MSR.

D53H 3411 MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter MSR.

D54H 3412 MSR_C2_PMON_EVNT_
SEL2

Package Uncore C-box 2 perfmon event select MSR.

D55H 3413 MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter MSR.

D56H 3414 MSR_C2_PMON_EVNT_
SEL3

Package Uncore C-box 2 perfmon event select MSR.

D57H 3415 MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter MSR.

D58H 3416 MSR_C2_PMON_EVNT_
SEL4

Package Uncore C-box 2 perfmon event select MSR.

D59H 3417 MSR_C2_PMON_CTR4 Package Uncore C-box 2 perfmon counter MSR.

D5AH 3418 MSR_C2_PMON_EVNT_
SEL5

Package Uncore C-box 2 perfmon event select MSR.

D5BH 3419 MSR_C2_PMON_CTR5 Package Uncore C-box 2 perfmon counter MSR.

D60H 3424 MSR_C6_PMON_BOX_CTRL Package Uncore C-box 6 perfmon local box control MSR.

D61H 3425 MSR_C6_PMON_BOX_
STATUS

Package Uncore C-box 6 perfmon local box status MSR.

D62H 3426 MSR_C6_PMON_BOX_OVF_
CTRL

Package Uncore C-box 6 perfmon local box overflow control MSR.

D70H 3440 MSR_C6_PMON_EVNT_
SEL0

Package Uncore C-box 6 perfmon event select MSR.

D71H 3441 MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-139

MODEL-SPECIFIC REGISTERS (MSRS)

D72H 3442 MSR_C6_PMON_EVNT_
SEL1

Package Uncore C-box 6 perfmon event select MSR.

D73H 3443 MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter MSR.

D74H 3444 MSR_C6_PMON_EVNT_
SEL2

Package Uncore C-box 6 perfmon event select MSR.

D75H 3445 MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter MSR.

D76H 3446 MSR_C6_PMON_EVNT_
SEL3

Package Uncore C-box 6 perfmon event select MSR.

D77H 3447 MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter MSR.

D78H 3448 MSR_C6_PMON_EVNT_
SEL4

Package Uncore C-box 6 perfmon event select MSR.

D79H 3449 MSR_C6_PMON_CTR4 Package Uncore C-box 6 perfmon counter MSR.

D7AH 3450 MSR_C6_PMON_EVNT_
SEL5

Package Uncore C-box 6 perfmon event select MSR.

D7BH 3451 MSR_C6_PMON_CTR5 Package Uncore C-box 6 perfmon counter MSR.

D80H 3456 MSR_C1_PMON_BOX_CTRL Package Uncore C-box 1 perfmon local box control MSR.

D81H 3457 MSR_C1_PMON_BOX_
STATUS

Package Uncore C-box 1 perfmon local box status MSR.

D82H 3458 MSR_C1_PMON_BOX_OVF_
CTRL

Package Uncore C-box 1 perfmon local box overflow control MSR.

D90H 3472 MSR_C1_PMON_EVNT_
SEL0

Package Uncore C-box 1 perfmon event select MSR.

D91H 3473 MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter MSR.

D92H 3474 MSR_C1_PMON_EVNT_
SEL1

Package Uncore C-box 1 perfmon event select MSR.

D93H 3475 MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter MSR.

D94H 3476 MSR_C1_PMON_EVNT_
SEL2

Package Uncore C-box 1 perfmon event select MSR.

D95H 3477 MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter MSR.

D96H 3478 MSR_C1_PMON_EVNT_
SEL3

Package Uncore C-box 1 perfmon event select MSR.

D97H 3479 MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter MSR.

D98H 3480 MSR_C1_PMON_EVNT_
SEL4

Package Uncore C-box 1 perfmon event select MSR.

D99H 3481 MSR_C1_PMON_CTR4 Package Uncore C-box 1 perfmon counter MSR.

D9AH 3482 MSR_C1_PMON_EVNT_
SEL5

Package Uncore C-box 1 perfmon event select MSR.

D9BH 3483 MSR_C1_PMON_CTR5 Package Uncore C-box 1 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-140 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DA0H 3488 MSR_C5_PMON_BOX_CTRL Package Uncore C-box 5 perfmon local box control MSR.

DA1H 3489 MSR_C5_PMON_BOX_
STATUS

Package Uncore C-box 5 perfmon local box status MSR.

DA2H 3490 MSR_C5_PMON_BOX_OVF_
CTRL

Package Uncore C-box 5 perfmon local box overflow control MSR.

DB0H 3504 MSR_C5_PMON_EVNT_
SEL0

Package Uncore C-box 5 perfmon event select MSR.

DB1H 3505 MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter MSR.

DB2H 3506 MSR_C5_PMON_EVNT_
SEL1

Package Uncore C-box 5 perfmon event select MSR.

DB3H 3507 MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter MSR.

DB4H 3508 MSR_C5_PMON_EVNT_
SEL2

Package Uncore C-box 5 perfmon event select MSR.

DB5H 3509 MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter MSR.

DB6H 3510 MSR_C5_PMON_EVNT_
SEL3

Package Uncore C-box 5 perfmon event select MSR.

DB7H 3511 MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter MSR.

DB8H 3512 MSR_C5_PMON_EVNT_
SEL4

Package Uncore C-box 5 perfmon event select MSR.

DB9H 3513 MSR_C5_PMON_CTR4 Package Uncore C-box 5 perfmon counter MSR.

DBAH 3514 MSR_C5_PMON_EVNT_
SEL5

Package Uncore C-box 5 perfmon event select MSR.

DBBH 3515 MSR_C5_PMON_CTR5 Package Uncore C-box 5 perfmon counter MSR.

DC0H 3520 MSR_C3_PMON_BOX_CTRL Package Uncore C-box 3 perfmon local box control MSR.

DC1H 3521 MSR_C3_PMON_BOX_
STATUS

Package Uncore C-box 3 perfmon local box status MSR.

DC2H 3522 MSR_C3_PMON_BOX_OVF_
CTRL

Package Uncore C-box 3 perfmon local box overflow control MSR.

DD0H 3536 MSR_C3_PMON_EVNT_
SEL0

Package Uncore C-box 3 perfmon event select MSR.

DD1H 3537 MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter MSR.

DD2H 3538 MSR_C3_PMON_EVNT_
SEL1

Package Uncore C-box 3 perfmon event select MSR.

DD3H 3539 MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter MSR.

DD4H 3540 MSR_C3_PMON_EVNT_
SEL2

Package Uncore C-box 3 perfmon event select MSR.

DD5H 3541 MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-141

MODEL-SPECIFIC REGISTERS (MSRS)

DD6H 3542 MSR_C3_PMON_EVNT_SEL
3

Package Uncore C-box 3 perfmon event select MSR.

DD7H 3543 MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter MSR.

DD8H 3544 MSR_C3_PMON_EVNT_
SEL4

Package Uncore C-box 3 perfmon event select MSR.

DD9H 3545 MSR_C3_PMON_CTR4 Package Uncore C-box 3 perfmon counter MSR.

DDAH 3546 MSR_C3_PMON_EVNT_
SEL5

Package Uncore C-box 3 perfmon event select MSR.

DDBH 3547 MSR_C3_PMON_CTR5 Package Uncore C-box 3 perfmon counter MSR.

DE0H 3552 MSR_C7_PMON_BOX_CTRL Package Uncore C-box 7 perfmon local box control MSR.

DE1H 3553 MSR_C7_PMON_BOX_
STATUS

Package Uncore C-box 7 perfmon local box status MSR.

DE2H 3554 MSR_C7_PMON_BOX_OVF_
CTRL

Package Uncore C-box 7 perfmon local box overflow control MSR.

DF0H 3568 MSR_C7_PMON_EVNT_
SEL0

Package Uncore C-box 7 perfmon event select MSR.

DF1H 3569 MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter MSR.

DF2H 3570 MSR_C7_PMON_EVNT_
SEL1

Package Uncore C-box 7 perfmon event select MSR.

DF3H 3571 MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter MSR.

DF4H 3572 MSR_C7_PMON_EVNT_
SEL2

Package Uncore C-box 7 perfmon event select MSR.

DF5H 3573 MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter MSR.

DF6H 3574 MSR_C7_PMON_EVNT_
SEL3

Package Uncore C-box 7 perfmon event select MSR.

DF7H 3575 MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter MSR.

DF8H 3576 MSR_C7_PMON_EVNT_
SEL4

Package Uncore C-box 7 perfmon event select MSR.

DF9H 3577 MSR_C7_PMON_CTR4 Package Uncore C-box 7 perfmon counter MSR.

DFAH 3578 MSR_C7_PMON_EVNT_
SEL5

Package Uncore C-box 7 perfmon event select MSR.

DFBH 3579 MSR_C7_PMON_CTR5 Package Uncore C-box 7 perfmon counter MSR.

E00H 3584 MSR_R0_PMON_BOX_CTRL Package Uncore R-box 0 perfmon local box control MSR.

E01H 3585 MSR_R0_PMON_BOX_
STATUS

Package Uncore R-box 0 perfmon local box status MSR.

E02H 3586 MSR_R0_PMON_BOX_OVF_
CTRL

Package Uncore R-box 0 perfmon local box overflow control MSR.

E04H 3588 MSR_R0_PMON_IPERF0_P0 Package Uncore R-box 0 perfmon IPERF0 unit Port 0 select MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-142 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E05H 3589 MSR_R0_PMON_IPERF0_P1 Package Uncore R-box 0 perfmon IPERF0 unit Port 1 select MSR.

E06H 3590 MSR_R0_PMON_IPERF0_P2 Package Uncore R-box 0 perfmon IPERF0 unit Port 2 select MSR.

E07H 3591 MSR_R0_PMON_IPERF0_P3 Package Uncore R-box 0 perfmon IPERF0 unit Port 3 select MSR.

E08H 3592 MSR_R0_PMON_IPERF0_P4 Package Uncore R-box 0 perfmon IPERF0 unit Port 4 select MSR.

E09H 3593 MSR_R0_PMON_IPERF0_P5 Package Uncore R-box 0 perfmon IPERF0 unit Port 5 select MSR.

E0AH 3594 MSR_R0_PMON_IPERF0_P6 Package Uncore R-box 0 perfmon IPERF0 unit Port 6 select MSR.

E0BH 3595 MSR_R0_PMON_IPERF0_P7 Package Uncore R-box 0 perfmon IPERF0 unit Port 7 select MSR.

E0CH 3596 MSR_R0_PMON_QLX_P0 Package Uncore R-box 0 perfmon QLX unit Port 0 select MSR.

E0DH 3597 MSR_R0_PMON_QLX_P1 Package Uncore R-box 0 perfmon QLX unit Port 1 select MSR.

E0EH 3598 MSR_R0_PMON_QLX_P2 Package Uncore R-box 0 perfmon QLX unit Port 2 select MSR.

E0FH 3599 MSR_R0_PMON_QLX_P3 Package Uncore R-box 0 perfmon QLX unit Port 3 select MSR.

E10H 3600 MSR_R0_PMON_EVNT_
SEL0

Package Uncore R-box 0 perfmon event select MSR.

E11H 3601 MSR_R0_PMON_CTR0 Package Uncore R-box 0 perfmon counter MSR.

E12H 3602 MSR_R0_PMON_EVNT_
SEL1

Package Uncore R-box 0 perfmon event select MSR.

E13H 3603 MSR_R0_PMON_CTR1 Package Uncore R-box 0 perfmon counter MSR.

E14H 3604 MSR_R0_PMON_EVNT_
SEL2

Package Uncore R-box 0 perfmon event select MSR.

E15H 3605 MSR_R0_PMON_CTR2 Package Uncore R-box 0 perfmon counter MSR.

E16H 3606 MSR_R0_PMON_EVNT_
SEL3

Package Uncore R-box 0 perfmon event select MSR.

E17H 3607 MSR_R0_PMON_CTR3 Package Uncore R-box 0 perfmon counter MSR.

E18H 3608 MSR_R0_PMON_EVNT_
SEL4

Package Uncore R-box 0 perfmon event select MSR.

E19H 3609 MSR_R0_PMON_CTR4 Package Uncore R-box 0 perfmon counter MSR.

E1AH 3610 MSR_R0_PMON_EVNT_
SEL5

Package Uncore R-box 0 perfmon event select MSR.

E1BH 3611 MSR_R0_PMON_CTR5 Package Uncore R-box 0 perfmon counter MSR.

E1CH 3612 MSR_R0_PMON_EVNT_
SEL6

Package Uncore R-box 0 perfmon event select MSR.

E1DH 3613 MSR_R0_PMON_CTR6 Package Uncore R-box 0 perfmon counter MSR.

E1EH 3614 MSR_R0_PMON_EVNT_
SEL7

Package Uncore R-box 0 perfmon event select MSR.

E1FH 3615 MSR_R0_PMON_CTR7 Package Uncore R-box 0 perfmon counter MSR.

E20H 3616 MSR_R1_PMON_BOX_CTRL Package Uncore R-box 1 perfmon local box control MSR.

E21H 3617 MSR_R1_PMON_BOX_
STATUS

Package Uncore R-box 1 perfmon local box status MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-143

MODEL-SPECIFIC REGISTERS (MSRS)

E22H 3618 MSR_R1_PMON_BOX_OVF_
CTRL

Package Uncore R-box 1 perfmon local box overflow control MSR.

E24H 3620 MSR_R1_PMON_IPERF1_P8 Package Uncore R-box 1 perfmon IPERF1 unit Port 8 select MSR.

E25H 3621 MSR_R1_PMON_IPERF1_P9 Package Uncore R-box 1 perfmon IPERF1 unit Port 9 select MSR.

E26H 3622 MSR_R1_PMON_IPERF1_
P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10 select MSR.

E27H 3623 MSR_R1_PMON_IPERF1_
P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11 select MSR.

E28H 3624 MSR_R1_PMON_IPERF1_
P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12 select MSR.

E29H 3625 MSR_R1_PMON_IPERF1_
P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13 select MSR.

E2AH 3626 MSR_R1_PMON_IPERF1_
P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14 select MSR.

E2BH 3627 MSR_R1_PMON_IPERF1_
P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15 select MSR.

E2CH 3628 MSR_R1_PMON_QLX_P4 Package Uncore R-box 1 perfmon QLX unit Port 4 select MSR.

E2DH 3629 MSR_R1_PMON_QLX_P5 Package Uncore R-box 1 perfmon QLX unit Port 5 select MSR.

E2EH 3630 MSR_R1_PMON_QLX_P6 Package Uncore R-box 1 perfmon QLX unit Port 6 select MSR.

E2FH 3631 MSR_R1_PMON_QLX_P7 Package Uncore R-box 1 perfmon QLX unit Port 7 select MSR.

E30H 3632 MSR_R1_PMON_EVNT_
SEL8

Package Uncore R-box 1 perfmon event select MSR.

E31H 3633 MSR_R1_PMON_CTR8 Package Uncore R-box 1 perfmon counter MSR.

E32H 3634 MSR_R1_PMON_EVNT_
SEL9

Package Uncore R-box 1 perfmon event select MSR.

E33H 3635 MSR_R1_PMON_CTR9 Package Uncore R-box 1 perfmon counter MSR.

E34H 3636 MSR_R1_PMON_EVNT_
SEL10

Package Uncore R-box 1 perfmon event select MSR.

E35H 3637 MSR_R1_PMON_CTR10 Package Uncore R-box 1 perfmon counter MSR.

E36H 3638 MSR_R1_PMON_EVNT_
SEL11

Package Uncore R-box 1 perfmon event select MSR.

E37H 3639 MSR_R1_PMON_CTR11 Package Uncore R-box 1 perfmon counter MSR.

E38H 3640 MSR_R1_PMON_EVNT_
SEL12

Package Uncore R-box 1 perfmon event select MSR.

E39H 3641 MSR_R1_PMON_CTR12 Package Uncore R-box 1 perfmon counter MSR.

E3AH 3642 MSR_R1_PMON_EVNT_
SEL13

Package Uncore R-box 1 perfmon event select MSR.

E3BH 3643 MSR_R1_PMON_CTR13 Package Uncore R-box 1perfmon counter MSR.

E3CH 3644 MSR_R1_PMON_EVNT_
SEL14

Package Uncore R-box 1 perfmon event select MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-144 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.8 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON INTEL®
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor 5600 Series (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 2-14, Table 2-15, plus additional MSR listed in Table 2-17. These MSRs apply to Intel Core
i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table
2-1.

E3DH 3645 MSR_R1_PMON_CTR14 Package Uncore R-box 1 perfmon counter MSR.

E3EH 3646 MSR_R1_PMON_EVNT_
SEL15

Package Uncore R-box 1 perfmon event select MSR.

E3FH 3647 MSR_R1_PMON_CTR15 Package Uncore R-box 1 perfmon counter MSR.

E45H 3653 MSR_B0_PMON_MATCH Package Uncore B-box 0 perfmon local box match MSR.

E46H 3654 MSR_B0_PMON_MASK Package Uncore B-box 0 perfmon local box mask MSR.

E49H 3657 MSR_S0_PMON_MATCH Package Uncore S-box 0 perfmon local box match MSR.

E4AH 3658 MSR_S0_PMON_MASK Package Uncore S-box 0 perfmon local box mask MSR.

E4DH 3661 MSR_B1_PMON_MATCH Package Uncore B-box 1 perfmon local box match MSR.

E4EH 3662 MSR_B1_PMON_MASK Package Uncore B-box 1 perfmon local box mask MSR.

E54H 3668 MSR_M0_PMON_MM_
CONFIG

Package Uncore M-box 0 perfmon local box address match/mask config MSR.

E55H 3669 MSR_M0_PMON_ADDR_
MATCH

Package Uncore M-box 0 perfmon local box address match MSR.

E56H 3670 MSR_M0_PMON_ADDR_
MASK

Package Uncore M-box 0 perfmon local box address mask MSR.

E59H 3673 MSR_S1_PMON_MATCH Package Uncore S-box 1 perfmon local box match MSR.

E5AH 3674 MSR_S1_PMON_MASK Package Uncore S-box 1 perfmon local box mask MSR.

E5CH 3676 MSR_M1_PMON_MM_
CONFIG

Package Uncore M-box 1 perfmon local box address match/mask config MSR.

E5DH 3677 MSR_M1_PMON_ADDR_
MATCH

Package Uncore M-box 1 perfmon local box address match MSR.

E5EH 3678 MSR_M1_PMON_ADDR_
MASK

Package Uncore M-box 1 perfmon local box address mask MSR.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-145

MODEL-SPECIFIC REGISTERS (MSRS)

2.9 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY (BASED ON INTEL®
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor E7 Family (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 2-14 (except MSR address 1ADH), Table 2-15, plus additional MSR listed in Table 2-18.
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2FH.

Table 2-17. Additional MSRs Supported by Intel Processors
(Based on Intel® Microarchitecture Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

2-146 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-18. Additional MSRs Supported by Intel® Xeon® Processor E7 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

F40H 3904 MSR_C8_PMON_BOX_CTRL Package Uncore C-box 8 perfmon local box control MSR.

F41H 3905 MSR_C8_PMON_BOX_
STATUS

Package Uncore C-box 8 perfmon local box status MSR.

F42H 3906 MSR_C8_PMON_BOX_OVF_
CTRL

Package Uncore C-box 8 perfmon local box overflow control MSR.

F50H 3920 MSR_C8_PMON_EVNT_
SEL0

Package Uncore C-box 8 perfmon event select MSR.

F51H 3921 MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter MSR.

F52H 3922 MSR_C8_PMON_EVNT_
SEL1

Package Uncore C-box 8 perfmon event select MSR.

F53H 3923 MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter MSR.

F54H 3924 MSR_C8_PMON_EVNT_
SEL2

Package Uncore C-box 8 perfmon event select MSR.

F55H 3925 MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter MSR.

F56H 3926 MSR_C8_PMON_EVNT_
SEL3

Package Uncore C-box 8 perfmon event select MSR.

F57H 3927 MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter MSR.

F58H 3928 MSR_C8_PMON_EVNT_
SEL4

Package Uncore C-box 8 perfmon event select MSR.

F59H 3929 MSR_C8_PMON_CTR4 Package Uncore C-box 8 perfmon counter MSR.

F5AH 3930 MSR_C8_PMON_EVNT_
SEL5

Package Uncore C-box 8 perfmon event select MSR.

F5BH 3931 MSR_C8_PMON_CTR5 Package Uncore C-box 8 perfmon counter MSR.

Vol. 4 2-147

MODEL-SPECIFIC REGISTERS (MSRS)

2.10 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 2-19 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel micro-
architecture code name Sandy Bridge. These processors have a CPUID signature with DisplayFamily_DisplayModel
of 06_2AH, 06_2DH, see Table 2-1. Additional MSRs specific to 06_2AH are listed in Table 2-20.

FC0H 4032 MSR_C9_PMON_BOX_CTRL Package Uncore C-box 9 perfmon local box control MSR.

FC1H 4033 MSR_C9_PMON_BOX_
STATUS

Package Uncore C-box 9 perfmon local box status MSR.

FC2H 4034 MSR_C9_PMON_BOX_OVF_
CTRL

Package Uncore C-box 9 perfmon local box overflow control MSR.

FD0H 4048 MSR_C9_PMON_EVNT_
SEL0

Package Uncore C-box 9 perfmon event select MSR.

FD1H 4049 MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter MSR.

FD2H 4050 MSR_C9_PMON_EVNT_
SEL1

Package Uncore C-box 9 perfmon event select MSR.

FD3H 4051 MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter MSR.

FD4H 4052 MSR_C9_PMON_EVNT_
SEL2

Package Uncore C-box 9 perfmon event select MSR.

FD5H 4053 MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter MSR.

FD6H 4054 MSR_C9_PMON_EVNT_
SEL3

Package Uncore C-box 9 perfmon event select MSR.

FD7H 4055 MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter MSR.

FD8H 4056 MSR_C9_PMON_EVNT_
SEL4

Package Uncore C-box 9 perfmon event select MSR.

FD9H 4057 MSR_C9_PMON_CTR4 Package Uncore C-box 9 perfmon counter MSR.

FDAH 4058 MSR_C9_PMON_EVNT_
SEL5

Package Uncore C-box 9 perfmon event select MSR.

FDBH 4059 MSR_C9_PMON_CTR5 Package Uncore C-box 9 perfmon counter MSR.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.22, “MSRs in Pentium Processors.”

Table 2-18. Additional MSRs Supported by Intel® Xeon® Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-148 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 2-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 2-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by threads)

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by threads)

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-149

MODEL-SPECIFIC REGISTERS (MSRS)

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-150 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-151

MODEL-SPECIFIC REGISTERS (MSRS)

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 2-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 2-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 2-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 2-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-152 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18DH 397 IA32_
PERFEVTSEL7

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 2-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package Performance Status

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 2-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-153

MODEL-SPECIFIC REGISTERS (MSRS)

8 Thermal threshold #2 status (RO)

See Table 2-2.

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

15:12 Reserved.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 2-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 2-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 2-2.

23 Thread xTPR Message Disable (R/W)

See Table 2-2.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-154 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control; various model specific
features enumeration. See http://biosbits.org.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-155

MODEL-SPECIFIC REGISTERS (MSRS)

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-156 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 2-2.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-157

MODEL-SPECIFIC REGISTERS (MSRS)

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 2-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 2-2.

11:8 PEBS_REC_FORMAT. See Table 2-2.

12 SMM_FREEZE. See Table 2-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-158 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3 Thread Ovf_PMC3

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

60:35 Reserved.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to enable PMC0 to count

1 Thread Set 1 to enable PMC1 to count

2 Thread Set 1 to enable PMC2 to count

3 Thread Set 1 to enable PMC3 to count

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to enable FixedCtr0 to count

33 Thread Set 1 to enable FixedCtr1 to count

34 Thread Set 1 to enable FixedCtr2 to count

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-159

MODEL-SPECIFIC REGISTERS (MSRS)

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

60:35 Reserved.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved.

63 Enable Precise Store. (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.3.1.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-160 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-161

MODEL-SPECIFIC REGISTERS (MSRS)

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-162 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 2-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 2-2.

4C5H 1221 IA32_A_PMC4 Core See Table 2-2.

4C6H 1222 IA32_A_PMC5 Core See Table 2-2.

4C7H 1223 IA32_A_PMC6 Core See Table 2-2.

4C8H 1224 IA32_A_PMC7 Core See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-163

MODEL-SPECIFIC REGISTERS (MSRS)

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-164 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9.1 and record format in Section 17.4.8.1

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-165

MODEL-SPECIFIC REGISTERS (MSRS)

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-166 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.10.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel®
Microarchitecture Code Name Sandy Bridge)

Table 2-20 and Table 2-21 list model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™
processor family (based on Intel microarchitecture code name Sandy Bridge). These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_2AH; see Table 2-1.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 2-2.

802H-
83FH

X2APIC MSRs Thread See Table 2-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W)

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 2-2 and Section 17.17.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-167

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-20. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit
from C7 to a C0 state, where interrupt request can be delivered to
the core and serviced. Additional core-exit latency amy be
applicable depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

2-168 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-21 lists the MSRs of uncore PMU for Intel processors with CPUID signature 06_2AH.

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, Table 2-20, and Table 2-21 for MSR definitions applicable to processors with CPUID signature 06_2AH.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Slice 0 select

1 Slice 1 select

2 Slice 2 select

3 Slice 3 select

4 Slice 4 select

18:5 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

Table 2-20. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-169

MODEL-SPECIFIC REGISTERS (MSRS)

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Report the number of C-Box units with performance counters,
including processor cores and processor graphics“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

702H 1794 MSR_UNC_CBO_0_
PERFEVTSEL2

Package Uncore C-Box 0, counter 2 event select MSR.

703H 1795 MSR_UNC_CBO_0_
PERFEVTSEL3

Package Uncore C-Box 0, counter 3 event select MSR.

705H 1797 MSR_UNC_CBO_0_UNIT_
STATUS

Package Uncore C-Box 0, unit status for counter 0-3

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

708H 1800 MSR_UNC_CBO_0_PERFCTR2 Package Uncore C-Box 0, performance counter 2.

709H 1801 MSR_UNC_CBO_0_PERFCTR3 Package Uncore C-Box 0, performance counter 3.

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

712H 1810 MSR_UNC_CBO_1_
PERFEVTSEL2

Package Uncore C-Box 1, counter 2 event select MSR.

713H 1811 MSR_UNC_CBO_1_
PERFEVTSEL3

Package Uncore C-Box 1, counter 3 event select MSR.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-170 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

715H 1813 MSR_UNC_CBO_1_UNIT_
STATUS

Package Uncore C-Box 1, unit status for counter 0-3

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

718H 1816 MSR_UNC_CBO_1_PERFCTR2 Package Uncore C-Box 1, performance counter 2.

719H 1817 MSR_UNC_CBO_1_PERFCTR3 Package Uncore C-Box 1, performance counter 3.

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1825 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

722H 1826 MSR_UNC_CBO_2_
PERFEVTSEL2

Package Uncore C-Box 2, counter 2 event select MSR.

723H 1827 MSR_UNC_CBO_2_
PERFEVTSEL3

Package Uncore C-Box 2, counter 3 event select MSR.

725H 1829 MSR_UNC_CBO_2_UNIT_
STATUS

Package Uncore C-Box 2, unit status for counter 0-3

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

728H 1832 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, performance counter 2.

729H 1833 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, performance counter 3.

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

732H 1842 MSR_UNC_CBO_3_
PERFEVTSEL2

Package Uncore C-Box 3, counter 2 event select MSR.

733H 1843 MSR_UNC_CBO_3_
PERFEVTSEL3

Package Uncore C-Box 3, counter 3 event select MSR.

735H 1845 MSR_UNC_CBO_3_UNIT_
STATUS

Package Uncore C-Box 3, unit status for counter 0-3

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

738H 1848 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, performance counter 2.

739H 1849 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, performance counter 3.

740H 1856 MSR_UNC_CBO_4_
PERFEVTSEL0

Package Uncore C-Box 4, counter 0 event select MSR

741H 1857 MSR_UNC_CBO_4_
PERFEVTSEL1

Package Uncore C-Box 4, counter 1 event select MSR.

742H 1858 MSR_UNC_CBO_4_
PERFEVTSEL2

Package Uncore C-Box 4, counter 2 event select MSR.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-171

MODEL-SPECIFIC REGISTERS (MSRS)

2.10.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code
Name Sandy Bridge)

Table 2-22 lists additional model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5
Family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2DH, and also supports MSRs listed in Table 2-19 and Table 2-23.

743H 1859 MSR_UNC_CBO_4_
PERFEVTSEL3

Package Uncore C-Box 4, counter 3 event select MSR.

745H 1861 MSR_UNC_CBO_4_UNIT_
STATUS

Package Uncore C-Box 4, unit status for counter 0-3

746H 1862 MSR_UNC_CBO_4_PERFCTR0 Package Uncore C-Box 4, performance counter 0.

747H 1863 MSR_UNC_CBO_4_PERFCTR1 Package Uncore C-Box 4, performance counter 1.

748H 1864 MSR_UNC_CBO_4_PERFCTR2 Package Uncore C-Box 4, performance counter 2.

749H 1865 MSR_UNC_CBO_4_PERFCTR3 Package Uncore C-Box 4, performance counter 3.

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-172 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

39CH 924 MSR_PEBS_NUM_ALT Package ENABLE_PEBS_NUM_ALT (RW)

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for specific events
requiring additional configuration, see Table 19-17

63:1 Reserved (must be zero).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-173

MODEL-SPECIFIC REGISTERS (MSRS)

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-174 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.10.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family
Intel Xeon Processor E5 family is based on the Sandy Bridge microarchitecture. The MSR-based uncore PMU inter-
faces are listed in Table 2-23. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 Product
Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2DH

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, Table 2-22, and Table 2-23 for MSR definitions applicable to processors with CPUID signature 06_2DH.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

C08H MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK fixed counter control

C09H MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK fixed counter

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-175

MODEL-SPECIFIC REGISTERS (MSRS)

C10H MSR_U_PMON_EVNTSEL0 Package Uncore U-box perfmon event select for U-box counter 0.

C11H MSR_U_PMON_EVNTSEL1 Package Uncore U-box perfmon event select for U-box counter 1.

C16H MSR_U_PMON_CTR0 Package Uncore U-box perfmon counter 0

C17H MSR_U_PMON_CTR1 Package Uncore U-box perfmon counter 1

C24H MSR_PCU_PMON_BOX_CTL Package Uncore PCU perfmon for PCU-box-wide control

C30H MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU perfmon event select for PCU counter 0.

C31H MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU perfmon event select for PCU counter 1.

C32H MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU perfmon event select for PCU counter 2.

C33H MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU perfmon event select for PCU counter 3.

C34H MSR_PCU_PMON_BOX_FILTER Package Uncore PCU perfmon box-wide filter.

C36H MSR_PCU_PMON_CTR0 Package Uncore PCU perfmon counter 0.

C37H MSR_PCU_PMON_CTR1 Package Uncore PCU perfmon counter 1.

C38H MSR_PCU_PMON_CTR2 Package Uncore PCU perfmon counter 2.

C39H MSR_PCU_PMON_CTR3 Package Uncore PCU perfmon counter 3.

D04H MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 perfmon local box wide control.

D10H MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 perfmon event select for C-box 0 counter 0.

D11H MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 perfmon event select for C-box 0 counter 1.

D12H MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 perfmon event select for C-box 0 counter 2.

D13H MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 perfmon event select for C-box 0 counter 3.

D14H MSR_C0_PMON_BOX_FILTER Package Uncore C-box 0 perfmon box wide filter.

D16H MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter 0.

D17H MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter 1.

D18H MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter 2.

D19H MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter 3.

D24H MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 perfmon local box wide control.

D30H MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 perfmon event select for C-box 1 counter 0.

D31H MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 perfmon event select for C-box 1 counter 1.

D32H MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 perfmon event select for C-box 1 counter 2.

D33H MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 perfmon event select for C-box 1 counter 3.

D34H MSR_C1_PMON_BOX_FILTER Package Uncore C-box 1 perfmon box wide filter.

D36H MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter 0.

D37H MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter 1.

D38H MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter 2.

D39H MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter 3.

D44H MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 perfmon local box wide control.

D50H MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 perfmon event select for C-box 2 counter 0.

D51H MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 perfmon event select for C-box 2 counter 1.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-176 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

D52H MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 perfmon event select for C-box 2 counter 2.

D53H MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 perfmon event select for C-box 2 counter 3.

D54H MSR_C2_PMON_BOX_FILTER Package Uncore C-box 2 perfmon box wide filter.

D56H MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter 0.

D57H MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter 1.

D58H MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter 2.

D59H MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter 3.

D64H MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 perfmon local box wide control.

D70H MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 perfmon event select for C-box 3 counter 0.

D71H MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 perfmon event select for C-box 3 counter 1.

D72H MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 perfmon event select for C-box 3 counter 2.

D73H MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 perfmon event select for C-box 3 counter 3.

D74H MSR_C3_PMON_BOX_FILTER Package Uncore C-box 3 perfmon box wide filter.

D76H MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter 0.

D77H MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter 1.

D78H MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter 2.

D79H MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter 3.

D84H MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 perfmon local box wide control.

D90H MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 perfmon event select for C-box 4 counter 0.

D91H MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 perfmon event select for C-box 4 counter 1.

D92H MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 perfmon event select for C-box 4 counter 2.

D93H MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 perfmon event select for C-box 4 counter 3.

D94H MSR_C4_PMON_BOX_FILTER Package Uncore C-box 4 perfmon box wide filter.

D96H MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter 0.

D97H MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter 1.

D98H MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter 2.

D99H MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter 3.

DA4H MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 perfmon local box wide control.

DB0H MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 perfmon event select for C-box 5 counter 0.

DB1H MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 perfmon event select for C-box 5 counter 1.

DB2H MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 perfmon event select for C-box 5 counter 2.

DB3H MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 perfmon event select for C-box 5 counter 3.

DB4H MSR_C5_PMON_BOX_FILTER Package Uncore C-box 5 perfmon box wide filter.

DB6H MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter 0.

DB7H MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter 1.

DB8H MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter 2.

DB9H MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter 3.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-177

MODEL-SPECIFIC REGISTERS (MSRS)

2.11 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and the Intel® Xeon® processor E3-1200v2 product family
(based on Intel microarchitecture code name Ivy Bridge) support the MSR interfaces listed in Table 2-19, Table
2-20, Table 2-21, and Table 2-24. These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_3AH.

DC4H MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 perfmon local box wide control.

DD0H MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 perfmon event select for C-box 6 counter 0.

DD1H MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 perfmon event select for C-box 6 counter 1.

DD2H MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 perfmon event select for C-box 6 counter 2.

DD3H MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 perfmon event select for C-box 6 counter 3.

DD4H MSR_C6_PMON_BOX_FILTER Package Uncore C-box 6 perfmon box wide filter.

DD6H MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter 0.

DD7H MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter 1.

DD8H MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter 2.

DD9H MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter 3.

DE4H MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 perfmon local box wide control.

DF0H MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 perfmon event select for C-box 7 counter 0.

DF1H MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 perfmon event select for C-box 7 counter 1.

DF2H MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 perfmon event select for C-box 7 counter 2.

DF3H MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 perfmon event select for C-box 7 counter 3.

DF4H MSR_C7_PMON_BOX_FILTER Package Uncore C-box 7 perfmon box wide filter.

DF6H MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter 0.

DF7H MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter 1.

DF8H MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter 2.

DF9H MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter 3.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-178 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-179

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register specified
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units
of 100 MHz).

63:8 Reserved.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-180 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-181

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E
Microarchitecture)

Table 2-25 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3EH, see Table 2-1. These processors supports the MSR interfaces listed in
Table 2-19, and Table 2-25.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

See Table 2-19, Table 2-20 and Table 2-21 for other MSR definitions applicable to processors with CPUID signature
06_3AH

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-182 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory

Number (PPIN) capability can be enabled for privileged system

inventory agent to read PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to

access MSR_PPIN_CTL or MSR_PPIN will cause #GP.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

30 Package Programmable TJ OFFSET (R/O)

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24]
is valid and writable to specify an temperature offset.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-183

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-184 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (RO)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

27:24 TCC Activation Offset (R/W)

Specifies a temperature offset in degrees C from the temperature
target (bits 23:16). PROCHOT# will assert at the offset target
temperature. Write is permitted only MSR_PLATFORM_INFO.[30] is
set.

63:28 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT
1

Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-185

MODEL-SPECIFIC REGISTERS (MSRS)

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

296H 662 IA32_MC22_CTL2 Package See Table 2-2.

297H 663 IA32_MC23_CTL2 Package See Table 2-2.

298H 664 IA32_MC24_CTL2 Package See Table 2-2.

299H 665 IA32_MC25_CTL2 Package See Table 2-2.

29AH 666 IA32_MC26_CTL2 Package See Table 2-2.

29BH 667 IA32_MC27_CTL2 Package See Table 2-2.

29CH 668 IA32_MC28_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-186 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

42DH 1069 IA32_MC11_STATUS Package Bank MC11 reports MC error from a specific channel of the
integrated memory controller.42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-187

MODEL-SPECIFIC REGISTERS (MSRS)

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package Bank MC20 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

458H 1112 IA32_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC22 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

459H 1113 IA32_MC22_STATUS Package

45AH 1114 IA32_MC22_ADDR Package

45BH 1115 IA32_MC22_MISC Package

45CH 1116 IA32_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC23 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

45DH 1117 IA32_MC23_STATUS Package

45EH 1118 IA32_MC23_ADDR Package

45FH 1119 IA32_MC23_MISC Package

460H 1120 IA32_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC24 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

461H 1121 IA32_MC24_STATUS Package

462H 1122 IA32_MC24_ADDR Package

463H 1123 IA32_MC24_MISC Package

464H 1124 IA32_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC25 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

465H 1125 IA32_MC25_STATUS Package

466H 1126 IA32_MC25_ADDR Package

467H 1127 IA32_MC2MISC Package

468H 1128 IA32_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC26 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

469H 1129 IA32_MC26_STATUS Package

46AH 1130 IA32_MC26_ADDR Package

46BH 1131 IA32_MC26_MISC Package

46CH 1132 IA32_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC27 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

46DH 1133 IA32_MC27_STATUS Package

46EH 1134 IA32_MC27_ADDR Package

46FH 1135 IA32_MC27_MISC Package

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-188 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 2-19, Table 2-25, and
Table 2-26.

470H 1136 IA32_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC28 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

471H 1137 IA32_MC28_STATUS Package

472H 1138 IA32_MC28_ADDR Package

473H 1139 IA32_MC28_MISC Package

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, for other MSR definitions applicable to Intel Xeon processor E5 v2 with CPUID signature 06_3EH

Table 2-26. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-189

MODEL-SPECIFIC REGISTERS (MSRS)

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

63:25 Reserved.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status (R/WO)

0 RIPV

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

62:56 Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT and MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

29DH 669 IA32_MC29_CTL2 Package See Table 2-2.

29EH 670 IA32_MC30_CTL2 Package See Table 2-2.

29FH 671 IA32_MC31_CTL2 Package See Table 2-2.

Table 2-26. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-190 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 IA32_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

475H 1141 IA32_MC29_STATUS Package

476H 1142 IA32_MC29_ADDR Package

477H 1143 IA32_MC29_MISC Package

478H 1144 IA32_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

479H 1145 IA32_MC30_STATUS Package

47AH 1146 IA32_MC30_ADDR Package

47BH 1147 IA32_MC30_MISC Package

47CH 1148 IA32_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

47DH 1149 IA32_MC31_STATUS Package

47EH 1150 IA32_MC31_ADDR Package

47FH 1147 IA32_MC31_MISC Package

See Table 2-19, Table 2-25 for other MSR definitions applicable to Intel Xeon processor E7 v2 with CPUID signature 06_3AH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-26. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-191

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families
Intel Xeon Processor E5 v2 and E7 v2 families are based on the Ivy Bridge-E microarchitecture. The MSR-based
uncore PMU interfaces are listed in Table 2-23 and Table 2-27. For complete detail of the uncore PMU, refer to Intel
Xeon Processor E5 v2 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel of 06_3EH.

Table 2-27. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families

Register
Address Register Name

Scope
Bit Description

 Hex Dec

C00H MSR_PMON_GLOBAL_CTL Package Uncore perfmon per-socket global control.

C01H MSR_PMON_GLOBAL_STATUS Package Uncore perfmon per-socket global status.

C06H MSR_PMON_GLOBAL_CONFIG Package Uncore perfmon per-socket global configuration.

C15H MSR_U_PMON_BOX_STATUS Package Uncore U-box perfmon U-box wide status.

C35H MSR_PCU_PMON_BOX_STATUS Package Uncore PCU perfmon box wide status.

D1AH MSR_C0_PMON_BOX_FILTER1 Package Uncore C-box 0 perfmon box wide filter1.

D3AH MSR_C1_PMON_BOX_FILTER1 Package Uncore C-box 1 perfmon box wide filter1.

D5AH MSR_C2_PMON_BOX_FILTER1 Package Uncore C-box 2 perfmon box wide filter1.

D7AH MSR_C3_PMON_BOX_FILTER1 Package Uncore C-box 3 perfmon box wide filter1.

D9AH MSR_C4_PMON_BOX_FILTER1 Package Uncore C-box 4 perfmon box wide filter1.

DBAH MSR_C5_PMON_BOX_FILTER1 Package Uncore C-box 5 perfmon box wide filter1.

DDAH MSR_C6_PMON_BOX_FILTER1 Package Uncore C-box 6 perfmon box wide filter1.

DFAH MSR_C7_PMON_BOX_FILTER1 Package Uncore C-box 7 perfmon box wide filter1.

E04H MSR_C8_PMON_BOX_CTL Package Uncore C-box 8 perfmon local box wide control.

E10H MSR_C8_PMON_EVNTSEL0 Package Uncore C-box 8 perfmon event select for C-box 8 counter 0.

E11H MSR_C8_PMON_EVNTSEL1 Package Uncore C-box 8 perfmon event select for C-box 8 counter 1.

E12H MSR_C8_PMON_EVNTSEL2 Package Uncore C-box 8 perfmon event select for C-box 8 counter 2.

E13H MSR_C8_PMON_EVNTSEL3 Package Uncore C-box 8 perfmon event select for C-box 8 counter 3.

E14H MSR_C8_PMON_BOX_FILTER Package Uncore C-box 8 perfmon box wide filter.

E16H MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter 0.

E17H MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter 1.

E18H MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter 2.

E19H MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter 3.

E1AH MSR_C8_PMON_BOX_FILTER1 Package Uncore C-box 8 perfmon box wide filter1.

E24H MSR_C9_PMON_BOX_CTL Package Uncore C-box 9 perfmon local box wide control.

E30H MSR_C9_PMON_EVNTSEL0 Package Uncore C-box 9 perfmon event select for C-box 9 counter 0.

E31H MSR_C9_PMON_EVNTSEL1 Package Uncore C-box 9 perfmon event select for C-box 9 counter 1.

E32H MSR_C9_PMON_EVNTSEL2 Package Uncore C-box 9 perfmon event select for C-box 9 counter 2.

E33H MSR_C9_PMON_EVNTSEL3 Package Uncore C-box 9 perfmon event select for C-box 9 counter 3.

E34H MSR_C9_PMON_BOX_FILTER Package Uncore C-box 9 perfmon box wide filter.

E36H MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter 0.

E37H MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter 1.

2-192 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E38H MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter 2.

E39H MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter 3.

E3AH MSR_C9_PMON_BOX_FILTER1 Package Uncore C-box 9 perfmon box wide filter1.

E44H MSR_C10_PMON_BOX_CTL Package Uncore C-box 10 perfmon local box wide control.

E50H MSR_C10_PMON_EVNTSEL0 Package Uncore C-box 10 perfmon event select for C-box 10 counter 0.

E51H MSR_C10_PMON_EVNTSEL1 Package Uncore C-box 10 perfmon event select for C-box 10 counter 1.

E52H MSR_C10_PMON_EVNTSEL2 Package Uncore C-box 10 perfmon event select for C-box 10 counter 2.

E53H MSR_C10_PMON_EVNTSEL3 Package Uncore C-box 10 perfmon event select for C-box 10 counter 3.

E54H MSR_C10_PMON_BOX_FILTER Package Uncore C-box 10 perfmon box wide filter.

E56H MSR_C10_PMON_CTR0 Package Uncore C-box 10 perfmon counter 0.

E57H MSR_C10_PMON_CTR1 Package Uncore C-box 10 perfmon counter 1.

E58H MSR_C10_PMON_CTR2 Package Uncore C-box 10 perfmon counter 2.

E59H MSR_C10_PMON_CTR3 Package Uncore C-box 10 perfmon counter 3.

E5AH MSR_C10_PMON_BOX_FILTER1 Package Uncore C-box 10 perfmon box wide filter1.

E64H MSR_C11_PMON_BOX_CTL Package Uncore C-box 11 perfmon local box wide control.

E70H MSR_C11_PMON_EVNTSEL0 Package Uncore C-box 11 perfmon event select for C-box 11 counter 0.

E71H MSR_C11_PMON_EVNTSEL1 Package Uncore C-box 11 perfmon event select for C-box 11 counter 1.

E72H MSR_C11_PMON_EVNTSEL2 Package Uncore C-box 11 perfmon event select for C-box 11 counter 2.

E73H MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 perfmon event select for C-box 11 counter 3.

E74H MSR_C11_PMON_BOX_FILTER Package Uncore C-box 11 perfmon box wide filter.

E76H MSR_C11_PMON_CTR0 Package Uncore C-box 11 perfmon counter 0.

E77H MSR_C11_PMON_CTR1 Package Uncore C-box 11 perfmon counter 1.

E78H MSR_C11_PMON_CTR2 Package Uncore C-box 11 perfmon counter 2.

E79H MSR_C11_PMON_CTR3 Package Uncore C-box 11 perfmon counter 3.

E7AH MSR_C11_PMON_BOX_FILTER1 Package Uncore C-box 11 perfmon box wide filter1.

E84H MSR_C12_PMON_BOX_CTL Package Uncore C-box 12 perfmon local box wide control.

E90H MSR_C12_PMON_EVNTSEL0 Package Uncore C-box 12 perfmon event select for C-box 12 counter 0.

E91H MSR_C12_PMON_EVNTSEL1 Package Uncore C-box 12 perfmon event select for C-box 12 counter 1.

E92H MSR_C12_PMON_EVNTSEL2 Package Uncore C-box 12 perfmon event select for C-box 12 counter 2.

E93H MSR_C12_PMON_EVNTSEL3 Package Uncore C-box 12 perfmon event select for C-box 12 counter 3.

E94H MSR_C12_PMON_BOX_FILTER Package Uncore C-box 12 perfmon box wide filter.

E96H MSR_C12_PMON_CTR0 Package Uncore C-box 12 perfmon counter 0.

E97H MSR_C12_PMON_CTR1 Package Uncore C-box 12 perfmon counter 1.

E98H MSR_C12_PMON_CTR2 Package Uncore C-box 12 perfmon counter 2.

E99H MSR_C12_PMON_CTR3 Package Uncore C-box 12 perfmon counter 3.

E9AH MSR_C12_PMON_BOX_FILTER1 Package Uncore C-box 12 perfmon box wide filter1.

EA4H MSR_C13_PMON_BOX_CTL Package Uncore C-box 13 perfmon local box wide control.

Table 2-27. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-193

MODEL-SPECIFIC REGISTERS (MSRS)

2.12 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 2-19, Table 2-20, Table 2-21, and Table 2-28. For an MSR listed in Table
2-19 that also appears in Table 2-28, Table 2-28 supercede Table 2-19.

The MSRs listed in Table 2-28 also apply to processors based on Haswell-E microarchitecture (see Section 2.13).

EB0H MSR_C13_PMON_EVNTSEL0 Package Uncore C-box 13 perfmon event select for C-box 13 counter 0.

EB1H MSR_C13_PMON_EVNTSEL1 Package Uncore C-box 13 perfmon event select for C-box 13 counter 1.

EB2H MSR_C13_PMON_EVNTSEL2 Package Uncore C-box 13 perfmon event select for C-box 13 counter 2.

EB3H MSR_C13_PMON_EVNTSEL3 Package Uncore C-box 13 perfmon event select for C-box 13 counter 3.

EB4H MSR_C13_PMON_BOX_FILTER Package Uncore C-box 13 perfmon box wide filter.

EB6H MSR_C13_PMON_CTR0 Package Uncore C-box 13 perfmon counter 0.

EB7H MSR_C13_PMON_CTR1 Package Uncore C-box 13 perfmon counter 1.

EB8H MSR_C13_PMON_CTR2 Package Uncore C-box 13 perfmon counter 2.

EB9H MSR_C13_PMON_CTR3 Package Uncore C-box 13 perfmon counter 3.

EBAH MSR_C13_PMON_BOX_FILTER1 Package Uncore C-box 13 perfmon box wide filter1.

EC4H MSR_C14_PMON_BOX_CTL Package Uncore C-box 14 perfmon local box wide control.

ED0H MSR_C14_PMON_EVNTSEL0 Package Uncore C-box 14 perfmon event select for C-box 14 counter 0.

ED1H MSR_C14_PMON_EVNTSEL1 Package Uncore C-box 14 perfmon event select for C-box 14 counter 1.

ED2H MSR_C14_PMON_EVNTSEL2 Package Uncore C-box 14 perfmon event select for C-box 14 counter 2.

ED3H MSR_C14_PMON_EVNTSEL3 Package Uncore C-box 14 perfmon event select for C-box 14 counter 3.

ED4H MSR_C14_PMON_BOX_FILTER Package Uncore C-box 14 perfmon box wide filter.

ED6H MSR_C14_PMON_CTR0 Package Uncore C-box 14 perfmon counter 0.

ED7H MSR_C14_PMON_CTR1 Package Uncore C-box 14 perfmon counter 1.

ED8H MSR_C14_PMON_CTR2 Package Uncore C-box 14 perfmon counter 2.

ED9H MSR_C14_PMON_CTR3 Package Uncore C-box 14 perfmon counter 3.

EDAH MSR_C14_PMON_BOX_FILTER1 Package Uncore C-box 14 perfmon box wide filter1.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

Table 2-27. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-194 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 2-2 and the fields below.

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 2-2 and the fields below.

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 2-2 and the fields below.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-195

MODEL-SPECIFIC REGISTERS (MSRS)

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.3.6.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after”
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 2-2 and the fields below.

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved.

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-196 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_VMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 2-2

60BH 1548 MSR_PKGC_IRTL1 Package Package C6/C7 Interrupt Response Limit 1 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C6 or C7 state. The
latency programmed in this register is for the shorter-latency sub
C-states used by an MWAIT hint to C6 or C7 state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 or C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60CH 1548 MSR_PKGC_IRTL2 Package Package C6/C7 Interrupt Response Limit 2 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C6 or C7 state. The
latency programmed in this register is for the longer-latency sub C-
states used by an MWAIT hint to C6 or C7 state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 or C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-197

MODEL-SPECIFIC REGISTERS (MSRS)

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units
of 100 MHz).

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

62:47 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

62:47 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-198 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.12.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 2-29 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor family
and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These processors
have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 2-1.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

C80H 3200 IA32_DEBUG_INTERFACE Package Silicon Debug Feature Control (R/W)

See Table 2-2.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
states.

See http://biosbits.org.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-199

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

Package C states C7 are not available to processor with signature
06_3CH

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-200 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-201

MODEL-SPECIFIC REGISTERS (MSRS)

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONTR
OL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined
by the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-202 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or
SENTER Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-203

MODEL-SPECIFIC REGISTERS (MSRS)

690H 1680 MSR_CORE_PERF_LIMIT_REA
SONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the
operating system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is
low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio
changes.

15:14 Reserved

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-204 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-205

MODEL-SPECIFIC REGISTERS (MSRS)

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMIT_
REASONS

Package Indicator of Frequency Clipping in the Processor Graphics
(R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-206 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-207

MODEL-SPECIFIC REGISTERS (MSRS)

63:30 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_REA
SONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-208 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-209

MODEL-SPECIFIC REGISTERS (MSRS)

2.12.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 2-19, Table 2-20, Table
2-28, Table 2-29, and Table 2-30.

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

See Table 2-19, Table 2-20, Table 2-21, Table 2-24, Table 2-28 for other MSR definitions applicable to processors with CPUID
signatures 063CH, 06_46H.

Table 2-30. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

2-210 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C8 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C8
states. Count at the same frequency as the TSC.

63:60 Reserved

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C9 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C9
states. Count at the same frequency as the TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

Table 2-30. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-211

MODEL-SPECIFIC REGISTERS (MSRS)

2.13 MSRS IN INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microarchi-
tecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in
Table 2-19, Table 2-28, and Table 2-31.

59:0 Package C10 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C10
states. Count at the same frequency as the TSC.

63:60 Reserved

See Table 2-19, Table 2-20, Table 2-21, Table 2-28, Table 2-29 for other MSR definitions applicable to processors with CPUID
signature 06_45H.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

35H 53 MSR_CORE_THREAD_COUN
T

Package Configured State of Enabled Processor Core Count and Logical
Processor Count (RO)

• After a Power-On RESET, enumerates factory configuration of
the number of processor cores and logical processors in the
physical package.

• Following the sequence of (i) BIOS modified a Configuration Mask
which selects a subset of processor cores to be active post
RESET and (ii) a RESET event after the modification, enumerates
the current configuration of enabled processor core count and
logical processor count in the physical package.

15:0 Core_COUNT (RO)

The number of processor cores that are currently enabled (by
either factory configuration or BIOS configuration) in the physical
package.

31:16 THREAD_COUNT (RO)

The number of logical processors that are currently enabled (by
either factory configuration or BIOS configuration) in the physical
package.

63:32 Reserved

53H 83 MSR_THREAD_ID_INFO Thread A Hardware Assigned ID for the Logical Processor (RO)

7:0 Logical_Processor_ID (RO)

An implementation-specific numerical. value physically assigned to
each logical processor. This ID is not related to Initial APIC ID or
x2APIC ID, it is unique within a physical package.

63:8 Reserved

Table 2-30. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-212 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-213

MODEL-SPECIFIC REGISTERS (MSRS)

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-214 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active.

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active.

62:16 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-215

MODEL-SPECIFIC REGISTERS (MSRS)

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-216 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from the Intel QPI 2 module.
455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-217

MODEL-SPECIFIC REGISTERS (MSRS)

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

Energy Consumed by DRAM devices.

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable
DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

61EH 1566 MSR_PCIE_PLL_RATIO Package Configuration of PCIE PLL Relative to BCLK(R/W)

1:0 Package PCIE Ratio (R/W)

00b: Use 5:5 mapping for100MHz operation (default)

01b: Use 5:4 mapping for125MHz operation

10b: Use 5:3 mapping for166MHz operation

11b: Use 5:2 mapping for250MHz operation

2 Package LPLL Select (R/W)

if 1, use configured setting of PCIE Ratio

3 Package LONG RESET (R/W)

if 1, wait additional time-out before re-locking Gen2/Gen3 PLLs.

63:4 Reserved

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-218 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating system
request due to PBM limit

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating system
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating system
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating system
request.

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-219

MODEL-SPECIFIC REGISTERS (MSRS)

18 Power Budget Management Log

When set, indicates that the PBM Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-220 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.13.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family
Intel Xeon Processor E5 v3 and E7 v3 family are based on the Haswell-E microarchitecture. The MSR-based uncore
PMU interfaces are listed in Table 2-32. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 v3
Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3FH.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x0: no monitoring

0x1: L3 occupancy monitoring

all other encoding reserved.

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

See Table 2-19, Table 2-28 for other MSR definitions applicable to processors with CPUID signature 06_3FH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

700H MSR_PMON_GLOBAL_CTL Package Uncore perfmon per-socket global control.

701H MSR_PMON_GLOBAL_STATUS Package Uncore perfmon per-socket global status.

702H MSR_PMON_GLOBAL_CONFIG Package Uncore perfmon per-socket global configuration.

703H MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK fixed counter control

704H MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK fixed counter

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-221

MODEL-SPECIFIC REGISTERS (MSRS)

705H MSR_U_PMON_EVNTSEL0 Package Uncore U-box perfmon event select for U-box counter 0.

706H MSR_U_PMON_EVNTSEL1 Package Uncore U-box perfmon event select for U-box counter 1.

708H MSR_U_PMON_BOX_STATUS Package Uncore U-box perfmon U-box wide status.

709H MSR_U_PMON_CTR0 Package Uncore U-box perfmon counter 0

70AH MSR_U_PMON_CTR1 Package Uncore U-box perfmon counter 1

710H MSR_PCU_PMON_BOX_CTL Package Uncore PCU perfmon for PCU-box-wide control

711H MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU perfmon event select for PCU counter 0.

712H MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU perfmon event select for PCU counter 1.

713H MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU perfmon event select for PCU counter 2.

714H MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU perfmon event select for PCU counter 3.

715H MSR_PCU_PMON_BOX_FILTER Package Uncore PCU perfmon box-wide filter.

716H MSR_PCU_PMON_BOX_STATUS Package Uncore PCU perfmon box wide status.

717H MSR_PCU_PMON_CTR0 Package Uncore PCU perfmon counter 0.

718H MSR_PCU_PMON_CTR1 Package Uncore PCU perfmon counter 1.

719H MSR_PCU_PMON_CTR2 Package Uncore PCU perfmon counter 2.

71AH MSR_PCU_PMON_CTR3 Package Uncore PCU perfmon counter 3.

720H MSR_S0_PMON_BOX_CTL Package Uncore SBo 0 perfmon for SBo 0 box-wide control

721H MSR_S0_PMON_EVNTSEL0 Package Uncore SBo 0 perfmon event select for SBo 0 counter 0.

722H MSR_S0_PMON_EVNTSEL1 Package Uncore SBo 0 perfmon event select for SBo 0 counter 1.

723H MSR_S0_PMON_EVNTSEL2 Package Uncore SBo 0 perfmon event select for SBo 0 counter 2.

724H MSR_S0_PMON_EVNTSEL3 Package Uncore SBo 0 perfmon event select for SBo 0 counter 3.

725H MSR_S0_PMON_BOX_FILTER Package Uncore SBo 0 perfmon box-wide filter.

726H MSR_S0_PMON_CTR0 Package Uncore SBo 0 perfmon counter 0.

727H MSR_S0_PMON_CTR1 Package Uncore SBo 0 perfmon counter 1.

728H MSR_S0_PMON_CTR2 Package Uncore SBo 0 perfmon counter 2.

729H MSR_S0_PMON_CTR3 Package Uncore SBo 0 perfmon counter 3.

72AH MSR_S1_PMON_BOX_CTL Package Uncore SBo 1 perfmon for SBo 1 box-wide control

72BH MSR_S1_PMON_EVNTSEL0 Package Uncore SBo 1 perfmon event select for SBo 1 counter 0.

72CH MSR_S1_PMON_EVNTSEL1 Package Uncore SBo 1 perfmon event select for SBo 1 counter 1.

72DH MSR_S1_PMON_EVNTSEL2 Package Uncore SBo 1 perfmon event select for SBo 1 counter 2.

72EH MSR_S1_PMON_EVNTSEL3 Package Uncore SBo 1 perfmon event select for SBo 1 counter 3.

72FH MSR_S1_PMON_BOX_FILTER Package Uncore SBo 1 perfmon box-wide filter.

730H MSR_S1_PMON_CTR0 Package Uncore SBo 1 perfmon counter 0.

731H MSR_S1_PMON_CTR1 Package Uncore SBo 1 perfmon counter 1.

732H MSR_S1_PMON_CTR2 Package Uncore SBo 1 perfmon counter 2.

733H MSR_S1_PMON_CTR3 Package Uncore SBo 1 perfmon counter 3.

734H MSR_S2_PMON_BOX_CTL Package Uncore SBo 2 perfmon for SBo 2 box-wide control

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-222 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

735H MSR_S2_PMON_EVNTSEL0 Package Uncore SBo 2 perfmon event select for SBo 2 counter 0.

736H MSR_S2_PMON_EVNTSEL1 Package Uncore SBo 2 perfmon event select for SBo 2 counter 1.

737H MSR_S2_PMON_EVNTSEL2 Package Uncore SBo 2 perfmon event select for SBo 2 counter 2.

738H MSR_S2_PMON_EVNTSEL3 Package Uncore SBo 2 perfmon event select for SBo 2 counter 3.

739H MSR_S2_PMON_BOX_FILTER Package Uncore SBo 2 perfmon box-wide filter.

73AH MSR_S2_PMON_CTR0 Package Uncore SBo 2 perfmon counter 0.

73BH MSR_S2_PMON_CTR1 Package Uncore SBo 2 perfmon counter 1.

73CH MSR_S2_PMON_CTR2 Package Uncore SBo 2 perfmon counter 2.

73DH MSR_S2_PMON_CTR3 Package Uncore SBo 2 perfmon counter 3.

73EH MSR_S3_PMON_BOX_CTL Package Uncore SBo 3 perfmon for SBo 3 box-wide control

73FH MSR_S3_PMON_EVNTSEL0 Package Uncore SBo 3 perfmon event select for SBo 3 counter 0.

740H MSR_S3_PMON_EVNTSEL1 Package Uncore SBo 3 perfmon event select for SBo 3 counter 1.

741H MSR_S3_PMON_EVNTSEL2 Package Uncore SBo 3 perfmon event select for SBo 3 counter 2.

742H MSR_S3_PMON_EVNTSEL3 Package Uncore SBo 3 perfmon event select for SBo 3 counter 3.

743H MSR_S3_PMON_BOX_FILTER Package Uncore SBo 3 perfmon box-wide filter.

744H MSR_S3_PMON_CTR0 Package Uncore SBo 3 perfmon counter 0.

745H MSR_S3_PMON_CTR1 Package Uncore SBo 3 perfmon counter 1.

746H MSR_S3_PMON_CTR2 Package Uncore SBo 3 perfmon counter 2.

747H MSR_S3_PMON_CTR3 Package Uncore SBo 3 perfmon counter 3.

E00H MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 perfmon for box-wide control

E01H MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 perfmon event select for C-box 0 counter 0.

E02H MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 perfmon event select for C-box 0 counter 1.

E03H MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 perfmon event select for C-box 0 counter 2.

E04H MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 perfmon event select for C-box 0 counter 3.

E05H MSR_C0_PMON_BOX_FILTER0 Package Uncore C-box 0 perfmon box wide filter 0.

E06H MSR_C0_PMON_BOX_FILTER1 Package Uncore C-box 0 perfmon box wide filter 1.

E07H MSR_C0_PMON_BOX_STATUS Package Uncore C-box 0 perfmon box wide status.

E08H MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter 0.

E09H MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter 1.

E0AH MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter 2.

E0BH MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter 3.

E10H MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 perfmon for box-wide control

E11H MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 perfmon event select for C-box 1 counter 0.

E12H MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 perfmon event select for C-box 1 counter 1.

E13H MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 perfmon event select for C-box 1 counter 2.

E14H MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 perfmon event select for C-box 1 counter 3.

E15H MSR_C1_PMON_BOX_FILTER0 Package Uncore C-box 1 perfmon box wide filter 0.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-223

MODEL-SPECIFIC REGISTERS (MSRS)

E16H MSR_C1_PMON_BOX_FILTER1 Package Uncore C-box 1 perfmon box wide filter1.

E17H MSR_C1_PMON_BOX_STATUS Package Uncore C-box 1 perfmon box wide status.

E18H MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter 0.

E19H MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter 1.

E1AH MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter 2.

E1BH MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter 3.

E20H MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 perfmon for box-wide control

E21H MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 perfmon event select for C-box 2 counter 0.

E22H MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 perfmon event select for C-box 2 counter 1.

E23H MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 perfmon event select for C-box 2 counter 2.

E24H MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 perfmon event select for C-box 2 counter 3.

E25H MSR_C2_PMON_BOX_FILTER0 Package Uncore C-box 2 perfmon box wide filter 0.

E26H MSR_C2_PMON_BOX_FILTER1 Package Uncore C-box 2 perfmon box wide filter1.

E27H MSR_C2_PMON_BOX_STATUS Package Uncore C-box 2 perfmon box wide status.

E28H MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter 0.

E29H MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter 1.

E2AH MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter 2.

E2BH MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter 3.

E30H MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 perfmon for box-wide control

E31H MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 perfmon event select for C-box 3 counter 0.

E32H MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 perfmon event select for C-box 3 counter 1.

E33H MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 perfmon event select for C-box 3 counter 2.

E34H MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 perfmon event select for C-box 3 counter 3.

E35H MSR_C3_PMON_BOX_FILTER0 Package Uncore C-box 3 perfmon box wide filter 0.

E36H MSR_C3_PMON_BOX_FILTER1 Package Uncore C-box 3 perfmon box wide filter1.

E37H MSR_C3_PMON_BOX_STATUS Package Uncore C-box 3 perfmon box wide status.

E38H MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter 0.

E39H MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter 1.

E3AH MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter 2.

E3BH MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter 3.

E40H MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 perfmon for box-wide control

E41H MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 perfmon event select for C-box 4 counter 0.

E42H MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 perfmon event select for C-box 4 counter 1.

E43H MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 perfmon event select for C-box 4 counter 2.

E44H MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 perfmon event select for C-box 4 counter 3.

E45H MSR_C4_PMON_BOX_FILTER0 Package Uncore C-box 4 perfmon box wide filter 0.

E46H MSR_C4_PMON_BOX_FILTER1 Package Uncore C-box 4 perfmon box wide filter1.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-224 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E47H MSR_C4_PMON_BOX_STATUS Package Uncore C-box 4 perfmon box wide status.

E48H MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter 0.

E49H MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter 1.

E4AH MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter 2.

E4BH MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter 3.

E50H MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 perfmon for box-wide control

E51H MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 perfmon event select for C-box 5 counter 0.

E52H MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 perfmon event select for C-box 5 counter 1.

E53H MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 perfmon event select for C-box 5 counter 2.

E54H MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 perfmon event select for C-box 5 counter 3.

E55H MSR_C5_PMON_BOX_FILTER0 Package Uncore C-box 5 perfmon box wide filter 0.

E56H MSR_C5_PMON_BOX_FILTER1 Package Uncore C-box 5 perfmon box wide filter1.

E57H MSR_C5_PMON_BOX_STATUS Package Uncore C-box 5 perfmon box wide status.

E58H MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter 0.

E59H MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter 1.

E5AH MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter 2.

E5BH MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter 3.

E60H MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 perfmon for box-wide control

E61H MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 perfmon event select for C-box 6 counter 0.

E62H MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 perfmon event select for C-box 6 counter 1.

E63H MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 perfmon event select for C-box 6 counter 2.

E64H MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 perfmon event select for C-box 6 counter 3.

E65H MSR_C6_PMON_BOX_FILTER0 Package Uncore C-box 6 perfmon box wide filter 0.

E66H MSR_C6_PMON_BOX_FILTER1 Package Uncore C-box 6 perfmon box wide filter1.

E67H MSR_C6_PMON_BOX_STATUS Package Uncore C-box 6 perfmon box wide status.

E68H MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter 0.

E69H MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter 1.

E6AH MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter 2.

E6BH MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter 3.

E70H MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 perfmon for box-wide control.

E71H MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 perfmon event select for C-box 7 counter 0.

E72H MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 perfmon event select for C-box 7 counter 1.

E73H MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 perfmon event select for C-box 7 counter 2.

E74H MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 perfmon event select for C-box 7 counter 3.

E75H MSR_C7_PMON_BOX_FILTER0 Package Uncore C-box 7 perfmon box wide filter 0.

E76H MSR_C7_PMON_BOX_FILTER1 Package Uncore C-box 7 perfmon box wide filter1.

E77H MSR_C7_PMON_BOX_STATUS Package Uncore C-box 7 perfmon box wide status.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-225

MODEL-SPECIFIC REGISTERS (MSRS)

E78H MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter 0.

E79H MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter 1.

E7AH MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter 2.

E7BH MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter 3.

E80H MSR_C8_PMON_BOX_CTL Package Uncore C-box 8 perfmon local box wide control.

E81H MSR_C8_PMON_EVNTSEL0 Package Uncore C-box 8 perfmon event select for C-box 8 counter 0.

E82H MSR_C8_PMON_EVNTSEL1 Package Uncore C-box 8 perfmon event select for C-box 8 counter 1.

E83H MSR_C8_PMON_EVNTSEL2 Package Uncore C-box 8 perfmon event select for C-box 8 counter 2.

E84H MSR_C8_PMON_EVNTSEL3 Package Uncore C-box 8 perfmon event select for C-box 8 counter 3.

E85H MSR_C8_PMON_BOX_FILTER0 Package Uncore C-box 8 perfmon box wide filter0.

E86H MSR_C8_PMON_BOX_FILTER1 Package Uncore C-box 8 perfmon box wide filter1.

E87H MSR_C8_PMON_BOX_STATUS Package Uncore C-box 8 perfmon box wide status.

E88H MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter 0.

E89H MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter 1.

E8AH MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter 2.

E8BH MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter 3.

E90H MSR_C9_PMON_BOX_CTL Package Uncore C-box 9 perfmon local box wide control.

E91H MSR_C9_PMON_EVNTSEL0 Package Uncore C-box 9 perfmon event select for C-box 9 counter 0.

E92H MSR_C9_PMON_EVNTSEL1 Package Uncore C-box 9 perfmon event select for C-box 9 counter 1.

E93H MSR_C9_PMON_EVNTSEL2 Package Uncore C-box 9 perfmon event select for C-box 9 counter 2.

E94H MSR_C9_PMON_EVNTSEL3 Package Uncore C-box 9 perfmon event select for C-box 9 counter 3.

E95H MSR_C9_PMON_BOX_FILTER0 Package Uncore C-box 9 perfmon box wide filter0.

E96H MSR_C9_PMON_BOX_FILTER1 Package Uncore C-box 9 perfmon box wide filter1.

E97H MSR_C9_PMON_BOX_STATUS Package Uncore C-box 9 perfmon box wide status.

E98H MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter 0.

E99H MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter 1.

E9AH MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter 2.

E9BH MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter 3.

EA0H MSR_C10_PMON_BOX_CTL Package Uncore C-box 10 perfmon local box wide control.

EA1H MSR_C10_PMON_EVNTSEL0 Package Uncore C-box 10 perfmon event select for C-box 10 counter 0.

EA2H MSR_C10_PMON_EVNTSEL1 Package Uncore C-box 10 perfmon event select for C-box 10 counter 1.

EA3H MSR_C10_PMON_EVNTSEL2 Package Uncore C-box 10 perfmon event select for C-box 10 counter 2.

EA4H MSR_C10_PMON_EVNTSEL3 Package Uncore C-box 10 perfmon event select for C-box 10 counter 3.

EA5H MSR_C10_PMON_BOX_FILTER0 Package Uncore C-box 10 perfmon box wide filter0.

EA6H MSR_C10_PMON_BOX_FILTER1 Package Uncore C-box 10 perfmon box wide filter1.

EA7H MSR_C10_PMON_BOX_STATUS Package Uncore C-box 10 perfmon box wide status.

EA8H MSR_C10_PMON_CTR0 Package Uncore C-box 10 perfmon counter 0.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-226 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

EA9H MSR_C10_PMON_CTR1 Package Uncore C-box 10 perfmon counter 1.

EAAH MSR_C10_PMON_CTR2 Package Uncore C-box 10 perfmon counter 2.

EABH MSR_C10_PMON_CTR3 Package Uncore C-box 10 perfmon counter 3.

EB0H MSR_C11_PMON_BOX_CTL Package Uncore C-box 11 perfmon local box wide control.

EB1H MSR_C11_PMON_EVNTSEL0 Package Uncore C-box 11 perfmon event select for C-box 11 counter 0.

EB2H MSR_C11_PMON_EVNTSEL1 Package Uncore C-box 11 perfmon event select for C-box 11 counter 1.

EB3H MSR_C11_PMON_EVNTSEL2 Package Uncore C-box 11 perfmon event select for C-box 11 counter 2.

EB4H MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 perfmon event select for C-box 11 counter 3.

EB5H MSR_C11_PMON_BOX_FILTER0 Package Uncore C-box 11 perfmon box wide filter0.

EB6H MSR_C11_PMON_BOX_FILTER1 Package Uncore C-box 11 perfmon box wide filter1.

EB7H MSR_C11_PMON_BOX_STATUS Package Uncore C-box 11 perfmon box wide status.

EB8H MSR_C11_PMON_CTR0 Package Uncore C-box 11 perfmon counter 0.

EB9H MSR_C11_PMON_CTR1 Package Uncore C-box 11 perfmon counter 1.

EBAH MSR_C11_PMON_CTR2 Package Uncore C-box 11 perfmon counter 2.

EBBH MSR_C11_PMON_CTR3 Package Uncore C-box 11 perfmon counter 3.

EC0H MSR_C12_PMON_BOX_CTL Package Uncore C-box 12 perfmon local box wide control.

EC1H MSR_C12_PMON_EVNTSEL0 Package Uncore C-box 12 perfmon event select for C-box 12 counter 0.

EC2H MSR_C12_PMON_EVNTSEL1 Package Uncore C-box 12 perfmon event select for C-box 12 counter 1.

EC3H MSR_C12_PMON_EVNTSEL2 Package Uncore C-box 12 perfmon event select for C-box 12 counter 2.

EC4H MSR_C12_PMON_EVNTSEL3 Package Uncore C-box 12 perfmon event select for C-box 12 counter 3.

EC5H MSR_C12_PMON_BOX_FILTER0 Package Uncore C-box 12 perfmon box wide filter0.

EC6H MSR_C12_PMON_BOX_FILTER1 Package Uncore C-box 12 perfmon box wide filter1.

EC7H MSR_C12_PMON_BOX_STATUS Package Uncore C-box 12 perfmon box wide status.

EC8H MSR_C12_PMON_CTR0 Package Uncore C-box 12 perfmon counter 0.

EC9H MSR_C12_PMON_CTR1 Package Uncore C-box 12 perfmon counter 1.

ECAH MSR_C12_PMON_CTR2 Package Uncore C-box 12 perfmon counter 2.

ECBH MSR_C12_PMON_CTR3 Package Uncore C-box 12 perfmon counter 3.

ED0H MSR_C13_PMON_BOX_CTL Package Uncore C-box 13 perfmon local box wide control.

ED1H MSR_C13_PMON_EVNTSEL0 Package Uncore C-box 13 perfmon event select for C-box 13 counter 0.

ED2H MSR_C13_PMON_EVNTSEL1 Package Uncore C-box 13 perfmon event select for C-box 13 counter 1.

ED3H MSR_C13_PMON_EVNTSEL2 Package Uncore C-box 13 perfmon event select for C-box 13 counter 2.

ED4H MSR_C13_PMON_EVNTSEL3 Package Uncore C-box 13 perfmon event select for C-box 13 counter 3.

ED5H MSR_C13_PMON_BOX_FILTER0 Package Uncore C-box 13 perfmon box wide filter0.

ED6H MSR_C13_PMON_BOX_FILTER1 Package Uncore C-box 13 perfmon box wide filter1.

ED7H MSR_C13_PMON_BOX_STATUS Package Uncore C-box 13 perfmon box wide status.

ED8H MSR_C13_PMON_CTR0 Package Uncore C-box 13 perfmon counter 0.

ED9H MSR_C13_PMON_CTR1 Package Uncore C-box 13 perfmon counter 1.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-227

MODEL-SPECIFIC REGISTERS (MSRS)

EDAH MSR_C13_PMON_CTR2 Package Uncore C-box 13 perfmon counter 2.

EDBH MSR_C13_PMON_CTR3 Package Uncore C-box 13 perfmon counter 3.

EE0H MSR_C14_PMON_BOX_CTL Package Uncore C-box 14 perfmon local box wide control.

EE1H MSR_C14_PMON_EVNTSEL0 Package Uncore C-box 14 perfmon event select for C-box 14 counter 0.

EE2H MSR_C14_PMON_EVNTSEL1 Package Uncore C-box 14 perfmon event select for C-box 14 counter 1.

EE3H MSR_C14_PMON_EVNTSEL2 Package Uncore C-box 14 perfmon event select for C-box 14 counter 2.

EE4H MSR_C14_PMON_EVNTSEL3 Package Uncore C-box 14 perfmon event select for C-box 14 counter 3.

EE5H MSR_C14_PMON_BOX_FILTER Package Uncore C-box 14 perfmon box wide filter0.

EE6H MSR_C14_PMON_BOX_FILTER1 Package Uncore C-box 14 perfmon box wide filter1.

EE7H MSR_C14_PMON_BOX_STATUS Package Uncore C-box 14 perfmon box wide status.

EE8H MSR_C14_PMON_CTR0 Package Uncore C-box 14 perfmon counter 0.

EE9H MSR_C14_PMON_CTR1 Package Uncore C-box 14 perfmon counter 1.

EEAH MSR_C14_PMON_CTR2 Package Uncore C-box 14 perfmon counter 2.

EEBH MSR_C14_PMON_CTR3 Package Uncore C-box 14 perfmon counter 3.

EF0H MSR_C15_PMON_BOX_CTL Package Uncore C-box 15 perfmon local box wide control.

EF1H MSR_C15_PMON_EVNTSEL0 Package Uncore C-box 15 perfmon event select for C-box 15 counter 0.

EF2H MSR_C15_PMON_EVNTSEL1 Package Uncore C-box 15 perfmon event select for C-box 15 counter 1.

EF3H MSR_C15_PMON_EVNTSEL2 Package Uncore C-box 15 perfmon event select for C-box 15 counter 2.

EF4H MSR_C15_PMON_EVNTSEL3 Package Uncore C-box 15 perfmon event select for C-box 15 counter 3.

EF5H MSR_C15_PMON_BOX_FILTER0 Package Uncore C-box 15 perfmon box wide filter0.

EF6H MSR_C15_PMON_BOX_FILTER1 Package Uncore C-box 15 perfmon box wide filter1.

EF7H MSR_C15_PMON_BOX_STATUS Package Uncore C-box 15 perfmon box wide status.

EF8H MSR_C15_PMON_CTR0 Package Uncore C-box 15 perfmon counter 0.

EF9H MSR_C15_PMON_CTR1 Package Uncore C-box 15 perfmon counter 1.

EFAH MSR_C15_PMON_CTR2 Package Uncore C-box 15 perfmon counter 2.

EFBH MSR_C15_PMON_CTR3 Package Uncore C-box 15 perfmon counter 3.

F00H MSR_C16_PMON_BOX_CTL Package Uncore C-box 16 perfmon for box-wide control

F01H MSR_C16_PMON_EVNTSEL0 Package Uncore C-box 16 perfmon event select for C-box 16 counter 0.

F02H MSR_C16_PMON_EVNTSEL1 Package Uncore C-box 16 perfmon event select for C-box 16 counter 1.

F03H MSR_C16_PMON_EVNTSEL2 Package Uncore C-box 16 perfmon event select for C-box 16 counter 2.

F04H MSR_C16_PMON_EVNTSEL3 Package Uncore C-box 16 perfmon event select for C-box 16 counter 3.

F05H MSR_C16_PMON_BOX_FILTER0 Package Uncore C-box 16 perfmon box wide filter 0.

F06H MSR_C16_PMON_BOX_FILTER1 Package Uncore C-box 16 perfmon box wide filter 1.

F07H MSR_C16_PMON_BOX_STATUS Package Uncore C-box 16 perfmon box wide status.

F08H MSR_C16_PMON_CTR0 Package Uncore C-box 16 perfmon counter 0.

F09H MSR_C16_PMON_CTR1 Package Uncore C-box 16 perfmon counter 1.

F0AH MSR_C16_PMON_CTR2 Package Uncore C-box 16 perfmon counter 2.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-228 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.14 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors, and Intel® Xeon® Processor
E3-1200 v4 family are based on the Broadwell microarchitecture. The Intel® Core™ M-5xxx processors and 5th
generation Intel® Core™ Processors have CPUID DisplayFamily_DisplayModel signature 06_3DH. Intel® Xeon®
Processor E3-1200 v4 family and the 5th generation Intel® Core™ Processors have CPUID
DisplayFamily_DisplayModel signature 06_47H. Processors with signatures 06_3DH and 06_47H support the MSR
interfaces listed in Table 2-19, Table 2-20, Table 2-21, Table 2-24, Table 2-28, Table 2-29, Table 2-33, and Table
2-34. For an MSR listed in Table 2-34 that also appears in the model-specific tables of prior generations, Table 2-34
supercede prior generation tables.

Table 2-33 lists MSRs that are common to processors based on the Broadwell microarchitectures (including CPUID
signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).

E0BH MSR_C16_PMON_CTR3 Package Uncore C-box 16 perfmon counter 3.

F10H MSR_C17_PMON_BOX_CTL Package Uncore C-box 17 perfmon for box-wide control

F11H MSR_C17_PMON_EVNTSEL0 Package Uncore C-box 17 perfmon event select for C-box 17 counter 0.

F12H MSR_C17_PMON_EVNTSEL1 Package Uncore C-box 17 perfmon event select for C-box 17 counter 1.

F13H MSR_C17_PMON_EVNTSEL2 Package Uncore C-box 17 perfmon event select for C-box 17 counter 2.

F14H MSR_C17_PMON_EVNTSEL3 Package Uncore C-box 17 perfmon event select for C-box 17 counter 3.

F15H MSR_C17_PMON_BOX_FILTER0 Package Uncore C-box 17 perfmon box wide filter 0.

F16H MSR_C17_PMON_BOX_FILTER1 Package Uncore C-box 17 perfmon box wide filter1.

F17H MSR_C17_PMON_BOX_STATUS Package Uncore C-box 17 perfmon box wide status.

F18H MSR_C17_PMON_CTR0 Package Uncore C-box 17 perfmon counter 0.

F19H MSR_C17_PMON_CTR1 Package Uncore C-box 17 perfmon counter 1.

F1AH MSR_C17_PMON_CTR2 Package Uncore C-box 17 perfmon counter 2.

F1BH MSR_C17_PMON_CTR3 Package Uncore C-box 17 perfmon counter 3.

Table 2-33. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

38EH 910 IA32_PERF_GLOBAL_
STATUS

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-229

MODEL-SPECIFIC REGISTERS (MSRS)

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 35.2.6.2, “Table of Physical
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 35.2.6.2, “Table of
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

Table 2-33. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-230 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-34 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

620H MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

NOTES:
1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-33. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-231

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-34. Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Enable Package C-State Auto-demotion (R/W)

30 Enable Package C-State Undemotion (R/W)

63:31 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

http://biosbits.org

2-232 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.15 MSRS IN INTEL® XEON® PROCESSORS E5 V4 FAMILY
The MSRs listed in Table 2-35 are available and common to Intel® Xeon® Processor D product Family (CPUID
DisplayFamily_DisplayModel = 06_56H) and to Intel Xeon processors E5 v4, E7 v4 families (CPUID
DisplayFamily_DisplayModel = 06_4FH). They are based on the Broadwell microarchitecture.

See Section 2.15.1 for lists of tables of MSRs that are supported by Intel® Xeon® Processor D Family.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, Table 2-20, Table 2-21, Table 2-24, Table 2-28, Table 2-29, Table 2-33 for other MSR definitions applicable to
processors with CPUID signature 06_3DH.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

See Table 2-25.

1 Enable_PPIN (R/W)

See Table 2-25.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-25.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

See Table 2-25.

22:16 Reserved.

Table 2-34. Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-233

MODEL-SPECIFIC REGISTERS (MSRS)

23 Package PPIN_CAP (R/O)

See Table 2-25.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

See Table 2-25.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

See Table 2-25.

30 Package Programmable TJ OFFSET (R/O)

See Table 2-25.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

See Table 2-25.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to MWAIT(C6)

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

2-234 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-235

MODEL-SPECIFIC REGISTERS (MSRS)

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

8 Thermal threshold #2 status (RO)

See Table 2-2.

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

12 Current Limit status (RO)

See Table 2-2.

13 Current Limit log (R/WC0)

See Table 2-2.

14 Cross Domain Limit status (RO)

See Table 2-2.

15 Cross Domain Limit log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (RO)

See Table 2-25.

27:24 TCC Activation Offset (R/W)

See Table 2-25.

63:28 Reserved.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-236 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

15:8 Package Maximum Ratio Limit for 2C

23:16 Package Maximum Ratio Limit for 3C

31:24 Package Maximum Ratio Limit for 4C

39:32 Package Maximum Ratio Limit for 5C

47:40 Package Maximum Ratio Limit for 6C

55:48 Package Maximum Ratio Limit for 7C

63:56 Package Maximum Ratio Limit for 8C

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

15:8 Package Maximum Ratio Limit for 10C

23:16 Package Maximum Ratio Limit for 11C

31:24 Package Maximum Ratio Limit for 12C

39:32 Package Maximum Ratio Limit for 13C

47:40 Package Maximum Ratio Limit for 14C

55:48 Package Maximum Ratio Limit for 15C

63:56 Package Maximum Ratio Limit for 16C

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

Energy consumed by DRAM devices

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-237

MODEL-SPECIFIC REGISTERS (MSRS)

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable
DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating system
request due to PBM limit

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating system
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-238 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating system
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating system
request.

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Power Budget Management Log

When set, indicates that the PBM Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-239

MODEL-SPECIFIC REGISTERS (MSRS)

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

63:24 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

1:0 Reserved.

2 Excursion to Minimum (RO)

63:3 Reserved.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-240 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x00: no monitoring

0x01: L3 occupancy monitoring

0x02: Total memory bandwidth monitoring

0x03: Local memory bandwidth monitoring

All other encoding reserved

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

31:10 Reserved

51:32 COS (R/W).

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:19 CBM: Bit vector of available L3 ways for COS 0 enforcement

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:19 CBM: Bit vector of available L3 ways for COS 1 enforcement

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:19 CBM: Bit vector of available L3 ways for COS 2 enforcement

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L3 ways for COS 3 enforcement

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4

0:19 CBM: Bit vector of available L3 ways for COS 4 enforcement

63:20 Reserved

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-241

MODEL-SPECIFIC REGISTERS (MSRS)

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5

0:19 CBM: Bit vector of available L3 ways for COS 5 enforcement

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6

0:19 CBM: Bit vector of available L3 ways for COS 6 enforcement

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7

0:19 CBM: Bit vector of available L3 ways for COS 7 enforcement

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8

0:19 CBM: Bit vector of available L3 ways for COS 8 enforcement

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9

0:19 CBM: Bit vector of available L3 ways for COS 9 enforcement

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=10

0:19 CBM: Bit vector of available L3 ways for COS 10 enforcement

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=11

0:19 CBM: Bit vector of available L3 ways for COS 11 enforcement

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=12

0:19 CBM: Bit vector of available L3 ways for COS 12 enforcement

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=13

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-242 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.15.1 Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
The MSRs listed in Table 2-36 are available to Intel® Xeon® Processor D Product Family (CPUID
DisplayFamily_DisplayModel = 06_56H). The Intel® Xeon® processor D product family is based on the Broadwell
microarchitecture and supports the MSR interfaces listed in Table 2-19, Table 2-28, Table 2-33, Table 2-35, and
Table 2-36.

0:19 CBM: Bit vector of available L3 ways for COS 13 enforcement

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=14

0:19 CBM: Bit vector of available L3 ways for COS 14 enforcement

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=15

0:19 CBM: Bit vector of available L3 ways for COS 15 enforcement

63:20 Reserved

Table 2-36. Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-243

MODEL-SPECIFIC REGISTERS (MSRS)

2.15.2 Additional MSRs Supported in Intel® Xeon® Processors E5 v4 and E7 v4 Families
The MSRs listed in Table 2-36 are available to Intel® Xeon® Processor E5 v4 and E7 v4 Families (CPUID
DisplayFamily_DisplayModel = 06_4FH). The Intel® Xeon® processor E5 v4 family is based on the Broadwell

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

See Table 2-19, Table 2-28, Table 2-33, and Table 2-35 for other MSR definitions applicable to processors with CPUID signature
06_56H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-36. Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-244 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

microarchitecture and supports the MSR interfaces listed in Table 2-19, Table 2-20, Table 2-28, Table 2-33, Table
2-35, and Table 2-37.

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

Vol. 4 2-245

MODEL-SPECIFIC REGISTERS (MSRS)

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-246 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from the Intel QPI 2 module.
455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

C81H 3201 IA32_L3_QOS_CFG Package Cache Allocation Technology Configuration (R/W)

0 CAT Enable. Set 1 to enable Cache Allocation Technology

63:1 Reserved.

See Table 2-19, Table 2-20, Table 2-28, and Table 2-29 for other MSR definitions applicable to processors with CPUID signature
06_45H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-247

MODEL-SPECIFIC REGISTERS (MSRS)

2.16 MSRS IN THE 6TH GENERATION INTEL® CORE™ PROCESSORS, INTEL®
XEON® PROCESSOR SCALABLE FAMILY, 7TH GENERATION INTEL® CORE™
PROCESSORS, AND FUTURE INTEL® CORE™ PROCESSORS

6th generation Intel® Core™ processors and the Intel® Xeon® Processor Scalable Family are based on the Skylake
microarchitecture and have CPUID DisplayFamily_DisplayModel signatures of 06_4EH, 06_5EH, and 06_55H. 7th
Generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and have CPUID
DisplayFamily_DisplayModel signatures of 06_8EH and 06_9EH. Future Intel® Core™ processors are based on
Cannon Lake microarchitecture and have a CPUID DisplayFamily_DisplayModel signature of 06_66H. These
processors support the MSR interfaces listed in Table 2-19, Table 2-20, Table 2-24, Table 2-28, Table 2-34, Table
2-38, and Table 2-39. For an MSR listed in Table 2-38 that also appears in the model-specific tables of prior gener-
ations, Table 2-38 supercede prior generation tables.

The notation of “Platform” in the Scope column (with respect to MSR_PLATFORM_ENERGY_COUNTER and
MSR_PLATFORM_POWER_LIMIT) is limited to the power-delivery domain and the specifics of the power delivery
integration may vary by platform vendor’s implementation.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread MTRR Capality (RO, Architectural). See Table 2-2

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

8 Thermal threshold #2 status (RO)

See Table 2-2.

2-248 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

12 Current Limit status (RO)

See Table 2-2.

13 Current Limit log (R/WC0)

See Table 2-2.

14 Cross Domain Limit status (RO)

See Table 2-2.

15 Cross Domain Limit log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR containing the
most recent branch record.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-249

MODEL-SPECIFIC REGISTERS (MSRS)

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

18:2 Reserved.

19 Disable Race to Halt Optimization (R/W)

Setting this bit disables the Race to Halt optimization and avoid this
optimization limitation to execute below the most efficient
frequency ratio. Default value is 0 for processors that support Race
to Halt optimization. Default value is 1 for processors that do not
support Race to Halt optimization.

20 Disable Energy Efficiency Optimization (R/W)

Setting this bit disables the P-States energy efficiency
optimization. Default value is 0. Disable/enable the energy
efficiency optimization in P-State legacy mode (when
IA32_PM_ENABLE[HWP_ENABLE] = 0), has an effect only in the
turbo range or into PERF_MIN_CTL value if it is not zero set. In HWP
mode (IA32_PM_ENABLE[HWP_ENABLE] == 1), has an effect
between the OS desired or OS maximize to the OS minimize
performance setting.

63:21 Reserved.

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH.

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

301H 768 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH.

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_
STATUS

See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-250 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

54:35 Reserved.

55 Thread Trace_ToPA_PMI.

57:56 Reserved.

58 Thread LBR_Frz.

59 Thread CTR_Frz.

60 Thread ASCI.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Thread Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved.

58 Thread Set 1 to clear LBR_Frz.

59 Thread Set 1 to clear CTR_Frz.

60 Thread Set 1 to clear ASCI.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-251

MODEL-SPECIFIC REGISTERS (MSRS)

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to cause Ovf_PMC0 = 1

1 Thread Set 1 to cause Ovf_PMC1 = 1

2 Thread Set 1 to cause Ovf_PMC2 = 1

3 Thread Set 1 to cause Ovf_PMC3 = 1

4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Thread Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Thread Set 1 to cause LBR_Frz = 1

59 Thread Set 1 to cause CTR_Frz = 1

60 Thread Set 1 to cause ASCI = 1

61 Thread Set 1 to cause Ovf_Uncore

62 Thread Set 1 to cause Ovf_BufDSSAVE

63 Reserved.

392H 913 IA32_PERF_GLOBAL_INUSE See Table 2-2.

3F7H 1015 MSR_PEBS_FRONTEND Thread FrontEnd Precise Event Condition Select (R/W)

2:0 Event Code Select

3 Reserved.

4 Event Code Select High

7:5 Reserved.

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

63:23 Reserved

500H 1280 IA32_SGX_SVN_STATUS Thread Status and SVN Threshold of SGX Support for ACM (RO).

0 Lock. See Section 41.11.3, “Interactions with Authenticated Code
Modules (ACMs)”

15:1 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-252 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23:16 SGX_SVN_SINIT. See Section 41.11.3, “Interactions with
Authenticated Code Modules (ACMs)”

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Thread Trace Output Base Register (R/W). See Table 2-2.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Thread Trace Output Mask Pointers Register (R/W). See Table 2-2.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved. MBZ

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-253

MODEL-SPECIFIC REGISTERS (MSRS)

48:32 PacketByteCnt

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH Thread Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Thread Region 0 Start Address (R/W)

63:0 See Table 2-2.

581H 1409 IA32_RTIT_ADDR0_B Thread Region 0 End Address (R/W)

63:0 See Table 2-2.

582H 1410 IA32_RTIT_ADDR1_A Thread Region 1 Start Address (R/W)

63:0 See Table 2-2.

583H 1411 IA32_RTIT_ADDR1_B Thread Region 1 End Address (R/W)

63:0 See Table 2-2.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

64DH 1613 MSR_PLATFORM_ENERGY_
COUNTER

Platform* Platform Energy Counter. (R/O).

This MSR is valid only if both platform vendor hardware
implementation and BIOS enablement support it. This MSR will read
0 if not valid.

31:0 Total energy consumed by all devices in the platform that receive
power from integrated power delivery mechanism, Included
platform devices are processor cores, SOC, memory, add-on or
peripheral devices that get powered directly from the platform
power delivery means. The energy units are specified in the
MSR_RAPL_POWER_UNIT.Enery_Status_Unit.

63:32 Reserved.

64EH 1614 MSR_PPERF Thread Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

64FH 1615 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-254 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

4 Residency State Regulation Status (R0)

When set, frequency is reduced below the operating system
request due to residency state regulation limit.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced below the operating system
request due to Running Average Thermal Limit (RATL).

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from a processor Voltage Regulator
(VR).

7 VR Therm Design Current Status (R0)

When set, frequency is reduced below the operating system
request due to VR thermal design current limit.

8 Other Status (R0)

When set, frequency is reduced below the operating system
request due to electrical or other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package/platform-level power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package/platform-level power limiting PL2/PL3.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-255

MODEL-SPECIFIC REGISTERS (MSRS)

20 Residency State Regulation Log

When set, indicates that the Residency State Regulation Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR TDC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24 Other Log

When set, indicates that the Other Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package or Platform Level PL1 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package or Platform Level PL2/PL3
Power Limiting Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

652H 1618 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-256 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 PKG_Cx_Monitor.

Configures Package Cx state threshold for
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1619 MSR_CORE_HDC_

RESIDENCY

Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt.

655H 1621 MSR_PKG_HDC_SHALLOW_
RESIDENCY

Package Accumulate the cycles the package was in C2 state and at least one
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt.

656H 1622 MSR_PKG_HDC_DEEP_

RESIDENCY

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt.

658H 1624 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is
weighted by the number of processor cores in the package that
reside in C0. If N cores are simultaneously in C0, then each cycle the
counter increments by N.

659H 1625 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor core in the package is in C0.

65AH 1626 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor graphic device’s compute engines are in C0.

65BH 1627 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if at least one compute engine of the processor graphics is in
C0 and at least one processor core in the package is also in C0.

65CH 1628 MSR_PLATFORM_POWER_L
IMIT

Platform* Platform Power Limit Control (R/W-L)

Allows platform BIOS to limit power consumption of the platform
devices to the specified values. The Long Duration power
consumption is specified via Platform_Power_Limit_1 and
Platform_Power_Limit_1_Time. The Short Duration power
consumption limit is specified via the Platform_Power_Limit_2 with
duration chosen by the processor.

The processor implements an exponential-weighted algorithm in
the placement of the time windows.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-257

MODEL-SPECIFIC REGISTERS (MSRS)

14:0 Platform Power Limit #1.

Average Power limit value which the platform must not exceed
over a time window as specified by Power_Limit_1_TIME field.

The default value is the Thermal Design Power (TDP) and varies
with product skus. The unit is specified in MSR_RAPLPOWER_UNIT.

15 Enable Platform Power Limit #1.

When set, enables the processor to apply control policy such that
the platform power does not exceed Platform Power limit #1 over
the time window specified by Power Limit #1 Time Window.

16 Platform Clamping Limitation #1.

When set, allows the processor to go below the OS requested P
states in order to maintain the power below specified Platform
Power Limit #1 value.

This bit is writeable only when CPUID (EAX=6):EAX[4] is set.

23:17 Time Window for Platform Power Limit #1.

Specifies the duration of the time window over which Platform
Power Limit 1 value should be maintained for sustained long
duration. This field is made up of two numbers from the following
equation:

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17].

The maximum allowed value in this field is defined in
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, The unit is specified in
MSR_RAPLPOWER_UNIT[Time Unit].

31:24 Reserved

46:32 Platform Power Limit #2.

Average Power limit value which the platform must not exceed
over the Short Duration time window chosen by the processor.

The recommended default value is 1.25 times the Long Duration
Power Limit (i.e. Platform Power Limit # 1)

47 Enable Platform Power Limit #2.

When set, enables the processor to apply control policy such that
the platform power does not exceed Platform Power limit #2 over
the Short Duration time window.

48 Platform Clamping Limitation #2.

When set, allows the processor to go below the OS requested P
states in order to maintain the power below specified Platform
Power Limit #2 value.

62:49 Reserved

63 Lock. Setting this bit will lock all other bits of this MSR until system
RESET.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-258 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-259

MODEL-SPECIFIC REGISTERS (MSRS)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of external
PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced due to running average thermal
limit.

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert from a
processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or other
constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced due to package/platform-level
power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced due to package/platform-level
power limiting PL2/PL3.

12 Inefficient Operation Status (R0)

When set, processor graphics frequency is operating below target
frequency.

15:13 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20:18 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-260 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24 Other Log

When set, indicates that the OTHER Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package/Platform Level PL1 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level PL2 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Inefficient Operation Log

When set, indicates that the Inefficient Operation Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:29 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of external
PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-261

MODEL-SPECIFIC REGISTERS (MSRS)

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced due to running average thermal
limit.

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert from a
processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or other
constraints.

9 Reserved.

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced due to package/Platform-level
power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced due to package/Platform-level
power limiting PL2/PL3.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20:18 Reserved.

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-262 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

24 Other Log

When set, indicates that the OTHER Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package/Platform Level PL1 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level PL2 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:28 Reserved.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-263

MODEL-SPECIFIC REGISTERS (MSRS)

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

31:24 Energy/Performance Preference (R/W).

41:32 Activity Window (R/W).

42 Package Control (R/W).

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

D90H 3472 IA32_BNDCFGS Thread See Table 2-2.

DA0H 3488 IA32_XSS Thread See Table 2-2.

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

DC0H 3520 MSR_LBR_INFO_0 Thread Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the last branch
record stack. This part of the stack contains flag, TSX-related and
elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9.1, “LBR Stack.”

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-264 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DC1H 3521 MSR_LBR_INFO_1 Thread Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC2H 3522 MSR_LBR_INFO_2 Thread Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC3H 3523 MSR_LBR_INFO_3 Thread Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC4H 3524 MSR_LBR_INFO_4 Thread Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC5H 3525 MSR_LBR_INFO_5 Thread Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC6H 3526 MSR_LBR_INFO_6 Thread Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC7H 3527 MSR_LBR_INFO_7 Thread Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC8H 3528 MSR_LBR_INFO_8 Thread Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC9H 3529 MSR_LBR_INFO_9 Thread Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCAH 3530 MSR_LBR_INFO_10 Thread Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCBH 3531 MSR_LBR_INFO_11 Thread Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCCH 3532 MSR_LBR_INFO_12 Thread Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCDH 3533 MSR_LBR_INFO_13 Thread Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCEH 3534 MSR_LBR_INFO_14 Thread Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCFH 3535 MSR_LBR_INFO_15 Thread Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD0H 3536 MSR_LBR_INFO_16 Thread Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD1H 3537 MSR_LBR_INFO_17 Thread Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD2H 3538 MSR_LBR_INFO_18 Thread Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD3H 3539 MSR_LBR_INFO_19 Thread Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-265

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-39 lists the MSRs of uncore PMU for Intel processors with CPUID DisplayFamily_DisplayModel signatures of
06_4EH, 06_5EH, 06_8EH, 06_9EH, and 06_66H.

DD4H 3520 MSR_LBR_INFO_20 Thread Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD5H 3521 MSR_LBR_INFO_21 Thread Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD6H 3522 MSR_LBR_INFO_22 Thread Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD7H 3523 MSR_LBR_INFO_23 Thread Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD8H 3524 MSR_LBR_INFO_24 Thread Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD9H 3525 MSR_LBR_INFO_25 Thread Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDAH 3526 MSR_LBR_INFO_26 Thread Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDBH 3527 MSR_LBR_INFO_27 Thread Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDCH 3528 MSR_LBR_INFO_28 Thread Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDDH 3529 MSR_LBR_INFO_29 Thread Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDEH 3530 MSR_LBR_INFO_30 Thread Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDFH 3531 MSR_LBR_INFO_31 Thread Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 2-39. Uncore PMU MSRs Supported by 6th Generation Intel® Core™ Processors, 7th Generation Intel® Core™
Processors, and Future Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-266 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

43:0 Current count

63:44 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Specifies the number of C-Box units with programmable
counters (including processor cores and processor graphics),

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1825 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

Table 2-39. Uncore PMU MSRs Supported by 6th Generation Intel® Core™ Processors, 7th Generation Intel® Core™
Processors, and Future Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-267

MODEL-SPECIFIC REGISTERS (MSRS)

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

E01H 3585 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Slice 0 select

1 Slice 1 select

2 Slice 2 select

3 Slice 3 select

4 Slice 4select

18:5 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

E02H 3586 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

Table 2-39. Uncore PMU MSRs Supported by 6th Generation Intel® Core™ Processors, 7th Generation Intel® Core™
Processors, and Future Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-268 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.1 MSRs Specific to 7th Generation Intel® Core™ Processors based on Kaby Lake
Microarchitecture

Table 2-41 lists additional MSRs for 7th generation Intel Core processors with a CPUID DisplayFamily_DisplayModel
signature of 06_8EH and 06_9EH. For an MSR listed in Table 2-41 that also appears in the model-specific tables of
prior generations, Table 2-41 supersedes prior generation tables.

Table 2-40. Additional MSRs Supported by 7th Generation Intel® Core™ Processors Based on Kaby Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

80H 128 MSR_TRACE_HUB_STH_ACPIB
AR_BASE

Package NPK address used by AET messages (R/W)

0 Lock Bit

If set then this MSR cannot be re-written anymore. Lock bit has
to be set in order for the AET packets to be directed to NPK
MMIO.

17:1 Reserved.

63:18 ACPIBAR_BASE_ADDRESS

AET target address in NPK MMIO space.

1F4H 500 MSR_PRMRR_PHYS_BASE Core Processor Reserved Memory Range Register - Physical Base
Control Register (R/W)

2:0 MemType

PRMRR BASE MemType.

11:3 Reserved.

45:12 Base

PRMRR Base Address.

63:46 Reserved.

1F5H 501 MSR_PRMRR_PHYS_MASK Core Processor Reserved Memory Range Register - Physical Mask
Control Register (R/W)

9:0 Reserved.

10 Lock

Lock bit for the PRMRR.

11 VLD

Enable bit for the PRMRR.

45:12 Mask

PRMRR MASK bits.

63:46 Reserved.

1FBH 507 MSR_PRMRR_VALID_CONFIG Core Valid PRMRR Configurations (R/W)

0 1M supported MEE size.

4:1 Reserved.

5 32M supported MEE size.

6 64M supported MEE size.

7 128M supported MEE size.

Vol. 4 2-269

MODEL-SPECIFIC REGISTERS (MSRS)

31:8 Reserved.

2F4H 756 MSR_UNCORE_PRMRR_PHYS_B
ASE

Package (R/W)

The PRMRR range is used to protect Xucode memory from
unauthorized reads and writes. Any IO access to this range is
aborted. This register controls the location of the PRMRR range
by indicating its starting address. It functions in tandem with the
PRMRR mask register.

11:0 Reserved.

38:12 Range Base

This field corresponds to bits 38:12 of the base address memory
range which is allocated to PRMRR memory.

63:39 Reserved.

2F5H 757 MSR_UNCORE_PRMRR_PHYS_
MASK

Package (R/W)

This register controls the size of the PRMRR range by indicating
which address bits must match the PRMRR base register value.

9:0 Reserved.

10 Lock

Setting this bit locks all writeable settings in this register,
including itself.

11 Range_En

Indicates whether the PRMRR range is enabled and valid.

38:12 Range_Mask

This field indicates which address bits must match PRMRR base
in order to qualify as an PRMRR access.

63:39 Reserved.

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_Ratio

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

63:15 Reserved.

Table 2-40. Additional MSRs Supported by 7th Generation Intel® Core™ Processors Based on Kaby Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-270 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.2 MSRs Specific to Future Intel® Core™ Processors
Table 2-41 lists additional MSRs for Future Intel Core processors with a CPUID DisplayFamily_DisplayModel signature
of 06_66H. For an MSR listed in Table 2-41 that also appears in the model-specific tables of prior generations, Table
2-41 supersede prior generation tables.

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration of SGX
Launch Control via IA32_SGXLEPUBKEYHASHn MSR.

Available only if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.

18 SGX global functions enable (R/WL)

63:21 Reserved.

350H 848 MSR_BR_DETECT_CTRL Branch Monitoring Global Control (R/W)

0 EnMonitoring

Global enable for branch monitoring.

1 EnExcept

Enable branch monitoring event signaling on threshold trip.

The branch monitoring event handler is signaled via the existing
PMI signaling mechanism as programmed from the corresponding
local APIC LVT entry.

2 EnLBRFrz

Enable LBR freeze on threshold trip. This will result in causing
the LBR frozen bit 58 to be set in IA32_PERF_GLOBAL_STATUS
when a triggering condition occurs and this bit is enabled.

3 DisableInGuest

When set to ‘1’, branch monitoring, event triggering and LBR
freeze actions are disabled when operating at VMX non-root
operation.

7:4 Reserved.

17:8 WindowSize

Window size defined by WindowCntSel. Values 0 – 1023 are
supported.

23:18 Reserved.

Vol. 4 2-271

MODEL-SPECIFIC REGISTERS (MSRS)

25:24 WindowCntSel

Window event count select:

‘00 = Instructions retired.

‘01 = Branch instructions retired

‘10 = Return instructions retired.

‘11 = Indirect branch instructions retired.

26 CntAndMode

When set to ‘1’, overall branch monitoring event triggering
condition is true only if all enabled counters’ threshold conditions
are true.

When ‘0’, the threshold tripping condition is true if any enabled
counters’ threshold is true.

63:27 Reserved.

351H 849 MSR_BR_DETECT_STATUS Branch Monitoring Global Status (R/W)

0 Branch Monitoring Event Signaled

When set to '1', Branch Monitoring event signaling is blocked until
this bit is cleared by software.

1 LBRsValid

This status bit is set to ‘1’ if the LBR state is considered valid for
sampling by branch monitoring software.

7:2 Reserved.

8 CntrHit0

Branch monitoring counter #0 threshold hit. This status bit is
sticky and once set requires clearing by software. Counter
operation continues independent of the state of the bit.

9 CntrHit1

Branch monitoring counter #1 threshold hit. This status bit is
sticky and once set requires clearing by software. Counter
operation continues independent of the state of the bit.

15:10 Reserved. Reserved for additional branch monitoring counters
threshold hit status.

25:16 CountWindow

The current value of window counter. The count value is frozen
on a valid branch monitoring triggering condition. This is an 10-
bit unsigned value.

31:26 Reserved. Reserved for future extension of CountWindow.

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-272 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

39:32 Count0

The current value of counter 0 updated after each occurrence of
the event being counted. The count value is frozen on a valid
branch monitoring triggering condition (in which case CntrHit0
will also be set). This is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate and freeze at
maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 0x7F
(+127) and minimum value 0x80 (-128).

47:40 Count1

The current value of counter 1 updated after each occurrence of
the event being counted. The count value is frozen on a valid
branch monitoring triggering condition (in which case CntrHit1
will also be set). This is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate and freeze at
maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 0x7F
(+127) and minimum value 0x80 (-128).

63:48 Reserved.

354H
-

355H

852
-

853

MSR_BR_DETECT_COUNTER_C
ONFIG_i

Branch Monitoring Detect Counter Configuration (R/W)

0 CntrEn

Enable counter.

7:1 CntrEvSel

Event select (other values #GP)

‘0000000 = RETs.

‘0000001 = RET-CALL bias.

‘0000010 = RET mispredicts.

‘0000011 = Branch (all) mispredicts.

‘0000100 = Indirect branch mispredicts.

‘0000101 = Far branch instructions.

14:8 CntrThreshold

Threshold (an unsigned value of 0 to 127 supported). The value
0 of counter threshold will result in event signaled after every
instruction. #GP if threshold is < 2.

15 MispredEventCnt

Mispredict events counting behavior:

‘0 = Mispredict events are counted in a window.

‘1 = Mispredict events are counted based on a consecutive
occurrence. CntrThreshold is treated as # of consecutive
mispredicts. This control bit only applies to events specified by
CntrEvSel that involve a prediction (0000010, 0000011,
0000100). Setting this bit for other events is ignored.

63:16 Reserved.

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-273

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.3 MSRs Specific to Intel® Xeon® Processor Scalable Family
Intel® Xeon® Processor Scalable Family (CPUID DisplayFamily_DisplayModel = 06_55H) support the MSRs listed in
Table 2-42.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Package C3 Residency Counter (R/O)

63:0 Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_Ratio

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

63:15 Reserved.

660H 1632 MSR_CORE_C1_RESIDENCY Core Core C1 Residency Counter (R/O)

63:0 Value since last reset for the Core C1 residency. Counter rate is
the Max Non-Turbo frequency (same as TSC). This counter count
in case that both of the core's thread are in idle state and at least
one of the core's thread residency in C1 state or in one of its sub
state. The counter is updated only after core C state exit. Note:
Always reads 0 if core C1 is unsupported. A value of zero
indicates that this processor does not support core C1 or never
entered core C1 level state.

662H 1634 MSR_CORE_C3_RESIDENCY Core Core C3 Residency Counter (R/O)

63:0 Will always return 0.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

18 SGX global functions enable (R/WL)

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-274 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

20 LMCE_ON (R/WL)

63:21 Reserved.

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

See Table 2-25.

1 Enable_PPIN (R/W)

See Table 2-25.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-25.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

See Table 2-25.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

See Table 2-25.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

See Table 2-25.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

See Table 2-25.

30 Package Programmable TJ OFFSET (R/O)

See Table 2-25.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

See Table 2-25.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-275

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to MWAIT(C6)

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-276 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

8 Thermal threshold #2 status (RO)

See Table 2-2.

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

12 Current Limit status (RO)

See Table 2-2.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-277

MODEL-SPECIFIC REGISTERS (MSRS)

13 Current Limit log (R/WC0)

See Table 2-2.

14 Cross Domain Limit status (RO)

See Table 2-2.

15 Cross Domain Limit log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (RO)

See Table 2-25.

27:24 TCC Activation Offset (R/W)

See Table 2-25.

63:28 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package This register defines the ratio limits. RATIO[0:7] must be populated
in ascending order. RATIO[i+1] must be less than or equal to
RATIO[i]. Entries with RATIO[i] will be ignored. If any of the rules
above are broken, the configuration is silently rejected. If the
programmed ratio is:

• Above the fused ratio for that core count, it will be clipped to the
fuse limits (assuming !OC).

• Below the min supported ratio, it will be clipped.

7:0 RATIO_0

Defines ratio limits.

15:8 RATIO_1

Defines ratio limits.

23:16 RATIO_2

Defines ratio limits.

31:24 RATIO_3

Defines ratio limits.

39:32 RATIO_4

Defines ratio limits.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-278 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 RATIO_5

Defines ratio limits.

55:48 RATIO_6

Defines ratio limits.

63:56 RATIO_7

Defines ratio limits.

1AEH 430 MSR_TURBO_RATIO_LIMIT_
CORES

Package This register defines the active core ranges for each frequency
point. NUMCORE[0:7] must be populated in ascending order.
NUMCORE[i+1] must be greater than NUMCORE[i]. Entries with
NUMCORE[i] == 0 will be ignored. The last valid entry must have
NUMCORE >= the number of cores in the SKU. If any of the rules
above are broken, the configuration is silently rejected.

7:0 NUMCORE_0

Defines the active core ranges for each frequency point.

15:8 NUMCORE_1

Defines the active core ranges for each frequency point.

23:16 NUMCORE_2

Defines the active core ranges for each frequency point.

31:24 NUMCORE_3

Defines the active core ranges for each frequency point.

39:32 NUMCORE_4

Defines the active core ranges for each frequency point.

47:40 NUMCORE_5

Defines the active core ranges for each frequency point.

55:48 NUMCORE_6

Defines the active core ranges for each frequency point.

63:56 NUMCORE_7

Defines the active core ranges for each frequency point.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-279

MODEL-SPECIFIC REGISTERS (MSRS)

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC0 reports MC error from the IFU module.
401H 1025 IA32_MC0_STATUS Core

402H 1026 IA32_MC0_ADDR Core

403H 1027 IA32_MC0_MISC Core

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC1 reports MC error from the DCU module.
405H 1029 IA32_MC1_STATUS Core

406H 1030 IA32_MC1_ADDR Core

407H 1031 IA32_MC1_MISC Core

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC2 reports MC error from the DTLB module.
409H 1033 IA32_MC2_STATUS Core

40AH 1034 IA32_MC2_ADDR Core

40BH 1035 IA32_MC2_MISC Core

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC3 reports MC error from the MLC module.
40DH 1037 IA32_MC3_STATUS Core

40EH 1038 IA32_MC3_ADDR Core

40FH 1039 IA32_MC3_MISC Core

410H 1040 IA32_MC4_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC4 reports MC error from the PCU module.
411H 1041 IA32_MC4_STATUS Package

412H 1042 IA32_MC4_ADDR Package

413H 1043 IA32_MC4_MISC Package

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from a link interconnect module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-280 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the M2M 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the M2M 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA
425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA.
429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA.
42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC12 report MC error from each channel of a link
interconnect module.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-281

MODEL-SPECIFIC REGISTERS (MSRS)

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a link interconnect module.
44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

Energy consumed by DRAM devices

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable
DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-282 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x00: no monitoring

0x01: L3 occupancy monitoring

0x02: Total memory bandwidth monitoring

0x03: Local memory bandwidth monitoring

All other encoding reserved

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

31:10 Reserved

51:32 COS (R/W).

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:19 CBM: Bit vector of available L3 ways for COS 0 enforcement

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:19 CBM: Bit vector of available L3 ways for COS 1 enforcement

63:20 Reserved

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-283

MODEL-SPECIFIC REGISTERS (MSRS)

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:19 CBM: Bit vector of available L3 ways for COS 2 enforcement

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L3 ways for COS 3 enforcement

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4

0:19 CBM: Bit vector of available L3 ways for COS 4 enforcement

63:20 Reserved

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5

0:19 CBM: Bit vector of available L3 ways for COS 5 enforcement

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6

0:19 CBM: Bit vector of available L3 ways for COS 6 enforcement

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7

0:19 CBM: Bit vector of available L3 ways for COS 7 enforcement

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8

0:19 CBM: Bit vector of available L3 ways for COS 8 enforcement

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9

0:19 CBM: Bit vector of available L3 ways for COS 9 enforcement

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=10

0:19 CBM: Bit vector of available L3 ways for COS 10 enforcement

63:20 Reserved

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-284 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.17 MSRS IN INTEL® XEON PHI™ PROCESSOR 3200/5200/7200 SERIES AND
FUTURE INTEL® XEON PHI™ PROCESSOR

Intel® Xeon Phi™ processor 3200, 5200, 7200 series, with CPUID DisplayFamily_DisplayModel signature 06_57H,
supports the MSR interfaces listed in Table 2-43. These processors are based on the Knights Landing microarchitec-
ture. Future Intel® Xeon Phi™ Processor, with CPUID DisplayFamily_DisplayModel signature 06_85H, supports the
MSR interfaces listed in Table 2-43 and Table 2-44. Some MSRs are shared between a pair of processor cores, the
scope is marked as module.

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=11

0:19 CBM: Bit vector of available L3 ways for COS 11 enforcement

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=12

0:19 CBM: Bit vector of available L3 ways for COS 12 enforcement

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=13

0:19 CBM: Bit vector of available L3 ways for COS 13 enforcement

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=14

0:19 CBM: Bit vector of available L3 ways for COS 14 enforcement

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=15

0:19 CBM: Bit vector of available L3 ways for COS 15 enforcement

63:20 Reserved

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.22, “MSRs in Pentium Processors.”

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-285

MODEL-SPECIFIC REGISTERS (MSRS)

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-286 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 THREAD Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Package C-State Configuration Control (R/W)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-287

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest C-state for the package. This feature does not
limit the processor core C-state. The power-on default value from
bit[2:0] of this register reports the deepest package C-state the
processor is capable to support when manufactured. It is
recommended that BIOS always read the power-on default value
reported from this bit field to determine the supported deepest C-
state on the processor and leave it as default without changing it.

000b - C0/C1 (No package C-state support)

001b - C2

010b - C6 (non retention)*

011b - C6 (Retention)*

100b - Reserved

101b - Reserved

110b - Reserved

111b - No package C-state limit. All C-States supported by the
processor are available.

Note: C6 retention mode provides more power saving than C6 non-
retention mode. Limiting the package to C6 non retention mode
does prevent the MSR_PKG_C6_RESIDENCY counter (MSR 3F9h)
from being incremented.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO registers at
MSR_PMG_IO_CAPTURE_BASE[15:0] to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (RO)

When set, locks bits [15:0] of this register for further writes until
the next reset occurs.

25 Reserved.

26 C1 State Auto Demotion Enable (R/W)

When set, processor will conditionally demote C3/C6/C7 requests
to C1 based on uncore auto-demote information.

27 Reserved.

28 C1 State Auto Undemotion Enable (R/W)

When set, enables Undemotion from Demoted C1.

29 PKG C-State Auto Demotion Enable (R/W)

When set, enables Package C state demotion.

63:30 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Tile Power Management IO Capture Base (R/W)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-288 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:0 LVL_2 Base Address (R/W)

Microcode will compare IO-read zone to this base address to
determine if an MWAIT(C2/3/4) needs to be issued instead of the
IO-read. Should be programmed to the chipset Plevel_2 IO address.

22:16 C-State Range (R/W)

The IO-port block size in which IO-redirection will be executed (0-
127). Should be programmed based on the number of LVLx
registers existing in the chipset.

63:23 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

140H 320 MISC_FEATURE_ENABLES Thread MISC_FEATURE_ENABLES

0 Reserved.

1 User Mode MONITOR and MWAIT (R/W)

If set to 1, the MONITOR and MWAIT instructions do not cause
invalid-opcode exceptions when executed with CPL > 0 or in
virtual-8086 mode. If MWAIT is executed when CPL > 0 or in
virtual-8086 mode, and if EAX indicates a C-state other than C0 or
C1, the instruction operates as if EAX indicated the C-state C1.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread See Table 2-2.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-289

MODEL-SPECIFIC REGISTERS (MSRS)

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

31:0 Bank Support (SMM-RO)

One bit per MCA bank. If the bit is set, that bank supports Enhanced
MCA (Default all 0; does not support EMCA).

55:32 Reserved.

56 Targeted SMI (SMM-RO)

Set if targeted SMI is supported.

57 SMM_CPU_SVRSTR (SMM-RO)

Set if SMM SRAM save/restore feature is supported.

58 SMM_CODE_ACCESS_CHK (SMM-RO)

Set if SMM code access check feature is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved.

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Package See Table 2-2.

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 2-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W)

See Table 2-2.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-290 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

1 Thermal status log (R/WC0)

2 PROTCHOT # or FORCEPR# status (RO)

3 PROTCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature status (RO)

5 Critical Temperature status log (R/WC0)

6 Thermal threshold #1 status (RO)

7 Thermal threshold #1 log (R/WC0)

8 Thermal threshold #2 status (RO)

9 Thermal threshold #2 log (R/WC0)

10 Power Limitation status (RO)

11 Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Digital Readout (RO)

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

31 Reading Valid (RO)

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

6:4 Reserved.

7 Performance Monitoring Available (R)

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

12 Processor Event Based Sampling Unavailable (RO)

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

18 ENABLE MONITOR FSM (R/W)

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

23 xTPR Message Disable (R/W)

33:24 Reserved.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-291

MODEL-SPECIFIC REGISTERS (MSRS)

34 XD Bit Disable (R/W)

37:35 Reserved.

38 Turbo Mode Disable (R/W)

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

29:24 Target Offset (R/W)

63:30 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher.

1 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher.

63:2 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores (RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under the maximum
ratio limit for group 0.

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active cores are not
more than the group 0 maximum core count.

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of additional cores
plus the cores in group 0, operates under the group 1 turbo max
ratio limit = “group 0 Max ratio limit” - “group ratio delta for group
1”.

23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of additional cores
plus all the cores in group 1, operates under the group 2 turbo max
ratio limit = “group 1 Max ratio limit” - “group ratio delta for group
2”.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-292 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 1.

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of additional cores
plus all the cores in group 2, operates under the group 3 turbo max
ratio limit = “group 2 Max ratio limit” - “group ratio delta for group
3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 2.

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of additional cores
plus all the cores in group 3, operates under the group 4 turbo max
ratio limit = “group 3 Max ratio limit” - “group ratio delta for group
4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 3.

52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of additional cores
plus all the cores in group 4, operates under the group 5 turbo max
ratio limit = “group 4 Max ratio limit” - “group ratio delta for group
5”.

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of additional cores
plus all the cores in group 5, operates under the group 6 turbo max
ratio limit = “group 5 Max ratio limit” - “group ratio delta for group
6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 2-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-293

MODEL-SPECIFIC REGISTERS (MSRS)

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

0 LBR

Setting this bit to 1 enables the processor to record a running trace
of the most recent branches taken by the processor in the LBR
stack.

1 BTF

Setting this bit to 1 enables the processor to treat EFLAGS.TF as
single-step on branches instead of single-step on instructions.

5:2 Reserved.

6 TR

Setting this bit to 1 enables branch trace messages to be sent.

7 BTS

Setting this bit enables branch trace messages (BTMs) to be logged
in a BTS buffer.

8 BTINT

When clear, BTMs are logged in a BTS buffer in circular fashion.
When this bit is set, an interrupt is generated by the BTS facility
when the BTS buffer is full.

9 BTS_OFF_OS

When set, BTS or BTM is skipped if CPL = 0.

10 BTS_OFF_USR

When set, BTS or BTM is skipped if CPL > 0.

11 FREEZE_LBRS_ON_PMI

When set, the LBR stack is frozen on a PMI request.

12 FREEZE_PERFMON_ON_PMI

When set, each ENABLE bit of the global counter control MSR are
frozen (address 3BFH) on a PMI request.

13 Reserved.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-294 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

14 FREEZE_WHILE_SMM_EN

When set, freezes perfmon and trace messages while in SMM.

31:15 Reserved.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A000
0

Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-295

MODEL-SPECIFIC REGISTERS (MSRS)

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Package See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATU
S

Thread See Table 2-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 2-2.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C3 Residency Counter. (R/O)

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter. (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter. (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Module C0 Residency Counter. (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter. (R/O)

3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 CORE C6 Residency Counter. (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-296 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C2 Residency Counter. (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-297

MODEL-SPECIFIC REGISTERS (MSRS)

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 2-24

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 2-24

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 2-24

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 2-24

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 2-24

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved.

6 VR Therm Alert Status (R0)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-298 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7 Reserved.

8 Electrical Design Point Status (R0)

63:9 Reserved.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 2-2

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-299

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-44 lists model-specific registers that are supported by future Intel® Xeon Phi™ Processors based on the
Knights Mill microarchitecture.

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERMA
L

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W) See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 2-2

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-300 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-44. Additional MSRs Supported by Future Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel
Signature 06_85H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

9BH 155 IA32_SMM_MONITOR_CTL Core SMM Monitor Configuration (R/W).

This MSR is readable only if VMX is enabled, and writeable only if
VMX is enabled and in SMM mode, and is used to configure the VMX
MSEG base address. See Table 2-2.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution Controls
(R/O)

See Table 2-2.

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based VM-
execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based

VM-execution Controls (R/O)

See Table 2-2.

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2.

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 2-2.

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based

VM-execution Flex Controls (R/O)

See Table 2-2.

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 2-2.

Vol. 4 2-301

MODEL-SPECIFIC REGISTERS (MSRS)

2.18 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 2-45 lists MSRs (architectural and model-specific) that are defined across processor generations based on
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily
encoding of 0FH, see Table 2-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs and

their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model

Availability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the
specified register address. The model encoding value of a processor can be queried using CPUID. See
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 2-2.

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 2-2.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3,
4, 6

Shared See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_
SIZE

3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3,
4, 6

Unique Time Stamp Counter

See Table 2-2.

On earlier processors, only the lower 32 bits are
writable. On any write to the lower 32 bits, the
upper 32 bits are cleared. For processor family
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3,
4, 6

Shared Platform ID (R)

See Table 2-2.

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3,
4, 6

Unique APIC Location and Status (R/W)

See Table 2-2. See Section 10.4.4, “Local APIC
Status and Location.”

Table 2-44. Additional MSRs Supported by Future Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel
Signature 06_85H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-302 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1)
or disabled (0) as set by the strapping of SMI#.
The value in this bit is written on the deassertion
of RESET#; the bit is set to 1 when the address
bus signal is asserted.

1 Execute BIST (R)

Indicates whether the execution of the BIST is
enabled (1) or disabled (0) as set by the strapping
of INIT#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for
the system bus is 1 (1) or up to 12 (0) as set by
the strapping of A7#. The value in this bit is
written on the deassertion of RESET#; the bit is
set to 1 when the address bus signal is asserted.

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled
(0) or disabled (1) as determined by the strapping
of A9#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled
(0) or disabled (1) as determined by the strapping
of A10#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

6:5 APIC Cluster ID (R)

Contains the logical APIC cluster ID value as set by
the strapping of A12# and A11#. The logical
cluster ID value is written into the field on the
deassertion of RESET#; the field is set to 1 when
the address bus signal is asserted.

7 Bus Park Disable (R)

Indicates whether bus park is enabled (0) or
disabled (1) as set by the strapping of A15#. The
value in this bit is written on the deassertion of
RESET#; the bit is set to 1 when the address bus
signal is asserted.

11:8 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-303

MODEL-SPECIFIC REGISTERS (MSRS)

13:12 Agent ID (R)

Contains the logical agent ID value as set by the
strapping of BR[3:0]. The logical ID value is
written into the field on the deassertion of
RESET#; the field is set to 1 when the address bus
signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Soft Power-On Configuration (R/W)

Enables and disables processor features.

0 RCNT/SCNT On Request Encoding Enable (R/W)

Controls the driving of RCNT/SCNT on the request
encoding. Set to enable (1); clear to disabled (0,
default).

1 Data Error Checking Disable (R/W)

Set to disable system data bus parity checking;
clear to enable parity checking.

2 Response Error Checking Disable (R/W)

Set to disable (default); clear to enable.

3 Address/Request Error Checking Disable (R/W)

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus
requests (default); clear to enable.

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal
errors (default); clear to enable.

6 BINIT# Driver Disable (R/W)

Set to disable BINIT# driver (default); clear to
enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according to
the MODEL value in the CPUID version
information. The following bit field layout applies
to Pentium 4 and Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current processor
frequency configuration.

15:0 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-304 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus
Frequency Ratio (R)

The processor core clock frequency to system bus
frequency ratio observed at the de-assertion of
the reset pin.

63:25 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R)

The bit field layout of this MSR varies according to
the MODEL value of the CPUID version
information. This bit field layout applies to
Pentium 4 and Xeon Processors with MODEL
encoding less than 2.

Indicates current processor frequency
configuration.

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-305

MODEL-SPECIFIC REGISTERS (MSRS)

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 2-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3,
4, 6

Shared BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3,
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 2-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3,
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3,
4, 6

Unique CS register target for CPL 0 code (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3,
4, 6

Unique Stack pointer for CPL 0 stack (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3,
4, 6

Unique CPL 0 code entry point (R/W)

See Table 2-2. See Section 5.8.7, “Performing Fast
Calls to System Procedures with the SYSENTER
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3,
4, 6

Unique Machine Check Capabilities (R)

See Table 2-2. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3,
4, 6

Unique Machine Check Status. (R)

See Table 2-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 2-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3,
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-306 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

181H 385 MSR_MCG_RBX 0, 1, 2, 3,
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3,
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3,
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3,
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 3,
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3,
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3,
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3,
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-307

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3,
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3,
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or
page fault occurred during DS normal operation.
The processors response is to shut down.

The bit is used as an aid for debugging DS
handling code. It is the responsibility of the user
(BIOS or operating system) to clear this bit for
normal operation.

63:1 Reserved.

18BH -
18FH

395 MSR_MCG_RESERVED1 -
MSR_MCG_RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 3,
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3,
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 3,
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-308 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3,
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3,
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3,
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3,
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3,
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-309

MODEL-SPECIFIC REGISTERS (MSRS)

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3,
4, 6

Unique Thermal Monitor Control (R/W)

See Table 2-2.

See Section 14.7.3, “Software Controlled Clock
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3,
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.7.2, “Thermal Monitor,” and see
Table 2-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3,
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.7.2, “Thermal Monitor,” and see
Table 2-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors: When read,
specifies the value of the target TM2 transition
last written. When set, it sets the next target
value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6 processors:
When read, specifies the value of the target TM2
transition last written. Writes may cause #GP
exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3,
4, 6

Shared Enable Miscellaneous Processor Features (R/W)

0 Fast-Strings Enable. See Table 2-2.

1 Reserved.

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.7.2, “Thermal Monitor,” and see
Table 2-2.

4 Split-Lock Disable

When set, the bit causes an #AC exception to be
issued instead of a split-lock cycle. Operating
systems that set this bit must align system
structures to avoid split-lock scenarios.

When the bit is clear (default), normal split-locks
are issued to the bus.

This debug feature is specific to the Pentium 4
processor.

5 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-310 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when
clear (default) the third-level cache is enabled.
This flag is reserved for processors that do not
have a third-level cache.

Note that the bit controls only the third-level
cache; and only if overall caching is enabled
through the CD flag of control register CR0, the
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the L3
Cache.”

7 Performance Monitoring Available (R)

See Table 2-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is
suppressed during a Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear
(default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W)

When set, interrupt reporting through the FERR#
pin is enabled; when clear, this interrupt reporting
function is disabled.

When this flag is set and the processor is in the
stop-clock state (STPCLK# is asserted), asserting
the FERR# pin signals to the processor that an
interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that the processor
should return to normal operation to handle the
interrupt.

This flag does not affect the normal operation of
the FERR# pin (to indicate an unmasked floating-
point error) when the STPCLK# pin is not
asserted.

11 Branch Trace Storage Unavailable
(BTS_UNAVILABLE) (R)

See Table 2-2.

When set, the processor does not support branch
trace storage (BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Processor Event Based
Sampling Unavailable (R)

See Table 2-2.

When set, the processor does not support
processor event-based sampling (PEBS); when
clear, PEBS is supported.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-311

MODEL-SPECIFIC REGISTERS (MSRS)

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2
mechanism is engaged. TM2 will reduce the bus to
core ratio and voltage according to the value last
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor
does not change the VID signals or the bus to core
ratio when the processor enters a thermal
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not alter
the contents of this bit location. The processor is
operating out of spec if both this bit and the TM1
bit are set to disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache
line of the 128-byte sector containing currently
required data. When set to 0, the processor
fetches both cache lines in the sector.

Single processor platforms should not set this bit.
Server platforms should set or clear this bit based
on platform performance observed in validation
and testing.

BIOS may contain a setup option that controls the
setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL (R/W)

See Table 2-2.

Setting this can cause unexpected behavior to
software that depends on the availability of CPUID
leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-312 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

24 L1 Data Cache Context Mode (R/W)

When set, the L1 data cache is placed in shared
mode; when clear (default), the cache is placed in
adaptive mode. This bit is only enabled for IA-32
processors that support Intel Hyper-Threading
Technology. See Section 11.5.6, “L1 Data Cache
Context Mode.”

When L1 is running in adaptive mode and CR3s
are identical, data in L1 is shared across logical
processors. Otherwise, L1 is not shared and cache
use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0
after executing CPUID with EAX = 1, the ability to
switch modes is not supported. BIOS must not
alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific
platform requirements. The details of the platform
requirements are listed in the respective data
sheets of the processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 17.13.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If IA-
32e mode is active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.13.3, “Last Exception Records.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-313

MODEL-SPECIFIC REGISTERS (MSRS)

31:0 From Linear IP

Linear address of the target of the last branch
instruction.

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3,
4, 6

Unique Debug Control (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced
section.

See Section 17.13.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 3,
4, 6

Unique Last Branch Record Stack TOS (R/O)

Contains an index (0-3 or 0-15) that points to the
top of the last branch record stack (that is, that
points the index of the MSR containing the most
recent branch record).

See Section 17.13.2, “LBR Stack for Processors
Based on Intel NetBurst® Microarchitecture”; and
addresses 1DBH-1DEH and 680H-68FH.

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/O)

One of four last branch record registers on the last
branch record stack. It contains pointers to the
source and destination instruction for one of the
last four branches, exceptions, or interrupts that
the processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-1DEH are
available only on family 0FH, models 0H-02H.
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

1DCH 477 MSR_LASTBRANCH_1 0, 1, 2 Unique Last Branch Record 1

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3,
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-314 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-315

MODEL-SPECIFIC REGISTERS (MSRS)

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 3,
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3,
4, 6

Shared Default Memory Types (R/W)

See Table 2-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-316 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30CH 780 MSR_IQ_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30DH 781 MSR_IQ_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30EH 782 MSR_IQ_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30FH 783 MSR_IQ_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-317

MODEL-SPECIFIC REGISTERS (MSRS)

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-318 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-319

MODEL-SPECIFIC REGISTERS (MSRS)

3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F0H 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3,
4, 6

Shared Processor Event Based Sampling (PEBS) (R/W)

Controls the enabling of processor event sampling
and replay tagging.

12:0 See Table 19-36.

23:13 Reserved.

24 UOP Tag

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.6.4.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is called ENABLE_PEBS in IA-32
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.6.4.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is reserved for IA-32 processors that do
not support Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3,
4, 6

Shared See Table 19-36.

400H 1024 IA32_MC0_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-320 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-321

MODEL-SPECIFIC REGISTERS (MSRS)

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC4_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC4_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-322 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-based
VM-execution Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 2-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see
Table 2-2.

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-entry
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see
Table 2-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see
Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 2-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see
Table 2-2.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-323

MODEL-SPECIFIC REGISTERS (MSRS)

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 2-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3,
4, 6

Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (680H-68FH). This
part of the stack contains pointers to the source
instruction for one of the last 16 branches,
exceptions, or interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not
available in processor releases before family 0FH,
model 03H. These MSRs replace MSRs previously
located at 1DBH-1DEH.which performed the same
function for early releases.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-324 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (6C0H-6CFH). This
part of the stack contains pointers to the
destination instruction for one of the last 16
branches, exceptions, or interrupts that the
processor took.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-325

MODEL-SPECIFIC REGISTERS (MSRS)

2.18.1 MSRs Unique to Intel® Xeon® Processor MP with L3 Cache
The MSRs listed in Table 2-46 apply to Intel® Xeon® Processor MP with up to 8MB level three cache. These proces-
sors can be detected by enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as
input) to detect the presence of the third level cache, and with CPUID reporting family encoding 0FH, model
encoding 3 or 4 (see CPUID instruction for more details).

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 2-2.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-326 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

The MSRs listed in Table 2-47 apply to Intel® Xeon® Processor 7100 series. These processors can be detected by
enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the
presence of the third level cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID
instruction for more details.). The performance monitoring MSRs listed in Table 2-47 are shared between logical
processors in the same core, but are replicated for each core.

Table 2-46. MSRs Unique to 64-bit Intel® Xeon® Processor MP with
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control and Counter
Register (R/W)

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control and Counter
Register (R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control and Counter
Register (R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control Register
(R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event Counter Register
(R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

Vol. 4 2-327

MODEL-SPECIFIC REGISTERS (MSRS)

2.19 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and Dual-core Intel Xeon processor
LV are listed in Table 2-48. The column “Shared/Unique” applies to Intel Core Duo processor. “Unique” means each
processor core has a separate MSR, or a bit field in an MSR governs only a core independently. “Shared” means the
MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 2-47. MSRs Unique to Intel® Xeon® Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_CTL0 6 Shared GBUSQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CDH MSR_EMON_L3_CTR_CTL1 6 Shared GBUSQ Event Control and Counter
Register (R/W)

107CEH MSR_EMON_L3_CTR_CTL2 6 Shared GSNPQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CFH MSR_EMON_L3_CTR_CTL3 6 Shared GSNPQ Event Control and Counter
Register (R/W)

107D0H MSR_EMON_L3_CTR_CTL4 6 Shared FSB Event Control and Counter Register
(R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107D1H MSR_EMON_L3_CTR_CTL5 6 Shared FSB Event Control and Counter Register
(R/W)

107D2H MSR_EMON_L3_CTR_CTL6 6 Shared FSB Event Control and Counter Register
(R/W)

107D3H MSR_EMON_L3_CTR_CTL7 6 Shared FSB Event Control and Counter Register
(R/W)

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Section 2.22, “MSRs in Pentium Processors,” and see Table 2-2.

1H 1 P5_MC_TYPE Unique See Section 2.22, “MSRs in Pentium Processors,” and see Table 2-2.

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and see Table 2-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

2-328 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot”
information for the processor and the proper microcode update to
load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and see
Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-329

MODEL-SPECIFIC REGISTERS (MSRS)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in IA-32 Processor (R/W)

See Table 2-2.

40H 64 MSR_LASTBRANCH_0 Unique Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record
stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold the ‘to’
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_LASTBRANCH_1 Unique Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Unique Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Unique Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Unique Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Unique Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Unique Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Unique Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance counter register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed (RO)

This field indicates the scaleable bus clock speed:

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-330 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 101B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count. (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11EH 281 MSR_BBL_CR_CTL3 Shared Control register 3.

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If this bit is
cleared, the program cannot be reliably restarted.

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-331

MODEL-SPECIFIC REGISTERS (MSRS)

1 EIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been
generated. If a second machine check is detected while this bit is
still set, the processor enters a shutdown state. Software should
write this bit to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation (R/W)

See Table 2-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features

(R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 2-2.

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-332 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9:8 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Reserved.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing
CPUID with EAX = 1, then this feature is not supported and BIOS
must not alter the contents of this bit location. The processor is
operating out of spec if both this bit and the TM1 bit are set to
disabled states.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Reserved.

22 Shared Limit CPUID Maxval (R/W)

See Table 2-2.

Setting this bit may cause behavior in software that depends on
the availability of CPUID leaves greater than 2.

33:23 Reserved.

34 Shared XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-333

MODEL-SPECIFIC REGISTERS (MSRS)

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

Controls how several debug features are used. Bit definitions are
discussed in Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 MTRRphysBase0 Unique Memory Type Range Registers

201H 513 MTRRphysMask0 Unique Memory Type Range Registers

202H 514 MTRRphysBase1 Unique Memory Type Range Registers

203H 515 MTRRphysMask1 Unique Memory Type Range Registers

204H 516 MTRRphysBase2 Unique Memory Type Range Registers

205H 517 MTRRphysMask2 Unique Memory Type Range Registers

206H 518 MTRRphysBase3 Unique Memory Type Range Registers

207H 519 MTRRphysMask3 Unique Memory Type Range Registers

208H 520 MTRRphysBase4 Unique Memory Type Range Registers

209H 521 MTRRphysMask4 Unique Memory Type Range Registers

20AH 522 MTRRphysBase5 Unique Memory Type Range Registers

20BH 523 MTRRphysMask5 Unique Memory Type Range Registers

20CH 524 MTRRphysBase6 Unique Memory Type Range Registers

20DH 525 MTRRphysMask6 Unique Memory Type Range Registers

20EH 526 MTRRphysBase7 Unique Memory Type Range Registers

20FH 527 MTRRphysMask7 Unique Memory Type Range Registers

250H 592 MTRRfix64K_00000 Unique Memory Type Range Registers

258H 600 MTRRfix16K_80000 Unique Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Unique Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Unique Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Unique Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Unique Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Unique Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Unique Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Unique Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Unique Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Unique Memory Type Range Registers

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-334 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 2-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

414H 1044 MSR_MC5_CTL Unique Machine Check Error Reporting Register - controls signaling of #MC
for errors produced by a particular hardware unit (or group of
hardware units).

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-335

MODEL-SPECIFIC REGISTERS (MSRS)

415H 1045 MSR_MC5_STATUS Unique Machine Check Error Reporting Register - contains information
related to a machine-check error if its VAL (valid) flag is set.
Software is responsible for clearing IA32_MCi_STATUS MSRs by
explicitly writing 0s to them; writing 1s to them causes a general-
protection exception.

416H 1046 MSR_MC5_ADDR Unique Machine Check Error Reporting Register - contains the address of
the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is
set.

417H 1047 MSR_MC5_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-336 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.20 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those described in Section 2.21 for P6
family processors. The following table describes new MSRs and MSRs whose behavior has changed on the Pentium
M processor.

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 2-2.

10:0 Reserved.

11 Execute Disable Bit Enable

63:12 Reserved.

Table 2-49. MSRs in Pentium M Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 2.22, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 2.22, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_COUNTER See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot” information
for the processor and the proper microcode update to load.

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-337

MODEL-SPECIFIC REGISTERS (MSRS)

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-338 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits
31-0 hold the ‘from’ address and bits 63-32 hold the to address.

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0.

119H 281 MSR_BBL_CR_CTL Control register

Used to program L2 commands to be issued via cache configuration
accesses mechanism. Also receives L2 lookup response.

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3 Control register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-339

MODEL-SPECIFIC REGISTERS (MSRS)

5 ECC Check Enable (RO)

This bit enables ECC checking on the cache data bus. ECC is always
generated on write cycles.

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the cache data bus is
always enabled.

7:6 Reserved.

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP Read-only register that provides information about the machine-check
architecture of the processor.

7:0 Count (RO)

Indicates the number of hardware unit error reporting banks available in
the processor.

8 IA32_MCG_CTL Present (RO)

1 = Indicates that the processor implements the MSR_MCG_CTL
register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check was
generated) can be used to restart the program. If this bit is cleared, the
program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check was
generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been generated. If a
second machine check is detected while this bit is still set, the processor
enters a shutdown state. Software should write this bit to 0 after
processing a machine check exception.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-340 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:3 Reserved.

198H 408 IA32_PERF_STATUS See Table 2-2.

199H 409 IA32_PERF_CTL See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation (R/W).

See Table 2-2.

See Section 14.7.3, “Software Controlled Clock Modulation.”

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Thermal Monitor Status (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the
stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no
effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

1 = Setting this bit enables the thermal control circuit (TCC) portion of
the Intel Thermal Monitor feature. This allows processor clocks to
be automatically modulated based on the processor's thermal
sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable bit determines if the
thermal control circuit (TCC) will be activated when the processor's
internal thermal sensor determines the processor is about to exceed its
maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will
be forced to a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control
circuit enable bit.

6:4 Reserved.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-341

MODEL-SPECIFIC REGISTERS (MSRS)

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch trace storage (BTS)
0 = BTS is supported

12 Processor Event Based Sampling Unavailable (RO)

1 = Processor does not support processor event based sampling
(PEBS);

0 = PEBS is supported.
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled.
On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional
messages that allow the processor to inform the chipset of its priority.
The default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the most
recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control (R/W)

Controls how several debug features are used. Bit definitions are
discussed in the referenced section.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors).”

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-342 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch instruction
that the processor executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last
Exception MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last
Exception MSRs.”

2FFH 767 IA32_MTRR_DEF_TYPE Default Memory Types (R/W)

Sets the memory type for the regions of physical memory that are not
mapped by the MTRRs.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”.

The IA32_MC0_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC0_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC1_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-343

MODEL-SPECIFIC REGISTERS (MSRS)

2.21 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available
only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in this
list have been designated as “architectural” and have had their names changed. See Table 2-2 for a list of the archi-
tectural MSRs.

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no
address if the ADDRV flag in the MSR_MC4_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no
address if the ADDRV flag in the MSR_MC3_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

See Table 2-2.

Points to the DS buffer management area, which is used to manage the
BTS and PEBS buffers. See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

Table 2-50. MSRs in the P6 Family Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 2.22, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 2.22, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID (R)

The operating system can use this MSR to determine “slot” information for
the processor and the proper microcode update to load.

49:0 Reserved.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-344 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

52:50 Platform Id (R)

Contains information concerning the intended platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable (R/W)

1 = Enabled
0 = Disabled

2 Response Error Checking Enable FRCERR Observation Enable (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable (R/W)

1 = Enabled
0 = Disabled

4 BERR# Enable for Initiator Bus Requests (R/W)

1 = Enabled
0 = Disabled

5 Reserved.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-345

MODEL-SPECIFIC REGISTERS (MSRS)

6 BERR# Driver Enable for Initiator Internal Errors (R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled (R)

1 = Enabled
0 = Disabled

9 Execute BIST (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled (R)

1 = Enabled
0 = Disabled

11 Reserved.

12 BINIT# Observation Enabled (R)

1 = Enabled
0 = Disabled

13 In Order Queue Depth (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID (R)

19:18 System Bus Frequency (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID (R)

25:22 Clock Frequency Ratio (R)

26 Low Power Mode Enable (R/W)

27 Clock Frequency Ratio

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-346 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29:0 Reserved.

30 Streaming Buffer Disable

31 Disable LOCK#

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88H 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and read from the L2

 89H 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and read from the L2

 8AH 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and read from the L2

8BH 139 BIOS_SIGN/BBL_CR_D3[63:0] BIOS Update Signature Register or Chunk 3 data register D[63:0]

Used to write to and read from the L2 depending on the usage model.

C1H 193 PerfCtr0 (PERFCTR0) Performance Counter Register

See Table 2-2.

C2H 194 PerfCtr1 (PERFCTR1) Performance Counter Register

See Table 2-2.

FEH 254 MTRRcap Memory Type Range Registers

 116H 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address (A31-A3) to L2 during
cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118H 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and read ECC to/from L2

 119H 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to be issued via cache
configuration accesses mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-347

MODEL-SPECIFIC REGISTERS (MSRS)

BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

 11AH 282 BBL_CR_TRIG Trigger register: used to initiate a cache configuration accesses access,
Write only with Data = 0.

 11BH 283 BBL_CR_BUSY Busy register: indicates when a cache configuration accesses L2 command
is in progress. D[0] = 1 = BUSY

11EH 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-348 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP Machine Check Global Control Register

17AH 378 MCG_STATUS Machine Check Error Reporting Register - contains information related to a
machine-check error if its VAL (valid) flag is set. Software is responsible
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

17BH 379 MCG_CTL Machine Check Error Reporting Register - controls signaling of #MC for
errors produced by a particular hardware unit (or group of hardware
units).

186H 390 PerfEvtSel0 (EVNTSEL0) Performance Event Select Register 0 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-349

MODEL-SPECIFIC REGISTERS (MSRS)

18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

22 ENABLE

Enables the counting of performance events in both counters

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

187H 391 PerfEvtSel1 (EVNTSEL1) Performance Event Select for Counter 1 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0

18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-350 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask)

1D9H 473 DEBUGCTLMSR Enables last branch, interrupt, and exception recording; taken branch
breakpoints; the breakpoint reporting pins; and trace messages. This
register can be written to using the WRMSR instruction, when operating
at privilege level 0 or when in real-address mode.

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP 32-bit register for recording the instruction pointers for the last branch,
interrupt, or exception that the processor took prior to a debug exception
being generated.

1DCH 476 LASTBRANCHTOIP 32-bit register for recording the instruction pointers for the last branch,
interrupt, or exception that the processor took prior to a debug exception
being generated.

1DDH 477 LASTINTFROMIP Last INT from IP

1DEH 478 LASTINTTOIP Last INT to IP

200H 512 MTRRphysBase0 Memory Type Range Registers

201H 513 MTRRphysMask0 Memory Type Range Registers

202H 514 MTRRphysBase1 Memory Type Range Registers

203H 515 MTRRphysMask1 Memory Type Range Registers

204H 516 MTRRphysBase2 Memory Type Range Registers

205H 517 MTRRphysMask2 Memory Type Range Registers

206H 518 MTRRphysBase3 Memory Type Range Registers

207H 519 MTRRphysMask3 Memory Type Range Registers

208H 520 MTRRphysBase4 Memory Type Range Registers

209H 521 MTRRphysMask4 Memory Type Range Registers

20AH 522 MTRRphysBase5 Memory Type Range Registers

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-351

MODEL-SPECIFIC REGISTERS (MSRS)

20BH 523 MTRRphysMask5 Memory Type Range Registers

20CH 524 MTRRphysBase6 Memory Type Range Registers

20DH 525 MTRRphysMask6 Memory Type Range Registers

20EH 526 MTRRphysBase7 Memory Type Range Registers

20FH 527 MTRRphysMask7 Memory Type Range Registers

250H 592 MTRRfix64K_00000 Memory Type Range Registers

258H 600 MTRRfix16K_80000 Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Memory Type Range Registers

2FFH 767 MTRRdefType Memory Type Range Registers

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL Machine Check Error Reporting Register - controls signaling of #MC for
errors produced by a particular hardware unit (or group of hardware
units).

401H 1025 MC0_STATUS Machine Check Error Reporting Register - contains information related to a
machine-check error if its VAL (valid) flag is set. Software is responsible
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is hardcoded to 1.)

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-352 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.22 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, P5_MC_TYPE, and TSC MSRs
(named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and IA32_TIME_STAMP_COUNTER in the Pentium 4 processor)
are architectural; that is, code that accesses these registers will run on Pentium 4 and P6 family processors without
generating exceptions (see Section 2.1, “Architectural MSRs”). The CESR, CTR0, and CTR1 MSRs are unique to
Pentium processors; code that accesses these registers will generate exceptions on Pentium 4 and P6 family
processors.

404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are
hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h) to

“1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled
until the processor is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency selected
is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB frequency
the BIOS may choose to use bit 11 to implement its own shutdown policy.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-353

MODEL-SPECIFIC REGISTERS (MSRS)

2.23 MSR INDEX
MSRs of recent processors are indexed here for convenience. IA32 MSRs are excluded from this index.

Table 2-51. MSRs in the Pentium Processor

Register
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”

11H 17 CESR See Section 18.6.9.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.6.9.3, “Events Counted.”

13H 19 CTR1 Section 18.6.9.3, “Events Counted.”

MSR Name and CPUID DisplayFamily_DisplayModel Location

MSR_ALF_ESCR0

0FH . See Table 2-45

MSR_ALF_ESCR1

0FH . See Table 2-45

MSR_ANY_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_ANY_GFXE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_B0_PMON_BOX_CTRL

06_2EH . See Table 2-16

MSR_B0_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_B0_PMON_BOX_STATUS

06_2EH . See Table 2-16

MSR_B0_PMON_CTR0

06_2EH . See Table 2-16

MSR_B0_PMON_CTR1

06_2EH . See Table 2-16

MSR_B0_PMON_CTR2

06_2EH . See Table 2-16

MSR_B0_PMON_CTR3

06_2EH . See Table 2-16

MSR_B0_PMON_EVNT_SEL0

06_2EH . See Table 2-16

MSR_B0_PMON_EVNT_SEL1

06_2EH . See Table 2-16

2-354 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_B0_PMON_EVNT_SEL2

06_2EH . See Table 2-16

MSR_B0_PMON_EVNT_SEL3

06_2EH . See Table 2-16

MSR_B0_PMON_MASK

06_2EH . See Table 2-16

MSR_B0_PMON_MATCH

06_2EH . See Table 2-16

MSR_B1_PMON_BOX_CTRL

06_2EH . See Table 2-16

MSR_B1_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_B1_PMON_BOX_STATUS

06_2EH . See Table 2-16

MSR_B1_PMON_CTR0

06_2EH . See Table 2-16

MSR_B1_PMON_CTR1

06_2EH . See Table 2-16

MSR_B1_PMON_CTR2

06_2EH . See Table 2-16

MSR_B1_PMON_CTR3

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL0

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL1

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL2

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL3

06_2EH . See Table 2-16

MSR_B1_PMON_MASK

06_2EH . See Table 2-16

MSR_B1_PMON_MATCH

06_2EH . See Table 2-16

MSR_BBL_CR_CTL

06_09H . See Table 2-49

MSR_BBL_CR_CTL3

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_0EH . See Table 2-48

06_09H . See Table 2-49

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-355

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_BPU_CCCR0

0FH . See Table 2-45

MSR_BPU_CCCR1

0FH . See Table 2-45

MSR_BPU_CCCR2

0FH . See Table 2-45

MSR_BPU_CCCR3

0FH . See Table 2-45

MSR_BPU_COUNTER0

0FH . See Table 2-45

MSR_BPU_COUNTER1

0FH . See Table 2-45

MSR_BPU_COUNTER2

0FH . See Table 2-45

MSR_BPU_COUNTER3

0FH . See Table 2-45

MSR_BPU_ESCR0

0FH . See Table 2-45

MSR_BPU_ESCR1

0FH . See Table 2-45

MSR_BR_DETECT_COUNTER_CONFIG_i

06_66H. See Table 2-41

MSR_BR_DETECT_CTRL

06_66H. See Table 2-41

MSR_BR_DETECT_STATUS

06_66H. See Table 2-41

MSR_BSU_ESCR0

0FH . See Table 2-45

MSR_BSU_ESCR1

0FH . See Table 2-45

MSR_C0_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C0_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C0_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C0_PMON_BOX_OVF_CTRL

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-356 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

MSR_C0_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C0_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR4

06_2EH . See Table 2-16

MSR_C0_PMON_CTR5

06_2EH . See Table 2-16

MSR_C0_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR2

06_2EH . See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-357

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C0_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C1_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C1_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C1_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C1_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C1_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C1_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-358 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C1_PMON_CTR4

06_2EH . See Table 2-16

MSR_C1_PMON_CTR5

06_2EH . See Table 2-16

MSR_C1_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C1_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C10_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C10_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C10_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C11_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C11_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C11_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C12_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C12_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-359

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C12_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C13_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C13_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C13_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C14_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C14_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C14_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_CTL

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_FILTER1

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_STATUS

06_3FH . See Table 2-32

MSR_C15_PMON_CTR0

06_3FH . See Table 2-32

MSR_C15_PMON_CTR1

06_3FH . See Table 2-32

MSR_C15_PMON_CTR2

06_3FH . See Table 2-32

MSR_C15_PMON_CTR3

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL0

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL1

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL2

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL3

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_CTL

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-360 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_FILTER1

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_STATUS

06_3FH . See Table 2-32

MSR_C16_PMON_CTR0

06_3FH . See Table 2-32

MSR_C16_PMON_CTR3

06_3FH . See Table 2-32

MSR_C16_PMON_CTR2

06_3FH . See Table 2-32

MSR_C16_PMON_CTR3

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL0

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL1

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL2

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL3

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_CTL

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_FILTER1

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_STATUS

06_3FH . See Table 2-32

MSR_C17_PMON_CTR0

06_3FH . See Table 2-32

MSR_C17_PMON_CTR1

06_3FH . See Table 2-32

MSR_C17_PMON_CTR2

06_3FH . See Table 2-32

MSR_C17_PMON_CTR3

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL0

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL1

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-361

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL2

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL3

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C2_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C2_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C2_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR4

06_2EH . See Table 2-16

MSR_C2_PMON_CTR5

06_2EH . See Table 2-16

MSR_C2_PMON_EVNT_SEL0

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-362 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C2_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C3_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C3_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C3_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C3_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C3_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C3_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-363

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C3_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_CTR4

06_2EH . See Table 2-16

MSR_C3_PMON_CTR5

06_2EH . See Table 2-16

MSR_C3_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C3_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C4_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C4_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C4_PMON_BOX_FILTER1

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-364 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C4_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C4_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C4_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR4

06_2EH . See Table 2-16

MSR_C4_PMON_CTR5

06_2EH . See Table 2-16

MSR_C4_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-365

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C4_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C5_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C5_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C5_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C5_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C5_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C5_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR4

06_2EH . See Table 2-16

MSR_C5_PMON_CTR5

06_2EH . See Table 2-16

MSR_C5_PMON_EVNT_SEL0

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-366 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C5_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C6_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C6_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C6_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C6_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C6_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C6_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-367

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C6_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_CTR4

06_2EH . See Table 2-16

MSR_C6_PMON_CTR5

06_2EH . See Table 2-16

MSR_C6_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C6_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C7_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C7_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C7_PMON_BOX_FILTER1

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-368 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C7_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C7_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C7_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR4

06_2EH . See Table 2-16

MSR_C7_PMON_CTR5

06_2EH . See Table 2-16

MSR_C7_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-369

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C7_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C8_PMON_BOX_CTRL

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C8_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C8_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_BOX_OVF_CTRL

06_2FH . See Table 2-18

MSR_C8_PMON_BOX_STATUS

06_2FH . See Table 2-18

06_3FH . See Table 2-32

MSR_C8_PMON_CTR0

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR4

06_2FH . See Table 2-18

MSR_C8_PMON_CTR5

06_2FH . See Table 2-18

MSR_C8_PMON_EVNT_SEL0

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-370 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL4

06_2FH . See Table 2-18

MSR_C8_PMON_EVNT_SEL5

06_2FH . See Table 2-18

MSR_C9_PMON_BOX_CTRL

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C9_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C9_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_BOX_OVF_CTRL

06_2FH . See Table 2-18

MSR_C9_PMON_BOX_STATUS

06_2FH . See Table 2-18

06_3FH . See Table 2-32

MSR_C9_PMON_CTR0

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_CTR1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-371

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C9_PMON_CTR2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_CTR3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_CTR4

06_2FH . See Table 2-18

MSR_C9_PMON_CTR5

06_2FH . See Table 2-18

MSR_C9_PMON_EVNT_SEL0

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL4

06_2FH . See Table 2-18

MSR_C9_PMON_EVNT_SEL5

06_2FH . See Table 2-18

MSR_CC6_DEMOTION_POLICY_CONFIG

06_37H . See Table 2-9

MSR_CONFIG_TDP_CONTROL

06_3AH . See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_CONFIG_TDP_LEVEL1

06_3AH . See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-372 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_57H . See Table 2-43

MSR_CONFIG_TDP_LEVEL2

06_3AH. See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_CONFIG_TDP_NOMINAL

06_3AH . See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_CORE_C1_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_66H . See Table 2-41

MSR_CORE_C3_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

MSR_CORE_C6_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H . See Table 2-43

MSR_CORE_C7_RESIDENCY

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

MSR_CORE_GFXE_OVERLAP_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_CORE_HDC_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_CORE_PERF_LIMIT_REASONS

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_CORE_THREAD_COUNT

06_3FH. See Table 2-31

MSR_CRU_ESCR0

0FH . See Table 2-45

MSR_CRU_ESCR1

0FH . See Table 2-45

MSR_CRU_ESCR2

0FH . See Table 2-45

MSR_CRU_ESCR3

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-373

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_CRU_ESCR4

0FH . See Table 2-45

MSR_CRU_ESCR5

0FH . See Table 2-45

MSR_DAC_ESCR0

0FH . See Table 2-45

MSR_DAC_ESCR1

0FH . See Table 2-45

MSR_DRAM_ENERGY_ STATUS

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-28

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_DRAM_PERF_STATUS

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-28

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_DRAM_POWER_INFO

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_DRAM_POWER_LIMIT

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_EBC_FREQUENCY_ID

0FH . See Table 2-45

MSR_EBC_HARD_POWERON

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-374 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_EBC_SOFT_POWERON

0FH . See Table 2-45

MSR_EBL_CR_POWERON

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_0EH . See Table 2-48

06_09H . See Table 2-49

MSR_EFSB_DRDY0

0F_03H, 0F_04H . See Table 2-46

MSR_EFSB_DRDY1

0F_03H, 0F_04H . See Table 2-46

MSR_EMON_L3_CTR_CTL0

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL1

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL2

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL3

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL4

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL5

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL6

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL7

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_GL_CTL

06_0FH, 06_17H . See Table 2-3

MSR_ERROR_CONTROL

06_2DH . See Table 2-22

06_3EH . See Table 2-25

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-375

MODEL-SPECIFIC REGISTERS (MSRS)

06_3F . See Table 2-31

MSR_FEATURE_CONFIG

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_25H, 06_2CH. See Table 2-17

06_2FH . See Table 2-18

06_2AH, 06_2DH. See Table 2-19

06_57H . See Table 2-43

MSR_FIRM_ESCR0

0FH . See Table 2-45

MSR_FIRM_ESCR1

0FH . See Table 2-45

MSR_FLAME_CCCR0

0FH . See Table 2-45

MSR_FLAME_CCCR1

0FH . See Table 2-45

MSR_FLAME_CCCR2

0FH . See Table 2-45

MSR_FLAME_CCCR3

0FH . See Table 2-45

MSR_FLAME_COUNTER0

0FH . See Table 2-45

MSR_FLAME_COUNTER1

0FH . See Table 2-45

MSR_FLAME_COUNTER2

0FH . See Table 2-45

MSR_FLAME_COUNTER3

0FH . See Table 2-45

MSR_FLAME_ESCR0

0FH . See Table 2-45

MSR_FLAME_ESCR1

0FH . See Table 2-45

MSR_FSB_ESCR0

0FH . See Table 2-45

MSR_FSB_ESCR1

0FH . See Table 2-45

MSR_FSB_FREQ

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_4CH . See Table 2-11

06_0EH . See Table 2-48

MSR_GQ_SNOOP_MESF

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-376 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_GRAPHICS_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_IFSB_BUSQ0

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_BUSQ1

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_CNTR7

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_CTL6

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_SNPQ0

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_SNPQ1

0F_03H, 0F_04H . See Table 2-46

MSR_IQ_CCCR0

0FH . See Table 2-45

MSR_IQ_CCCR1

0FH . See Table 2-45

MSR_IQ_CCCR2

0FH . See Table 2-45

MSR_IQ_CCCR3

0FH . See Table 2-45

MSR_IQ_CCCR4

0FH . See Table 2-45

MSR_IQ_CCCR5

0FH . See Table 2-45

MSR_IQ_COUNTER0

0FH . See Table 2-45

MSR_IQ_COUNTER1

0FH . See Table 2-45

MSR_IQ_COUNTER2

0FH . See Table 2-45

MSR_IQ_COUNTER3

0FH . See Table 2-45

MSR_IQ_COUNTER4

0FH . See Table 2-45

MSR_IQ_COUNTER5

0FH . See Table 2-45

MSR_IQ_ESCR0

0FH . See Table 2-45

MSR_IQ_ESCR1

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-377

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_IS_ESCR0

0FH . See Table 2-45

MSR_IS_ESCR1

0FH . See Table 2-45

MSR_ITLB_ESCR0

0FH . See Table 2-45

MSR_ITLB_ESCR1

0FH . See Table 2-45

MSR_IX_ESCR0

0FH . See Table 2-45

MSR_IX_ESCR1

0FH . See Table 2-45

MSR_LASTBRANCH_0

0FH . See Table 2-45

06_0EH . See Table 2-48

06_09H . See Table 2-49

MSR_LASTBRANCH_0_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_0_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_1_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-378 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_LASTBRANCH_1_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_10_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_10_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_11_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_11_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_12_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_12_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_13_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-379

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_13_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_14_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_14_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_15_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_15_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_16_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_16_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_17_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_17_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_18_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-380 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LASTBRANCH_18_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_19_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_19_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_2

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_2_FROM_IP

06_0FH, 06_17H. See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. See Table 2-14

06_2AH, 06_2DH. See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_2_TO_IP

06_0FH, 06_17H. See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. See Table 2-14

06_2AH, 06_2DH. See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_20_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_20_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_21_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_21_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_22_FROM_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-381

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_22_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_23_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_23_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_24_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_24_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_25_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_25_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_26_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_26_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_27_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_27_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_28_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_28_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_29_FROM_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-382 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_29_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_3

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_3_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_3_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_30_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_30_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_31_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_31_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_4

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_4_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-383

MODEL-SPECIFIC REGISTERS (MSRS)

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_4_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_5

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_5_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_5_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_6

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_6_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_6_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-384 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_7

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_7_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_7_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_8_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_8_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH. See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_9_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_9_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_TOS

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-385

MODEL-SPECIFIC REGISTERS (MSRS)

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_INFO_0

06_7AH. See Table 2-13

MSR_LBR_INFO_1

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_10

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_11

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_13

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_14

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_15

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_16

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_17

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_18

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-386 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LBR_INFO_19

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_2

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_20

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_21

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_22

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_23

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_24

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_25

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_26

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_27

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_28

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_29

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_3

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_30

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-387

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LBR_INFO_31

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_4

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_5

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_6

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_7

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_8

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_9

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_SELECT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_LER_FROM_LIP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LER_TO_LIP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-388 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_M0_PMON_ADDR_MASK

06_2EH. See Table 2-16

MSR_M0_PMON_ADDR_MATCH

06_2EH. See Table 2-16

MSR_M0_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_M0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_M0_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_M0_PMON_CTR0

06_2EH. See Table 2-16

MSR_M0_PMON_CTR1

06_2EH. See Table 2-16

MSR_M0_PMON_CTR2

06_2EH. See Table 2-16

MSR_M0_PMON_CTR3

06_2EH. See Table 2-16

MSR_M0_PMON_CTR4

06_2EH. See Table 2-16

MSR_M0_PMON_CTR5

06_2EH. See Table 2-16

MSR_M0_PMON_DSP

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL0

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL1

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL2

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL3

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL4

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL5

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-389

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_M0_PMON_ISS

06_2EH. See Table 2-16

MSR_M0_PMON_MAP

06_2EH. See Table 2-16

MSR_M0_PMON_MM_CONFIG

06_2EH. See Table 2-16

MSR_M0_PMON_MSC_THR

06_2EH. See Table 2-16

MSR_M0_PMON_PGT

06_2EH. See Table 2-16

MSR_M0_PMON_PLD

06_2EH. See Table 2-16

MSR_M0_PMON_TIMESTAMP

06_2EH. See Table 2-16

MSR_M0_PMON_ZDP

06_2EH. See Table 2-16

MSR_M1_PMON_ADDR_MASK

06_2EH. See Table 2-16

MSR_M1_PMON_ADDR_MATCH

06_2EH. See Table 2-16

MSR_M1_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_M1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_M1_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_M1_PMON_CTR0

06_2EH. See Table 2-16

MSR_M1_PMON_CTR1

06_2EH. See Table 2-16

MSR_M1_PMON_CTR2

06_2EH. See Table 2-16

MSR_M1_PMON_CTR3

06_2EH. See Table 2-16

MSR_M1_PMON_CTR4

06_2EH. See Table 2-16

MSR_M1_PMON_CTR5

06_2EH. See Table 2-16

MSR_M1_PMON_DSP

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL0

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-390 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_M1_PMON_EVNT_SEL1

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL2

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL3

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL4

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL5

06_2EH. See Table 2-16

MSR_M1_PMON_ISS

06_2EH. See Table 2-16

MSR_M1_PMON_MAP

06_2EH. See Table 2-16

MSR_M1_PMON_MM_CONFIG

06_2EH. See Table 2-16

MSR_M1_PMON_MSC_THR

06_2EH. See Table 2-16

MSR_M1_PMON_PGT

06_2EH. See Table 2-16

MSR_M1_PMON_PLD

06_2EH. See Table 2-16

MSR_M1_PMON_TIMESTAMP

06_2EH. See Table 2-16

MSR_M1_PMON_ZDP

06_2EH. See Table 2-16

IA32_MC0_MISC / MSR_MC0_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_MC0_RESIDENCY

06_57H. See Table 2-43

IA32_MC1_MISC / MSR_MC1_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

IA32_MC10_ADDR / MSR_MC10_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC10_CTL / MSR_MC10_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-391

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC10_MISC / MSR_MC10_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC10_STATUS / MSR_MC10_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC11_ADDR / MSR_MC11_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC11_CTL / MSR_MC11_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC11_MISC / MSR_MC11_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC11_STATUS / MSR_MC11_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-392 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC12_ADDR / MSR_MC12_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC12_CTL / MSR_MC12_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC12_MISC / MSR_MC12_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC12_STATUS / MSR_MC12_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC13_ADDR / MSR_MC13_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC13_CTL / MSR_MC13_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC13_MISC / MSR_MC13_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-393

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC13_STATUS / MSR_MC13_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_ADDR / MSR_MC14_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_CTL / MSR_MC14_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_MISC / MSR_MC14_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_STATUS / MSR_MC14_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC15_ADDR / MSR_MC15_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC15_CTL / MSR_MC15_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-394 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC15_MISC / MSR_MC15_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC15_STATUS / MSR_MC15_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_ADDR / MSR_MC16_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_CTL / MSR_MC16_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_MISC / MSR_MC16_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_STATUS / MSR_MC16_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC17_ADDR / MSR_MC17_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-395

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC17_CTL / MSR_MC17_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC17_MISC / MSR_MC17_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC17_STATUS / MSR_MC17_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC18_ADDR / MSR_MC18_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC18_CTL / MSR_MC18_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC18_MISC / MSR_MC18_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-396 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC18_STATUS / MSR_MC18_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_ADDR / MSR_MC19_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_CTL / MSR_MC19_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_MISC / MSR_MC19_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_STATUS / MSR_MC19_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC2_MISC / MSR_MC2_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

IA32_MC20_ADDR / MSR_MC20_ADDR

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-397

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC20_CTL / MSR_MC20_CTL

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC20_MISC / MSR_MC20_MISC

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC20_STATUS / MSR_MC20_STATUS

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC21_ADDR / MSR_MC21_ADDR

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC21_CTL / MSR_MC21_CTL

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC21_MISC / MSR_MC21_MISC

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC21_STATUS / MSR_MC21_STATUS

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC22_ADDR / MSR_MC22_ADDR

06_3EH. See Table 2-25

IA32_MC22_CTL / MSR_MC22_CTL

06_3EH. See Table 2-25

IA32_MC22_MISC / MSR_MC22_MISC

06_3EH. See Table 2-25

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-398 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC22_STATUS / MSR_MC22_STATUS

06_3EH. See Table 2-25

IA32_MC23_ADDR / MSR_MC23_ADDR

06_3EH. See Table 2-25

IA32_MC23_CTL / MSR_MC23_CTL

06_3EH. See Table 2-25

IA32_MC23_MISC / MSR_MC23_MISC

06_3EH. See Table 2-25

IA32_MC23_STATUS / MSR_MC23_STATUS

06_3EH. See Table 2-25

IA32_MC24_ADDR / MSR_MC24_ADDR

06_3EH. See Table 2-25

IA32_MC24_CTL / MSR_MC24_CTL

06_3EH. See Table 2-25

IA32_MC24_MISC / MSR_MC24_MISC

06_3EH. See Table 2-25

IA32_MC24_STATUS / MSR_MC24_STATUS

06_3EH. See Table 2-25

IA32_MC25_ADDR / MSR_MC25_ADDR

06_3EH. See Table 2-25

IA32_MC25_CTL / MSR_MC25_CTL

06_3EH. See Table 2-25

IA32_MC25_MISC / MSR_MC25_MISC

06_3EH. See Table 2-25

IA32_MC25_STATUS / MSR_MC25_STATUS

06_3EH. See Table 2-25

IA32_MC26_ADDR / MSR_MC26_ADDR

06_3EH. See Table 2-25

IA32_MC26_CTL / MSR_MC26_CTL

06_3EH. See Table 2-25

IA32_MC26_MISC / MSR_MC26_MISC

06_3EH. See Table 2-25

IA32_MC26_STATUS / MSR_MC26_STATUS

06_3EH. See Table 2-25

IA32_MC27_ADDR / MSR_MC27_ADDR

06_3EH. See Table 2-25

IA32_MC27_CTL / MSR_MC27_CTL

06_3EH. See Table 2-25

IA32_MC27_MISC / MSR_MC27_MISC

06_3EH. See Table 2-25

IA32_MC27_STATUS / MSR_MC27_STATUS

06_3EH. See Table 2-25

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-399

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC28_ADDR / MSR_MC28_ADDR

06_3EH. See Table 2-25

IA32_MC28_CTL / MSR_MC28_CTL

06_3EH. See Table 2-25

IA32_MC28_MISC / MSR_MC28_MISC

06_3EH. See Table 2-25

IA32_MC28_STATUS / MSR_MC28_STATUS

06_3EH. See Table 2-25

IA32_MC29_ADDR / MSR_MC29_ADDR

06_3EH. See Table 2-26

IA32_MC29_CTL / MSR_MC29_CTL

06_3EH. See Table 2-26

IA32_MC29_MISC / MSR_MC29_MISC

06_3EH. See Table 2-26

IA32_MC29_STATUS / MSR_MC29_STATUS

06_3EH. See Table 2-26

IA32_MC3_ADDR / MSR_MC3_ADDR

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC3_CTL / MSR_MC3_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC3_MISC / MSR_MC3_MISC

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_0EH. See Table 2-48

IA32_MC3_STATUS / MSR_MC3_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-400 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC30_ADDR / MSR_MC30_ADDR

06_3EH. See Table 2-26

IA32_MC30_CTL / MSR_MC30_CTL

06_3EH. See Table 2-26

IA32_MC30_MISC / MSR_MC30_MISC

06_3EH. See Table 2-26

IA32_MC30_STATUS / MSR_MC30_STATUS

06_3EH. See Table 2-26

IA32_MC31_ADDR / MSR_MC31_ADDR

06_3EH. See Table 2-26

IA32_MC31_CTL / MSR_MC31_CTL

06_3EH. See Table 2-26

IA32_MC31_MISC / MSR_MC31_MISC

06_3EH. See Table 2-26

IA32_MC31_STATUS / MSR_MC31_STATUS

06_3EH. See Table 2-26

IA32_MC4_ADDR / MSR_MC4_ADDR

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC4_CTL / MSR_MC4_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC4_CTL2 / MSR_MC4_CTL2

06_2AH, 06_2DH . See Table 2-19

IA32_MC4_STATUS / MSR_MC4_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-401

MODEL-SPECIFIC REGISTERS (MSRS)

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_MC5_ADDR / MSR_MC5_ADDR

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_57H. See Table 2-43

06_0EH. See Table 2-48

IA32_MC5_CTL / MSR_MC5_CTL

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_57H. See Table 2-43

06_0EH. See Table 2-48

IA32_MC5_MISC / MSR_MC5_MISC

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_0EH. See Table 2-48

IA32_MC5_STATUS / MSR_MC5_STATUS

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_57H. See Table 2-43

06_0EH. See Table 2-48

IA32_MC6_ADDR / MSR_MC6_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-402 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC6_CTL / MSR_MC6_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

MSR_MC6_DEMOTION_POLICY_CONFIG

06_37H. See Table 2-9

IA32_MC6_MISC / MSR_MC6_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

MSR_MC6_RESIDENCY_COUNTER

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_37H. See Table 2-9

06_57H. See Table 2-43

IA32_MC6_STATUS / MSR_MC6_STATUS

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_ADDR / MSR_MC7_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_CTL / MSR_MC7_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-403

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_MISC / MSR_MC7_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_STATUS / MSR_MC7_STATUS

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC8_ADDR / MSR_MC8_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC8_CTL / MSR_MC8_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC8_MISC / MSR_MC8_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC8_STATUS / MSR_MC8_STATUS

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-404 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC9_ADDR / MSR_MC9_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC9_CTL / MSR_MC9_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC9_MISC / MSR_MC9_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC9_STATUS / MSR_MC9_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

MSR_MCG_MISC

0FH. See Table 2-45

MSR_MCG_R10

0FH. See Table 2-45

MSR_MCG_R11

0FH. See Table 2-45

MSR_MCG_R12

0FH. See Table 2-45

MSR_MCG_R13

0FH. See Table 2-45

MSR_MCG_R14

0FH. See Table 2-45

MSR_MCG_R15

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-405

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. See Table 2-45

MSR_MCG_R8

0FH. See Table 2-45

MSR_MCG_R9

0FH. See Table 2-45

MSR_MCG_RAX

0FH. See Table 2-45

MSR_MCG_RBP

0FH. See Table 2-45

MSR_MCG_RBX

0FH. See Table 2-45

MSR_MCG_RCX

0FH. See Table 2-45

MSR_MCG_RDI

0FH. See Table 2-45

MSR_MCG_RDX

0FH. See Table 2-45

MSR_MCG_RESERVED1 - MSR_MCG_RESERVED5

0FH. See Table 2-45

MSR_MCG_RFLAGS

0FH. See Table 2-45

MSR_MCG_RIP

0FH. See Table 2-45

MSR_MCG_RSI

0FH. See Table 2-45

MSR_MCG_RSP

0FH. See Table 2-45

MSR_MISC_FEATURE_CONTROL

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_MISC_PWR_MGMT

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_MOB_ESCR0

0FH. See Table 2-45

MSR_MOB_ESCR1

0FH. See Table 2-45

MSR_MS_CCCR0

0FH. See Table 2-45

MSR_MS_CCCR1

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-406 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. See Table 2-45

MSR_MS_CCCR2

0FH. See Table 2-45

MSR_MS_CCCR3

0FH. See Table 2-45

MSR_MS_COUNTER0

0FH. See Table 2-45

MSR_MS_COUNTER1

0FH. See Table 2-45

MSR_MS_COUNTER2

0FH. See Table 2-45

MSR_MS_COUNTER3

0FH. See Table 2-45

MSR_MS_ESCR0

0FH. See Table 2-45

MSR_MS_ESCR1

0FH. See Table 2-45

MSR_MTRRCAP

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_OFFCORE_RSP_0

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

MSR_OFFCORE_RSP_1

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_25H, 06_2CH . See Table 2-17

06_2FH. See Table 2-18

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

MSR_PCIE_PLL_RATIO

06_3FH. See Table 2-31

MSR_PCU_PMON_BOX_CTL

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_BOX_FILTER

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_BOX_STATUS

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR0

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-407

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR1

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR2

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR3

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL0

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL1

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL2

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL3

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PEBS_ENABLE

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3EH. See Table 2-26

06_57H. See Table 2-43

0FH. See Table 2-45

MSR_PEBS_FRONTEND

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PEBS_LD_LAT

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_PEBS_MATRIX_VERT

0FH. See Table 2-45

MSR_PEBS_NUM_ALT

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-408 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

MSR_PERF_CAPABILITIES

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR_CTRL

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR0

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR1

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR2

06_0FH, 06_17H . See Table 2-3

MSR_PERF_GLOBAL_CTRL

06_0FH, 06_17H . See Table 2-3

MSR_PERF_GLOBAL_OVF_CTRL

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_PERF_GLOBAL_STATUS

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_PERF_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_2AH, 06_2DH . See Table 2-19

MSR_PKG_C10_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_45H. See Table 2-29 and
Table 2-30

06_4FH. See Table 2-37

MSR_PKG_C2_RESIDENCY

06_27H. See Table 2-5

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_C3_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_66H. See Table 2-41

06_57H. See Table 2-43

MSR_PKG_C4_RESIDENCY

06_27H. See Table 2-5

MSR_PKG_C6_RESIDENCY

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-409

MODEL-SPECIFIC REGISTERS (MSRS)

06_27H. See Table 2-5

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_C7_RESIDENCY

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_C8_RESIDENCY

06_45H. See Table 2-30

06_4FH. See Table 2-37

MSR_PKG_C9_RESIDENCY

06_45H. See Table 2-30

06_4FH. See Table 2-37

MSR_PKG_CST_CONFIG_CONTROL

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_4CH. See Table 2-11

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3AH. See Table 2-24

06_3EH. See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_45H. See Table 2-30

06_3F. See Table 2-31

06_3DH. See Table 2-34

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_PKG_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

MSR_PKG_HDC_CONFIG

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PKG_HDC_DEEP_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PKG_HDC_SHALLOW_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PKG_PERF_STATUS

06_5CH, 06_7AH . See Table 2-12

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-410 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_57H. See Table 2-43

MSR_PKG_POWER_INFO

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_POWER_LIMIT

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKGC_IRTL1

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H. See Table 2-28

MSR_PKGC_IRTL2

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H. See Table 2-28

MSR_PKGC3_IRTL

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH . See Table 2-19

MSR_PKGC6_IRTL

06_2AH, 06_2DH . See Table 2-19

MSR_PKGC7_IRTL

06_2AH. See Table 2-20

MSR_PLATFORM_BRV

0FH. See Table 2-45

MSR_PLATFORM_ENERGY_COUNTER

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PLATFORM_ID

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_PLATFORM_INFO

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-411

MODEL-SPECIFIC REGISTERS (MSRS)

06_3AH. See Table 2-24

06_3EH. See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-28 and
Table 2-29

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_PLATFORM_POWER_LIMIT

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PMG_IO_CAPTURE_BASE

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_4CH. See Table 2-11

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3AH. See Table 2-24

06_3EH. See Table 2-25

06_57H. See Table 2-43

MSR_PMH_ESCR0

0FH. See Table 2-45

MSR_PMH_ESCR1

0FH. See Table 2-45

MSR_PMON_GLOBAL_CONFIG

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_PMON_GLOBAL_CTL

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_PMON_GLOBAL_STATUS

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_POWER_CTL

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_PP0_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PP0_POLICY

06_2AH, 06_45H . See Table 2-20

MSR_PP0_POWER_LIMIT

06_4CH. See Table 2-11

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-412 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PP1_ENERGY_STATUS

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_45H . See Table 2-20

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_PP1_POLICY

06_2AH, 06_45H . See Table 2-20

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_PP1_POWER_LIMIT

06_2AH, 06_45H . See Table 2-20

06_3CH, 06_45H, 06_46H See Table 2-29

MSR_PPERF

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PPIN

06_3EH. See Table 2-25

06_56H, 06_4FH . See Table 2-35

MSR_PPIN_CTL

06_3EH. See Table 2-25

06_56H, 06_4FH . See Table 2-35

MSR_PRMRR_PHYS_BASE

06_8EH, 06_9EH . See Table 2-40

MSR_PRMRR_PHYS_MASK

06_8EH, 06_9EH . See Table 2-40

MSR_PRMRR_VALID_CONFIG

06_8EH, 06_9EH . See Table 2-40

MSR_RING_RATIO_LIMIT

06_8EH, 06_9EH . See Table 2-40

MSR_R0_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_R0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_R0_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_R0_PMON_CTR0

06_2EH. See Table 2-16

MSR_R0_PMON_CTR1

06_2EH. See Table 2-16

MSR_R0_PMON_CTR2

06_2EH. See Table 2-16

MSR_R0_PMON_CTR3

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-413

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_R0_PMON_CTR4

06_2EH. See Table 2-16

MSR_R0_PMON_CTR5

06_2EH. See Table 2-16

MSR_R0_PMON_CTR6

06_2EH. See Table 2-16

MSR_R0_PMON_CTR7

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL0

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL1

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL2

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL3

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL4

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL5

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL6

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL7

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P0

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P1

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P2

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P3

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P4

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P5

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P6

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P7

06_2EH. See Table 2-16

MSR_R0_PMON_QLX_P0

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-414 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_R0_PMON_QLX_P1

06_2EH. See Table 2-16

MSR_R0_PMON_QLX_P2

06_2EH. See Table 2-16

MSR_R0_PMON_QLX_P3

06_2EH. See Table 2-16

MSR_R1_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_R1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_R1_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_R1_PMON_CTR10

06_2EH. See Table 2-16

MSR_R1_PMON_CTR11

06_2EH. See Table 2-16

MSR_R1_PMON_CTR12

06_2EH. See Table 2-16

MSR_R1_PMON_CTR13

06_2EH. See Table 2-16

MSR_R1_PMON_CTR14

06_2EH. See Table 2-16

MSR_R1_PMON_CTR15

06_2EH. See Table 2-16

MSR_R1_PMON_CTR8

06_2EH. See Table 2-16

MSR_R1_PMON_CTR9

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL10

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL11

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL12

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL13

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL14

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL15

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL8

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-415

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_R1_PMON_EVNT_SEL9

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P10

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P11

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P12

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P13

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P14

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P15

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P8

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P9

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P4

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P5

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P6

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P7

06_2EH. See Table 2-16

MSR_RAPL_POWER_UNIT

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_RAT_ESCR0

0FH. See Table 2-45

MSR_RAT_ESCR1

0FH. See Table 2-45

MSR_RING_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_S0_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-416 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH. See Table 2-32

MSR_S0_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_S0_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_S0_PMON_CTR0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_CTR1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_CTR2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_CTR3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_MASK

06_2EH. See Table 2-16

MSR_S0_PMON_MATCH

06_2EH. See Table 2-16

MSR_S1_PMON_BOX_CTRL

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-417

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_S1_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_S1_PMON_CTR0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_CTR1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_CTR2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_CTR3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_MASK

06_2EH. See Table 2-16

MSR_S1_PMON_MATCH

06_2EH. See Table 2-16

MSR_S2_PMON_BOX_CTL

06_3FH. See Table 2-32

MSR_S2_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S2_PMON_CTR0

06_3FH. See Table 2-32

MSR_S2_PMON_CTR1

06_3FH. See Table 2-32

MSR_S2_PMON_CTR2

06_3FH. See Table 2-32

MSR_S2_PMON_CTR3

06_3FH. See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-418 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_S2_PMON_EVNTSEL0

06_3FH. See Table 2-32

MSR_S2_PMON_EVNTSEL1

06_3FH. See Table 2-32

MSR_S2_PMON_EVNTSEL2

06_3FH. See Table 2-32

MSR_S2_PMON_EVNTSEL3

06_3FH. See Table 2-32

MSR_S3_PMON_BOX_CTL

06_3FH. See Table 2-32

MSR_S3_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S3_PMON_CTR0

06_3FH. See Table 2-32

MSR_S3_PMON_CTR1

06_3FH. See Table 2-32

MSR_S3_PMON_CTR2

06_3FH. See Table 2-32

MSR_S3_PMON_CTR3

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL0

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL1

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL2

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL3

06_3FH. See Table 2-32

MSR_SAAT_ESCR0

0FH. See Table 2-45

MSR_SAAT_ESCR1

0FH. See Table 2-45

MSR_SGXOWNEREPOCH0

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_SGXOWNEREPOCH1

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_SMI_COUNT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-419

MODEL-SPECIFIC REGISTERS (MSRS)

06_57H. See Table 2-43

MSR_SMM_BLOCKED

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_SMM_DELAYED

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_SMM_FEATURE_CONTROL

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_SMM_MCA_CAP

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_SMRR_PHYSBASE

06_0FH, 06_17H . See Table 2-3

MSR_SMRR_PHYSMASK

06_0FH, 06_17H . See Table 2-3

MSR_SSU_ESCR0

0FH. See Table 2-45

MSR_TBPU_ESCR0

0FH. See Table 2-45

MSR_TBPU_ESCR1

0FH. See Table 2-45

MSR_TC_ESCR0

0FH. See Table 2-45

MSR_TC_ESCR1

0FH. See Table 2-45

MSR_TC_PRECISE_EVENT

0FH . See Table 2-45

MSR_TEMPERATURE_TARGET

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3EH. See Table 2-25

06_56H, 06_4FH. See Table 2-35

06_57H. See Table 2-43

MSR_THERM2_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-420 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_THREAD_ID_INFO

06_3FH. See Table 2-31

MSR_TRACE_HUB_STH_ACPIBAR_BASE

06_8EH, 06_9EH . See Table 2-40

MSR_TURBO_ACTIVATION_RATIO

06_5CH, 06_7AH . See Table 2-12

06_3AH. See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H. See Table 2-43

MSR_TURBO_GROUP_CORECNT

06_5CH, 06_7AH . See Table 2-12

MSR_TURBO_POWER_CURRENT_LIMIT

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_TURBO_RATIO_LIMIT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH . See Table 2-14

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

06_2EH. See Table 2-16

06_25H, 06_2CH . See Table 2-17

06_2FH. See Table 2-18

06_2AH, 06_45H . See Table 2-20

06_2DH. See Table 2-22

06_3EH. See Table 2-25 and
Table 2-26

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3FH. See Table 2-31

06_3DH. See Table 2-34

06_56H, 06_4FH . See Table 2-35

06_55H. See Table 2-42

06_57H. See Table 2-43

MSR_TURBO_RATIO_LIMIT1

06_3EH. See Table 2-25 and
Table 2-26

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-35

MSR_TURBO_RATIO_LIMIT2

06_3FH. See Table 2-31

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-421

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_TURBO_RATIO_LIMIT3

06_56H. See Table 2-36

06_4FH. See Table 2-37

MSR_TURBO_RATIO_LIMIT_CORES

06_55H. See Table 2-42

MSR_U_PMON_BOX_STATUS

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_U_PMON_CTR

06_2EH. See Table 2-16

MSR_U_PMON_CTR0

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_U_PMON_CTR1

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_EVNT_SEL

06_2EH . See Table 2-16

MSR_U_PMON_EVNTSEL0

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_EVNTSEL1

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_GLOBAL_CTRL

06_2EH . See Table 2-16

MSR_U_PMON_GLOBAL_OVF_CTRL

06_2EH . See Table 2-16

MSR_U_PMON_GLOBAL_STATUS

06_2EH . See Table 2-16

MSR_U_PMON_UCLK_FIXED_CTL

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_UCLK_FIXED_CTR

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U2L_ESCR0

0FH . See Table 2-45

MSR_U2L_ESCR1

0FH . See Table 2-45

MSR_UNC_ARB_PERFCTR0

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-422 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_ARB_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_ARB_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_ARB_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFCTR0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_0_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_0_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_0_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_0_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFCTR0

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-423

MODEL-SPECIFIC REGISTERS (MSRS)

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_1_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFCTR0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFEVTSEL1

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-424 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_2_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFCTR0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_3_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR0

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR1

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR3

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-425

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_UNC_CBO_4_PERFEVTSEL0

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFEVTSEL1

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_4_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_CONFIG

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_FIXED_CTR

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_FIXED_CTRL

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_GLOBAL_CTRL

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_GLOBAL_STATUS

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNCORE_ADDR_OPCODE_MATCH

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_FIXED_CTR_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_FIXED_CTR0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERF_GLOBAL_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERF_GLOBAL_STATUS

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-426 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_UNCORE_PERFEVTSEL0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

06_2EH . See Table 2-16

MSR_UNCORE_PMC6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PRMRR_BASE

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_UNCORE_PRMRR_MASK

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_UNCORE_PRMRR_PHYS_BASE

06_8EH, 06_9EH . See Table 2-40

MSR_UNCORE_PRMRR_PHYS_MASK

06_8EH, 06_9EH . See Table 2-40

MSR_W_PMON_BOX_CTRL

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-427

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

MSR_W_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_W_PMON_BOX_STATUS

06_2EH . See Table 2-16

MSR_W_PMON_CTR0

06_2EH . See Table 2-16

MSR_W_PMON_CTR1

06_2EH . See Table 2-16

MSR_W_PMON_CTR2

06_2EH . See Table 2-16

MSR_W_PMON_CTR3

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL0

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL1

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL2

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL3

06_2EH . See Table 2-16

MSR_W_PMON_FIXED_CTR

06_2EH . See Table 2-16

MSR_W_PMON_FIXED_CTR_CTL

06_2EH . See Table 2-16

MSR_WEIGHTED_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MTRRfix16K_80000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix16K_A0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_C0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_C8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_D0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-428 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MTRRfix4K_D8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_E0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_E8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_F0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_F8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix64K_00000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase0

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase1

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase2

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase3

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase4

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase5

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase6

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase7

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-429

MODEL-SPECIFIC REGISTERS (MSRS)

MTRRphysMask0

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask1

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask2

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask3

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask4

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask5

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask6

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask7

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-430 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 10, Volume 1
	Chapter 10 Programming with Intel® Streaming SIMD Extensions (Intel® SSE)
	10.1 Overview of SSE Extensions
	10.2 SSE Programming Environment
	10.2.1 SSE in 64-Bit Mode and Compatibility Mode
	10.2.2 XMM Registers
	10.2.3 MXCSR Control and Status Register
	10.2.3.1 SIMD Floating-Point Mask and Flag Bits
	10.2.3.2 SIMD Floating-Point Rounding Control Field
	10.2.3.3 Flush-To-Zero
	10.2.3.4 Denormals-Are-Zeros

	10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU

	10.3 SSE Data Types
	10.4 SSE Instruction Set
	10.4.1 SSE Packed and Scalar Floating-Point Instructions
	10.4.1.1 SSE Data Movement Instructions
	10.4.1.2 SSE Arithmetic Instructions

	10.4.2 SSE Logical Instructions
	10.4.2.1 SSE Comparison Instructions
	10.4.2.2 SSE Shuffle and Unpack Instructions

	10.4.3 SSE Conversion Instructions
	10.4.4 SSE 64-Bit SIMD Integer Instructions
	10.4.5 MXCSR State Management Instructions
	10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions
	10.4.6.1 Cacheability Control Instructions
	10.4.6.2 Caching of Temporal vs. Non-Temporal Data
	10.4.6.3 PREFETCHh Instructions
	10.4.6.4 SFENCE Instruction

	10.5 FXSAVE and FXRSTOR Instructions
	10.5.1 FXSAVE Area
	10.5.1.1 x87 State
	10.5.1.2 SSE State

	10.5.2 Operation of FXSAVE
	10.5.3 Operation of FXRSTOR

	10.6 Handling SSE Instruction Exceptions
	10.7 Writing Applications with the SSE Extensions

	2. Updates to Chapter 11, Volume 1
	Chapter 11 Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2)
	11.1 Overview of SSE2 Extensions
	11.2 SSE2 Programming Environment
	11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode
	11.2.2 Compatibility of SSE2 Extensions with SSE, MMX Technology and x87 FPU Programming Environment
	11.2.3 Denormals-Are-Zeros Flag

	11.3 SSE2 Data Types
	11.4 SSE2 Instructions
	11.4.1 Packed and Scalar Double-Precision Floating-Point Instructions
	11.4.1.1 Data Movement Instructions
	11.4.1.2 SSE2 Arithmetic Instructions
	11.4.1.3 SSE2 Logical Instructions
	11.4.1.4 SSE2 Comparison Instructions
	11.4.1.5 SSE2 Shuffle and Unpack Instructions
	11.4.1.6 SSE2 Conversion Instructions

	11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions
	11.4.3 128-Bit SIMD Integer Instruction Extensions
	11.4.4 Cacheability Control and Memory Ordering Instructions
	11.4.4.1 FLUSH Cache Line
	11.4.4.2 Cacheability Control Instructions
	11.4.4.3 Memory Ordering Instructions
	11.4.4.4 Pause

	11.4.5 Branch Hints

	11.5 SSE, SSE2, and SSE3 Exceptions
	11.5.1 SIMD Floating-Point Exceptions
	11.5.2 SIMD Floating-Point Exception Conditions
	11.5.2.1 Invalid Operation Exception (#I)
	11.5.2.2 Denormal-Operand Exception (#D)
	11.5.2.3 Divide-By-Zero Exception (#Z)
	11.5.2.4 Numeric Overflow Exception (#O)
	11.5.2.5 Numeric Underflow Exception (#U)
	11.5.2.6 Inexact-Result (Precision) Exception (#P)

	11.5.3 Generating SIMD Floating-Point Exceptions
	11.5.3.1 Handling Masked Exceptions
	11.5.3.2 Handling Unmasked Exceptions
	11.5.3.3 Handling Combinations of Masked and Unmasked Exceptions

	11.5.4 Handling SIMD Floating-Point Exceptions in Software
	11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions

	11.6 Writing Applications with SSE/SSE2 Extensions
	11.6.1 General Guidelines for Using SSE/SSE2 Extensions
	11.6.2 Checking for SSE/SSE2 Support
	11.6.3 Checking for the DAZ Flag in the MXCSR Register
	11.6.4 Initialization of SSE/SSE2 Extensions
	11.6.5 Saving and Restoring the SSE/SSE2 State
	11.6.6 Guidelines for Writing to the MXCSR Register
	11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions
	11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types
	11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and Data
	11.6.10 Interfacing with SSE/SSE2 Procedures and Functions
	11.6.10.1 Passing Parameters in XMM Registers
	11.6.10.2 Saving XMM Register State on a Procedure or Function Call
	11.6.10.3 Caller-Save Recommendation for Procedure and Function Calls

	11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions
	11.6.12 Branching on Arithmetic Operations
	11.6.13 Cacheability Hint Instructions
	11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions

	3. Updates to Chapter 14, Volume 1
	Chapter 14 Programming with AVX, FMA and AVX2
	14.1 Intel AVX Overview
	14.1.1 256-Bit Wide SIMD Register Support
	14.1.2 Instruction Syntax Enhancements
	14.1.3 VEX Prefix Instruction Encoding Support

	14.2 Functional Overview
	14.2.1 256-bit Floating-Point Arithmetic Processing Enhancements
	14.2.2 256-bit Non-Arithmetic Instruction Enhancements
	14.2.3 Arithmetic Primitives for 128-bit Vector and Scalar processing
	14.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing

	14.3 Detection of AVX Instructions
	14.3.1 Detection of VEX-Encoded AES and VPCLMULQDQ

	14.4 Half-Precision Floating-Point Conversion
	14.4.1 Detection of F16C Instructions

	14.5 Fused-Multiply-ADD (FMA) Extensions
	14.5.1 FMA Instruction Operand Order and Arithmetic Behavior
	14.5.2 Fused-Multiply-ADD (FMA) Numeric Behavior
	14.5.3 Detection of FMA

	14.6 Overview of Intel® Advanced Vector Extensions 2 (Intel® AVX2)
	14.6.1 AVX2 and 256-bit Vector Integer Processing

	14.7 Promoted Vector Integer Instructions in AVX2
	14.7.1 Detection of AVX2

	14.8 Accessing YMM Registers
	14.9 Memory alignment
	14.10 SIMD floating-point ExCeptions
	14.11 Emulation
	14.12 Writing AVX floating-point exception handlers
	14.13 General Purpose Instruction Set Enhancements

	4. Updates to Chapter 2, Volume 2A
	Chapter 2 Instruction Format
	2.1 Instruction Format for Protected Mode, real-address Mode, and virtual-8086 mode
	2.1.1 Instruction Prefixes
	2.1.2 Opcodes
	2.1.3 ModR/M and SIB Bytes
	2.1.4 Displacement and Immediate Bytes
	2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

	2.2 IA-32e Mode
	2.2.1 REX Prefixes
	2.2.1.1 Encoding
	2.2.1.2 More on REX Prefix Fields
	2.2.1.3 Displacement
	2.2.1.4 Direct Memory-Offset MOVs
	2.2.1.5 Immediates
	2.2.1.6 RIP-Relative Addressing
	2.2.1.7 Default 64-Bit Operand Size

	2.2.2 Additional Encodings for Control and Debug Registers

	2.3 Intel® Advanced Vector Extensions (Intel® AVX)
	2.3.1 Instruction Format
	2.3.2 VEX and the LOCK prefix
	2.3.3 VEX and the 66H, F2H, and F3H prefixes
	2.3.4 VEX and the REX prefix
	2.3.5 The VEX Prefix
	2.3.5.1 VEX Byte 0, bits[7:0]
	2.3.5.2 VEX Byte 1, bit [7] - ‘R’
	2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’
	2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’
	2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’
	2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or Dest Register Specifier

	2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
	2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
	2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
	2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”

	2.3.7 The Opcode Byte
	2.3.8 The MODRM, SIB, and Displacement Bytes
	2.3.9 The Third Source Operand (Immediate Byte)
	2.3.10 AVX Instructions and the Upper 128-bits of YMM registers
	2.3.10.1 Vector Length Transition and Programming Considerations

	2.3.11 AVX Instruction Length
	2.3.12 Vector SIB (VSIB) Memory Addressing
	2.3.12.1 64-bit Mode VSIB Memory Addressing

	2.4 AVX and SSE Instruction Exception Specification
	2.4.1 Exceptions Type 1 (Aligned memory reference)
	2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)
	2.4.3 Exceptions Type 3 (<16 Byte memory argument)
	2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)
	2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)
	2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
	2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)
	2.4.8 Exceptions Type 8 (AVX and no memory argument)
	2.4.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)
	2.4.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

	2.5 VEX Encoding Support for GPR Instructions
	2.5.1 Exception Conditions for VEX-Encoded GPR Instructions

	2.6 Intel® AVX-512 Encoding
	2.6.1 Instruction Format and EVEX
	2.6.2 Register Specifier Encoding and EVEX
	2.6.3 Opmask Register Encoding
	2.6.4 Masking Support in EVEX
	2.6.5 Compressed Displacement (disp8*N) Support in EVEX
	2.6.6 EVEX Encoding of Broadcast/Rounding/SAE Support
	2.6.7 Embedded Broadcast Support in EVEX
	2.6.8 Static Rounding Support in EVEX
	2.6.9 SAE Support in EVEX
	2.6.10 Vector Length Orthogonality
	2.6.11 #UD Equations for EVEX
	2.6.11.1 State Dependent #UD
	2.6.11.2 Opcode Independent #UD
	2.6.11.3 Opcode Dependent #UD

	2.6.12 Device Not Available
	2.6.13 Scalar Instructions

	2.7 Exception Classifications of EVEX-Encoded instructions
	2.7.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
	2.7.2 Exceptions Type E2 of EVEX-Encoded Instructions
	2.7.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
	2.7.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
	2.7.5 Exceptions Type E5 and E5NF
	2.7.6 Exceptions Type E6 and E6NF
	2.7.7 Exceptions Type E7NM
	2.7.8 Exceptions Type E9 and E9NF
	2.7.9 Exceptions Type E10
	2.7.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
	2.7.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

	2.8 Exception Classifications of Opmask instructions

	5. Updates to Chapter 3, Volume 2A
	CALL—Call Procedure
	INT n/INTO/INT 3—Call to Interrupt Procedure
	IRET/IRETD—Interrupt Return
	KMOVW/KMOVB/KMOVQ/KMOVD—Move from and to Mask Registers
	LSL—Load Segment Limit

	6. Updates to Chapter 4, Volume 2B
	MOV—Move
	MOVSX/MOVSXD—Move with Sign-Extension
	PHMINPOSUW — Packed Horizontal Word Minimum
	SETcc—Set Byte on Condition
	SFENCE—Store Fence
	SWAPGS—Swap GS Base Register
	UD—Undefined Instruction

	7. Updates to Chapter 5, Volume 2C
	VPERMI2B—Full Permute of Bytes from Two Tables Overwriting the Index
	VPERMT2B—Full Permute of Bytes from Two Tables Overwriting a Table
	VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bitProducts to 64-bit Accumulators
	VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Productsto Qword Accumulators
	VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources

	8. Addition of Chapter 7, Volume 2D
	Chapter 7 Instruction Set Reference Unique to Intel® Xeon Phi™ Processors
	PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint
	VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point Values with Less Than 2^-23 Relative Error
	VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point Values with Less Than 2^-23 Relative Error
	VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint
	VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint
	VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values with Less Than 2^-28 Relative Error
	VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Relative Error
	VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values with Less Than 2^-28 Relative Error
	VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Relative Error
	VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision Floating-Point Values with Less Than 2^-28 Relative Error
	VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Relative Error
	VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision Floating-Point Values with Less Than 2^-28 Relative Error
	VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating- Point Value with Less Than 2^-28 Relative Error
	VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint with Intent to Write
	VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint with Intent to Write

	9. Updates to Chapter 2, Volume 3A
	Chapter 2 System Architecture Overview
	2.1 Overview of the System-Level Architecture
	2.1.1 Global and Local Descriptor Tables
	2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

	2.1.2 System Segments, Segment Descriptors, and Gates
	2.1.2.1 Gates in IA-32e Mode

	2.1.3 Task-State Segments and Task Gates
	2.1.3.1 Task-State Segments in IA-32e Mode

	2.1.4 Interrupt and Exception Handling
	2.1.4.1 Interrupt and Exception Handling IA-32e Mode

	2.1.5 Memory Management
	2.1.5.1 Memory Management in IA-32e Mode

	2.1.6 System Registers
	2.1.6.1 System Registers in IA-32e Mode

	2.1.7 Other System Resources

	2.2 Modes of Operation
	2.2.1 Extended Feature Enable Register

	2.3 System Flags and Fields in the EFLAGS Register
	2.3.1 System Flags and Fields in IA-32e Mode

	2.4 Memory-Management Registers
	2.4.1 Global Descriptor Table Register (GDTR)
	2.4.2 Local Descriptor Table Register (LDTR)
	2.4.3 IDTR Interrupt Descriptor Table Register
	2.4.4 Task Register (TR)

	2.5 Control Registers
	2.5.1 CPUID Qualification of Control Register Flags

	2.6 Extended Control Registers (Including XCR0)
	2.7 Protection Key Rights Register (PKRU)
	2.8 System Instruction Summary
	2.8.1 Loading and Storing System Registers
	2.8.2 Verifying of Access Privileges
	2.8.3 Loading and Storing Debug Registers
	2.8.4 Invalidating Caches and TLBs
	2.8.5 Controlling the Processor
	2.8.6 Reading Performance-Monitoring and Time-Stamp Counters
	2.8.6.1 Reading Counters in 64-Bit Mode

	2.8.7 Reading and Writing Model-Specific Registers
	2.8.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

	2.8.8 Enabling Processor Extended States

	10. Updates to Chapter 3, Volume 3A
	Chapter 3 Protected-Mode Memory Management
	3.1 Memory Management Overview
	3.2 Using Segments
	3.2.1 Basic Flat Model
	3.2.2 Protected Flat Model
	3.2.3 Multi-Segment Model
	3.2.4 Segmentation in IA-32e Mode
	3.2.5 Paging and Segmentation

	3.3 Physical Address Space
	3.3.1 Intel® 64 Processors and Physical Address Space

	3.4 Logical and Linear Addresses
	3.4.1 Logical Address Translation in IA-32e Mode
	3.4.2 Segment Selectors
	3.4.3 Segment Registers
	3.4.4 Segment Loading Instructions in IA-32e Mode
	3.4.5 Segment Descriptors
	3.4.5.1 Code- and Data-Segment Descriptor Types

	3.5 System Descriptor Types
	3.5.1 Segment Descriptor Tables
	3.5.2 Segment Descriptor Tables in IA-32e Mode

	11. Updates to Chapter 10, Volume 3A
	Chapter 10 Advanced Programmable Interrupt Controller (APIC)
	10.1 Local and I/O APIC Overview
	10.2 System Bus Vs. APIC Bus
	10.3 The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC
	10.4 Local APIC
	10.4.1 The Local APIC Block Diagram
	10.4.2 Presence of the Local APIC
	10.4.3 Enabling or Disabling the Local APIC
	10.4.4 Local APIC Status and Location
	10.4.5 Relocating the Local APIC Registers
	10.4.6 Local APIC ID
	10.4.7 Local APIC State
	10.4.7.1 Local APIC State After Power-Up or Reset
	10.4.7.2 Local APIC State After It Has Been Software Disabled
	10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
	10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI

	10.4.8 Local APIC Version Register

	10.5 Handling Local Interrupts
	10.5.1 Local Vector Table
	10.5.2 Valid Interrupt Vectors
	10.5.3 Error Handling
	10.5.4 APIC Timer
	10.5.4.1 TSC-Deadline Mode

	10.5.5 Local Interrupt Acceptance

	10.6 Issuing Interprocessor Interrupts
	10.6.1 Interrupt Command Register (ICR)
	10.6.2 Determining IPI Destination
	10.6.2.1 Physical Destination Mode
	10.6.2.2 Logical Destination Mode
	10.6.2.3 Broadcast/Self Delivery Mode
	10.6.2.4 Lowest Priority Delivery Mode

	10.6.3 IPI Delivery and Acceptance

	10.7 System and APIC Bus Arbitration
	10.8 Handling Interrupts
	10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
	10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
	10.8.3 Interrupt, Task, and Processor Priority
	10.8.3.1 Task and Processor Priorities

	10.8.4 Interrupt Acceptance for Fixed Interrupts
	10.8.5 Signaling Interrupt Servicing Completion
	10.8.6 Task Priority in IA-32e Mode
	10.8.6.1 Interaction of Task Priorities between CR8 and APIC

	10.9 Spurious Interrupt
	10.10 APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors)
	10.10.1 Bus Message Formats

	10.11 Message Signalled Interrupts
	10.11.1 Message Address Register Format
	10.11.2 Message Data Register Format

	10.12 Extended XAPIC (x2APIC)
	10.12.1 Detecting and Enabling x2APIC Mode
	10.12.1.1 Instructions to Access APIC Registers
	10.12.1.2 x2APIC Register Address Space
	10.12.1.3 Reserved Bit Checking

	10.12.2 x2APIC Register Availability
	10.12.3 MSR Access in x2APIC Mode
	10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
	10.12.5 x2APIC State Transitions
	10.12.5.1 x2APIC States
	x2APIC After Reset
	x2APIC Transitions From x2APIC Mode
	x2APIC Transitions From Disabled Mode
	State Changes From xAPIC Mode to x2APIC Mode

	10.12.6 Routing of Device Interrupts in x2APIC Mode
	10.12.7 Initialization by System Software
	10.12.8 CPUID Extensions And Topology Enumeration
	10.12.8.1 Consistency of APIC IDs and CPUID

	10.12.9 ICR Operation in x2APIC Mode
	10.12.10 Determining IPI Destination in x2APIC Mode
	10.12.10.1 Logical Destination Mode in x2APIC Mode
	10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID

	10.12.11 SELF IPI Register

	10.13 APIC Bus Message Formats
	10.13.1 Bus Message Formats
	10.13.2 EOI Message
	10.13.2.1 Short Message
	10.13.2.2 Non-focused Lowest Priority Message
	10.13.2.3 APIC Bus Status Cycles

	12. Updates to Chapter 15, Volume 3B
	Chapter 15 Machine-Check Architecture
	15.1 Machine-Check Architecture
	15.2 Compatibility with Pentium Processor
	15.3 Machine-Check MSRs
	15.3.1 Machine-Check Global Control MSRs
	15.3.1.1 IA32_MCG_CAP MSR
	15.3.1.2 IA32_MCG_STATUS MSR
	15.3.1.3 IA32_MCG_CTL MSR
	15.3.1.4 IA32_MCG_EXT_CTL MSR
	15.3.1.5 Enabling Local Machine Check

	15.3.2 Error-Reporting Register Banks
	15.3.2.1 IA32_MCi_CTL MSRs
	15.3.2.2 IA32_MCi_STATUS MSRS
	15.3.2.3 IA32_MCi_ADDR MSRs
	15.3.2.4 IA32_MCi_MISC MSRs
	15.3.2.5 IA32_MCi_CTL2 MSRs
	15.3.2.6 IA32_MCG Extended Machine Check State MSRs

	15.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture

	15.4 Enhanced Cache Error reporting
	15.5 Corrected Machine Check Error Interrupt
	15.5.1 CMCI Local APIC Interface
	15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
	15.5.2.1 CMCI Initialization
	15.5.2.2 CMCI Threshold Management
	15.5.2.3 CMCI Interrupt Handler

	15.6 Recovery of Uncorrected Recoverable (UCR) Errors
	15.6.1 Detection of Software Error Recovery Support
	15.6.2 UCR Error Reporting and Logging
	15.6.3 UCR Error Classification
	15.6.4 UCR Error Overwrite Rules

	15.7 Machine-Check Availability
	15.8 Machine-Check Initialization
	15.9 Interpreting the MCA Error Codes
	15.9.1 Simple Error Codes
	15.9.2 Compound Error Codes
	15.9.2.1 Correction Report Filtering (F) Bit
	15.9.2.2 Transaction Type (TT) Sub-Field
	15.9.2.3 Level (LL) Sub-Field
	15.9.2.4 Request (RRRR) Sub-Field
	15.9.2.5 Bus and Interconnect Errors
	15.9.2.6 Memory Controller Errors

	15.9.3 Architecturally Defined UCR Errors
	15.9.3.1 Architecturally Defined SRAO Errors
	15.9.3.2 Architecturally Defined SRAR Errors

	15.9.4 Multiple MCA Errors
	15.9.5 Machine-Check Error Codes Interpretation

	15.10 Guidelines for Writing Machine-Check Software
	15.10.1 Machine-Check Exception Handler
	15.10.2 Pentium Processor Machine-Check Exception Handling
	15.10.3 Logging Correctable Machine-Check Errors
	15.10.4 Machine-Check Software Handler Guidelines for Error Recovery
	15.10.4.1 Machine-Check Exception Handler for Error Recovery
	15.10.4.2 Corrected Machine-Check Handler for Error Recovery

	13. Updates to Chapter 19, Volume 3B
	Chapter 19 Performance Monitoring Events
	19.1 Architectural Performance Monitoring Events
	19.2 Performance Monitoring Events for Intel® Xeon® Processor Scalable Family
	19.3 Performance Monitoring Events for 6th Generation Intel® Core™ Processor and 7th Generation Intel® Core™ Processor
	19.4 Performance Monitoring Events for Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series
	19.5 Performance Monitoring Events for the Intel® Core™ M and 5th Generation Intel® Core™ Processors
	19.6 Performance Monitoring Events for the 4th Generation Intel® Core™ ProcessorS
	19.6.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v3 Family

	19.7 Performance Monitoring Events for 3rd Generation Intel® Core™ ProcessorS
	19.7.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v2 Family and Intel Xeon Processor E7 v2 Family

	19.8 Performance Monitoring Events for 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series
	19.9 Performance Monitoring Events for Intel® Core™ i7 Processor Family and Intel® Xeon® Processor Family
	19.10 Performance Monitoring Events for processors based on Intel® microarchitecture Code Name Westmere
	19.11 Performance Monitoring Events for Intel® Xeon® Processor 5200, 5400 Series and Intel® Core™2 Extreme Processors QX 9000 Series
	19.12 Performance Monitoring Events for Intel® Xeon® Processor 3000, 3200, 5100, 5300 Series and Intel® Core™2 Duo ProcessorS
	19.13 Performance Monitoring Events for Processors Based on the Goldmont Plus Microarchitecture
	19.14 Performance Monitoring Events for Processors Based on the Goldmont Microarchitecture
	19.15 Performance Monitoring Events for Processors Based on the Silvermont Microarchitecture
	19.15.1 Performance Monitoring Events for Processors Based on the Airmont Microarchitecture

	19.16 Performance Monitoring Events for 45 nm and 32 nm Intel® Atom™ Processors
	19.17 Performance Monitoring Events for Intel® Core™ Solo and Intel® Core™ Duo Processors
	19.18 Pentium® 4 and Intel® Xeon® Processor Performance Monitoring Events
	19.19 Performance Monitoring Events for Intel® Pentium® M Processors
	19.20 P6 Family Processor Performance Monitoring Events
	19.21 Pentium Processor Performance Monitoring Events

	14. Updates to Chapter 22, Volume 3B
	Chapter 22 Architecture Compatibility
	22.1 Processor Families and Categories
	22.2 Reserved Bits
	22.3 Enabling New Functions and Modes
	22.4 Detecting the Presence of New Features Through Software
	22.5 Intel MMX Technology
	22.6 Streaming SIMD Extensions (SSE)
	22.7 Streaming SIMD Extensions 2 (SSE2)
	22.8 Streaming SIMD Extensions 3 (SSE3)
	22.9 Additional Streaming SIMD Extensions
	22.10 Intel Hyper-Threading Technology
	22.11 Multi-Core Technology
	22.12 Specific Features of Dual-Core Processor
	22.13 New Instructions In the Pentium and Later IA-32 Processors
	22.13.1 Instructions Added Prior to the Pentium Processor

	22.14 Obsolete Instructions
	22.15 Undefined Opcodes
	22.16 New Flags in the EFLAGS Register
	22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors

	22.17 Stack Operations and User Software
	22.17.1 PUSH SP
	22.17.2 EFLAGS Pushed on the Stack

	22.18 x87 FPU
	22.18.1 Control Register CR0 Flags
	22.18.2 x87 FPU Status Word
	22.18.2.1 Condition Code Flags (C0 through C3)
	22.18.2.2 Stack Fault Flag

	22.18.3 x87 FPU Control Word
	22.18.4 x87 FPU Tag Word
	22.18.5 Data Types
	22.18.5.1 NaNs
	22.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats

	22.18.6 Floating-Point Exceptions
	22.18.6.1 Denormal Operand Exception (#D)
	22.18.6.2 Numeric Overflow Exception (#O)
	22.18.6.3 Numeric Underflow Exception (#U)
	22.18.6.4 Exception Precedence
	22.18.6.5 CS and EIP For FPU Exceptions
	22.18.6.6 FPU Error Signals
	22.18.6.7 Assertion of the FERR# Pin
	22.18.6.8 Invalid Operation Exception On Denormals
	22.18.6.9 Alignment Check Exceptions (#AC)
	22.18.6.10 Segment Not Present Exception During FLDENV
	22.18.6.11 Device Not Available Exception (#NM)
	22.18.6.12 Coprocessor Segment Overrun Exception
	22.18.6.13 General Protection Exception (#GP)
	22.18.6.14 Floating-Point Error Exception (#MF)

	22.18.7 Changes to Floating-Point Instructions
	22.18.7.1 FDIV, FPREM, and FSQRT Instructions
	22.18.7.2 FSCALE Instruction
	22.18.7.3 FPREM1 Instruction
	22.18.7.4 FPREM Instruction
	22.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
	22.18.7.6 FPTAN Instruction
	22.18.7.7 Stack Overflow
	22.18.7.8 FSIN, FCOS, and FSINCOS Instructions
	22.18.7.9 FPATAN Instruction
	22.18.7.10 F2XM1 Instruction
	22.18.7.11 FLD Instruction
	22.18.7.12 FXTRACT Instruction
	22.18.7.13 Load Constant Instructions
	22.18.7.14 FXAM Instruction
	22.18.7.15 FSAVE and FSTENV Instructions

	22.18.8 Transcendental Instructions
	22.18.9 Obsolete Instructions and Undefined Opcodes
	22.18.10 WAIT/FWAIT Prefix Differences
	22.18.11 Operands Split Across Segments and/or Pages
	22.18.12 FPU Instruction Synchronization

	22.19 Serializing Instructions
	22.20 FPU and Math Coprocessor Initialization
	22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
	22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization

	22.21 Control Registers
	22.22 Memory Management Facilities
	22.22.1 New Memory Management Control Flags
	22.22.1.1 Physical Memory Addressing Extension
	22.22.1.2 Global Pages
	22.22.1.3 Larger Page Sizes

	22.22.2 CD and NW Cache Control Flags
	22.22.3 Descriptor Types and Contents
	22.22.4 Changes in Segment Descriptor Loads

	22.23 Debug Facilities
	22.23.1 Differences in Debug Register DR6
	22.23.2 Differences in Debug Register DR7
	22.23.3 Debug Registers DR4 and DR5

	22.24 Recognition of Breakpoints
	22.25 Exceptions and/or Exception Conditions
	22.25.1 Machine-Check Architecture
	22.25.2 Priority of Exceptions
	22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers

	22.26 Interrupts
	22.26.1 Interrupt Propagation Delay
	22.26.2 NMI Interrupts
	22.26.3 IDT Limit

	22.27 Advanced Programmable Interrupt Controller (APIC)
	22.27.1 Software Visible Differences Between the Local APIC and the 82489DX
	22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors
	22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors

	22.28 Task Switching and TSs
	22.28.1 P6 Family and Pentium Processor TSS
	22.28.2 TSS Selector Writes
	22.28.3 Order of Reads/Writes to the TSS
	22.28.4 Using A 16-Bit TSS with 32-Bit Constructs
	22.28.5 Differences in I/O Map Base Addresses

	22.29 Cache Management
	22.29.1 Self-Modifying Code with Cache Enabled
	22.29.2 Disabling the L3 Cache

	22.30 Paging
	22.30.1 Large Pages
	22.30.2 PCD and PWT Flags
	22.30.3 Enabling and Disabling Paging

	22.31 Stack Operations and Supervisor Software
	22.31.1 Selector Pushes and Pops
	22.31.2 Error Code Pushes
	22.31.3 Fault Handling Effects on the Stack
	22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate

	22.32 Mixing 16- and 32-Bit Segments
	22.33 Segment and Address Wraparound
	22.33.1 Segment Wraparound

	22.34 Store Buffers and Memory Ordering
	22.35 Bus Locking
	22.36 Bus Hold
	22.37 Model-Specific Extensions to the IA-32
	22.37.1 Model-Specific Registers
	22.37.2 RDMSR and WRMSR Instructions
	22.37.3 Memory Type Range Registers
	22.37.4 Machine-Check Exception and Architecture
	22.37.5 Performance-Monitoring Counters

	22.38 Two Ways to Run Intel 286 Processor Tasks
	22.39 Initial State of Pentium, Pentium Pro and Pentium 4 Processors

	15. Updates to Chapter 27, Volume 3C
	Chapter 27 VM Exits
	27.1 Architectural State Before a VM Exit
	27.2 Recording VM-Exit Information and Updating VM-Entry Control Fields
	27.2.1 Basic VM-Exit Information
	27.2.2 Information for VM Exits Due to Vectored Events
	27.2.3 Information for VM Exits During Event Delivery
	27.2.4 Information for VM Exits Due to Instruction Execution

	27.3 Saving Guest State
	27.3.1 Saving Control Registers, Debug Registers, and MSRs
	27.3.2 Saving Segment Registers and Descriptor-Table Registers
	27.3.3 Saving RIP, RSP, and RFLAGS
	27.3.4 Saving Non-Register State

	27.4 Saving MSRs
	27.5 Loading Host State
	27.5.1 Loading Host Control Registers, Debug Registers, MSRs
	27.5.2 Loading Host Segment and Descriptor-Table Registers
	27.5.3 Loading Host RIP, RSP, and RFLAGS
	27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries
	27.5.5 Updating Non-Register State
	27.5.6 Clearing Address-Range Monitoring

	27.6 Loading MSRs
	27.7 VMX Aborts
	27.8 Machine-Check Events During VM Exit

	16. Updates to Chapter 34, Volume 3C
	Chapter 34 System Management Mode
	34.1 System Management Mode Overview
	34.1.1 System Management Mode and VMX Operation

	34.2 System Management Interrupt (SMI)
	34.3 Switching Between SMM and the Other Processor Operating Modes
	34.3.1 Entering SMM
	34.3.2 Exiting From SMM

	34.4 SMRAM
	34.4.1 SMRAM State Save Map
	34.4.1.1 SMRAM State Save Map and Intel 64 Architecture

	34.4.2 SMRAM Caching
	34.4.2.1 System Management Range Registers (SMRR)

	34.5 SMI Handler Execution Environment
	34.5.1 Initial SMM Execution Environment
	34.5.2 SMI Handler Operating Mode Switching

	34.6 Exceptions and Interrupts Within SMM
	34.7 Managing Synchronous and Asynchronous System Management Interrupts
	34.7.1 I/O State Implementation

	34.8 NMI Handling While in SMM
	34.9 SMM Revision Identifier
	34.10 Auto HALT Restart
	34.10.1 Executing the HLT Instruction in SMM

	34.11 SMBASE Relocation
	34.12 I/O Instruction Restart
	34.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used

	34.13 SMM Multiple-Processor Considerations
	34.14 Default Treatment of SMIs and SMM with VMX Operation and SMX Operation
	34.14.1 Default Treatment of SMI Delivery
	34.14.2 Default Treatment of RSM
	34.14.3 Protection of CR4.VMXE in SMM
	34.14.4 VMXOFF and SMI Unblocking

	34.15 Dual-Monitor Treatment of SMIs and SMM
	34.15.1 Dual-Monitor Treatment Overview
	34.15.2 SMM VM Exits
	34.15.2.1 Architectural State Before a VM Exit
	34.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
	34.15.2.3 Recording VM-Exit Information
	34.15.2.4 Saving Guest State
	34.15.2.5 Updating Non-Register State

	34.15.3 Operation of the SMM-Transfer Monitor
	34.15.4 VM Entries that Return from SMM
	34.15.4.1 Checks on the Executive-VMCS Pointer Field
	34.15.4.2 Checks on VM-Execution Control Fields
	34.15.4.3 Checks on VM-Entry Control Fields
	34.15.4.4 Checks on the Guest State Area
	34.15.4.5 Loading Guest State
	34.15.4.6 VMX-Preemption Timer
	34.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
	34.15.4.8 VM Exits Induced by VM Entry
	34.15.4.9 SMI Blocking
	34.15.4.10 Failures of VM Entries That Return from SMM

	34.15.5 Enabling the Dual-Monitor Treatment
	34.15.6 Activating the Dual-Monitor Treatment
	34.15.6.1 Initial Checks
	34.15.6.2 Updating the Current-VMCS and Executive-VMCS Pointers
	34.15.6.3 Saving Guest State
	34.15.6.4 Saving MSRs
	34.15.6.5 Loading Host State
	34.15.6.6 Loading MSRs

	34.15.7 Deactivating the Dual-Monitor Treatment

	34.16 SMI and Processor Extended State Management
	34.17 Model-Specific System Management Enhancement
	34.17.1 SMM Handler Code Access Control
	34.17.2 SMI Delivery Delay Reporting
	34.17.3 Blocked SMI Reporting

	17. Updates to Chapter 41, Volume 3D
	Chapter 41 Intel® SGX Interactions with IA32 and Intel® 64 Architecture
	41.1 Intel® SGX Availability in Various Processor Modes
	41.2 IA32_FEATURE_CONTROL
	41.2.1 Availability of Intel SGX
	41.2.2 Intel SGX Launch Control Configuration

	41.3 Interactions with Segmentation
	41.3.1 Scope of Interaction
	41.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing Prefixes
	41.3.3 Interaction of Intel® SGX Instructions with Segmentation
	41.3.4 Interactions of Enclave Execution with Segmentation

	41.4 Interactions with Paging
	41.5 Interactions with VMX
	41.5.1 VMM Controls to Configure Guest Support of Intel® SGX
	41.5.2 Interactions with the Extended Page Table Mechanism (EPT)
	41.5.3 Interactions with APIC Virtualization

	41.6 Intel® SGX Interactions with Architecturally-visible Events
	41.7 Interactions with the Processor Extended State and Miscellaneous State
	41.7.1 Requirements and Architecture Overview
	41.7.2 Relevant Fields in Various Data Structures
	41.7.2.1 SECS.ATTRIBUTES.XFRM
	41.7.2.2 SECS.SSAFRAMESIZE
	41.7.2.3 XSAVE Area in SSA
	41.7.2.4 MISC Area in SSA
	41.7.2.5 SIGSTRUCT Fields
	41.7.2.6 REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT
	41.7.2.7 KEYREQUEST

	41.7.3 Processor Extended States and ENCLS[ECREATE]
	41.7.4 Processor Extended States and ENCLU[EENTER]
	41.7.4.1 Fault Checking
	41.7.4.2 State Loading

	41.7.5 Processor Extended States and AEX
	41.7.5.1 State Saving
	41.7.5.2 State Synthesis

	41.7.6 Processor Extended States and ENCLU[ERESUME]
	41.7.6.1 Fault Checking
	41.7.6.2 State Loading

	41.7.7 Processor Extended States and ENCLU[EEXIT]
	41.7.8 Processor Extended States and ENCLU[EREPORT]
	41.7.9 Processor Extended States and ENCLU[EGETKEY]

	41.8 Interactions with SMM
	41.8.1 Availability of Intel® SGX instructions in SMM
	41.8.2 SMI while Inside an Enclave
	41.8.3 SMRAM Synthetic State of AEX Triggered by SMI

	41.9 Interactions of INIT, SIPI, and Wait-for-SIPI with Intel® SGX
	41.10 Interactions with DMA
	41.11 Interactions with TXT
	41.11.1 Enclaves Created Prior to Execution of GETSEC
	41.11.2 Interaction of GETSEC with Intel® SGX
	41.11.3 Interactions with Authenticated Code Modules (ACMs)

	41.12 Interactions with Caching of Linear-address Translations
	41.13 Interactions with Intel® Transactional Synchronization Extensions (Intel® TSX)
	41.13.1 HLE and RTM Debug

	41.14 Intel® SGX Interactions with S states
	41.15 Intel® SGX Interactions with Machine Check Architecture (MCA)
	41.15.1 Interactions with MCA Events
	41.15.2 Machine Check Enables (IA32_MCi_CTL)
	41.15.3 CR4.MCE

	41.16 Intel® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL INTERRUPTS
	41.17 Intel SGX Interaction with Protection Keys

	18. Updates to Chapter 2, Volume 4
	Chapter 2 Model-Specific Registers (MSRs)
	2.1 Architectural MSRs
	2.2 MSRs In the Intel® Core™ 2 Processor Family
	2.3 MSRs In the 45 nm and 32 nm Intel® Atom™ Processor Family
	2.4 MSRs In Intel Processors Based on Silvermont Microarchitecture
	2.4.1 MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
	2.4.2 MSRs In Intel Atom Processors Based on Airmont Microarchitecture

	2.5 MSRs In Intel Atom Processors based on Goldmont Microarchitecture
	2.6 MSRs In Intel Atom Processors Based on Goldmont Plus Microarchitecture
	2.7 MSRs In the Intel® Microarchitecture Code Name Nehalem
	2.7.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
	2.7.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series

	2.8 MSRs In the Intel® Xeon® Processor 5600 Series (Based on Intel® Microarchitecture Code Name Westmere)
	2.9 MSRs In the Intel® Xeon® Processor E7 Family (Based on Intel® Microarchitecture Code Name Westmere)
	2.10 MSRs In Intel® Processor Family Based on Intel® Microarchitecture Code Name Sandy Bridge
	2.10.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel® Microarchitecture Code Name Sandy Bridge)
	2.10.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code Name Sandy Bridge)
	2.10.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family

	2.11 MSRs In the 3rd Generation Intel® Core™ Processor Family (Based on Intel® microarchitecture code name Ivy Bridge)
	2.11.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E Microarchitecture)
	2.11.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
	2.11.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families

	2.12 MSRs In the 4th Generation Intel® Core™ Processors (Based on Haswell Microarchitecture)
	2.12.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell Microarchitecture)
	2.12.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors

	2.13 MSRs In Intel® Xeon® Processor E5 v3 and E7 v3 Product Family
	2.13.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family

	2.14 MSRs In Intel® Core™ M Processors and 5th Generation Intel Core Processors
	2.15 MSRs In Intel® Xeon® Processors E5 v4 Family
	2.15.1 Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
	2.15.2 Additional MSRs Supported in Intel® Xeon® Processors E5 v4 and E7 v4 Families

	2.16 MSRs In the 6th Generation Intel® Core™ Processors, Intel® Xeon® Processor Scalable Family, 7th Generation Intel® Core™ Processors, and Future Intel® Core™ Processors
	2.16.1 MSRs Specific to 7th Generation Intel® Core™ Processors based on Kaby Lake Microarchitecture
	2.16.2 MSRs Specific to Future Intel® Core™ Processors
	2.16.3 MSRs Specific to Intel® Xeon® Processor Scalable Family

	2.17 MSRs In Intel® Xeon Phi™ Processor 3200/5200/7200 Series and Future Intel® Xeon Phi™ Processor
	2.18 MSRs In the Pentium® 4 and Intel® Xeon® Processors
	2.18.1 MSRs Unique to Intel® Xeon® Processor MP with L3 Cache

	2.19 MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors
	2.20 MSRs In the Pentium M Processor
	2.21 MSRs In the P6 Family Processors
	2.22 MSRs in Pentium Processors
	2.23 MSR Index

